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Department of Applied Mathematics
Institute for Theoretical Computer Science

Charles University
Malostranské náměst́ı 25, 118 00
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Abstract

For two bipartite graphs G and G′, a bijection ψ : E(G) → E(G′) is called a
(perfect) matching preserver provided that M is a perfect matching in G if and
only if ψ(M) is a perfect matching in G′. We characterize bipartite graphs G and
G′ which are related by a matching preserver and the matching preservers between
them.
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1 Introduction

A subset M ⊆ E(G) of the edge set E(G) of a graph G is called a matching provided
that no two edges in M have a vertex in common. A perfect matching M is a matching
with the property that each vertex of G is incident with an edge in M . For k a positive
integer, a graph G is k-extendable provided that G has a matching of size k and every
matching in G of size at most k can be extended to a perfect matching in G.

In this paper we characterize the bipartite graphs G and G′ that are related by a
matching preserver and so, with appropriate labeling of edges, have the same perfect
matchings. We will achieve this by a full description of matching preservers defined as
follows: A bijection ψ : E(G) → E(G′) is matching preserving, or is a matching preserver,
provided that M is a perfect matching in G if and only if ψ(M) is a perfect matching in
G′. Matching preservers for bipartite graphs G were investigated in [2] (see also [1]) in
the context of the diagonals of a matrix and the associated diagonal hypergraph. Let A
be the bi-adjacency matrix of G. Then A is a (0, 1)-matrix, and the matchings of G are in
one-to-one correspondence with the permutation matrices P satisfying P ≤ A (entrywise
order). The property that G is 1-extendable is equivalent to the property that the bi-
adjacency matrix A has total support. The property that G is connected and 1-extendable
is equivalent to the property that A is fully indecomposable. See [3] for a discussion of
these matrix properties. The vertices of the hypergraph mentioned above correspond to
the edges of G (the positions of the 1’s in A) and the hyperedges are the perfect matchings
of G (the permutations matrices P ≤ A, more properly, the set of the n positions of P
that are occupied by 1’s).

Let G be a connected, 1-extendable, bipartite graph with parts X and Y of size n.
The edges of G are pairs xy of vertices with x ∈ X and y ∈ Y . Let u and v be vertices
belonging to different parts of G such that {u, v} forms a vertex cut of G. Thus there
are bipartite graphs G1 with parts X1 ⊆ X, Y1 ⊆ Y , and G2 with parts X2 ⊆ X, Y2 ⊆ Y ,
such that X1 ∩ X2 = {u} and Y1 ∩ Y2 = {v} and each edge of G belongs to either G1

or G2 (if uv is an edge of G, then uv is the only common edge of G1 and G2). Let G′

be the bipartite graph G′ obtained from G by replacing each occurrence of u in an edge
of G1 with v and each occurrence of v in an edge of G1 with u (the neighbors of u and
v in G1 are interchanged). Then G′ is a bipartite graph with parts Y1 ∪ (X2 \ {u}) and
X1 ∪ (Y2 \ {v}). We say that the graph G′ is obtained from G by a bi-twist with respect
to the vertices u and v, and G′ is a bi-twist of G (again with respect to vertices u and v).
It is easy to verify that bi-twists preserve both cycles and perfect matchings [2].

In the language of matrices, a bi-twist is described as follows. Let A be the labeled
bi-adjacency of order n of G. By this we mean that the 1’s of the ordinary bi-adjacency
matrix (the 1’s correspond to the edges of G) are replaced by distinct elements of some
set. Since {u, v} is a vertex cut of G, we may choose an ordering for the rows and columns
of A, with u corresponding to the first row and v corresponding to the first column, so
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that A has the form




















∗ α β

γ A1 O

δ O A2





















, (1)

where

(i)









∗ α

γ A1









and (ii)









∗ β

δ A2









(2)

are labeled bi-adjacency matrices of G1 and G2, respectively. Since G is 1-extendable and
so has a perfect matching, the matrices A1 and A2 are square. A labeled bi-adjacency
matrix of G′ is the matrix obtained from (1) by replacing (2)(i) with its transpose









∗ γT

αT AT
1









(3)

resulting in the matrix




















∗ γT β

αT AT
1 O

δ O A2





















. (4)

This matrix operation is called partial transposition in [1] and [2]. It follows from (1) that
in order that a bipartite graph with parts of size n have a bi-twist, its (labeled) adjacency
matrix must have a p by q zero submatrix and a complementary q by p zero submatrix
for some positive integers p and q with p+ q = n− 1.

In the language of bipartite graphs, the conjecture in [1] and [2] can be stated as
follows.

Conjecture 1.1 Let G and G′ be two 1-extendable, bipartite graphs and let ψ : E(G) →
E(G′) be a matching preserver. Then there is a sequence of bi-twists of G resulting in a
graph isomorphic to G′ and ψ is induced by this isomorphism.

As bi-twists do not suffice to describe all matching preservers between bipartite graphs,
this conjecture is not true.
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Example 1.2 Let G be the bipartite graph with labeled bi-adjacency matrix

A =

















a b c 0 0 0
d e f 0 0 0
0 0 k l m 0
0 0 r s t 0
w 0 0 0 u v

z 0 0 0 x y

















with parts of size n = 6. No bi-twist of G (partial transposition of A) is possible. Yet the
bipartite graph G′ with labeled bi-adjacency matrix

B =

















a b c 0 0 0
d e f 0 0 0
0 0 u v w 0
0 0 x y z 0
m 0 0 0 k l

t 0 0 0 r s

















has the same collection of matchings as G. In fact, in both cases, the set of matchings is
the union of the sets of matchings corresponding to the two labeled adjacency matrices

















a b 0 0 0 0
d e 0 0 0 0
0 0 k l 0 0
0 0 r s 0 0
0 0 0 0 u v

0 0 0 0 x y

















and

















0 b c 0 0 0
0 e f 0 0 0
0 0 0 l m 0
0 0 0 s t 0
w 0 0 0 0 v

z 0 0 0 0 y

















�

The operation in Example 1.2 in going from G to G′ is an instance of what we call
bi-transposition and which we now define. It is the only other operation in addition to
bi-twists that is needed in order to describe matching preservers.

Let G1, G2, G3 be bipartite graphs with bipartitions (V i
1 , V

i
2 ), and having pairwise

disjoint vertex sets. We further assume that |V i
1 | = |V i

2 | + 1. Let ai, bi be vertices from
the part V i

1 of Gi, i = 1, 2, 3. Let G be the bipartite graph obtained from G1, G2, G3 by
identifying the vertices in each of the three pairs {b1, a2}, {b2, a3}, and {b3, a1}. Let G′

be the bipartite graph obtained from G1, G2, G3 by identifying the vertices in each of the
three pairs {b1, a3}, {b2, a1}, and {b3, a2}. Then graph G′ is said to be obtained from G

by a bi-transposition of G1, G2 and G3 (see Figure 1).
It is straightforward to verify that the operation of bi-transposition also preserves both

cycles and perfect matchings, but cannot be replaced by the bi-twists. The following is
the main result of this paper. It is proved in the last section.

Theorem Let G and G′ be two 1-extendable, bipartite graphs and let ψ : E(G) → E(G′)
be a matching preserver. Then there is a sequence of bi-twists and bi-transpositions of G
resulting in a graph isomorphic to G′ and ψ is induced by this isomorphism.
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Figure 1: Bi-transposition.

2 Preliminaries

In this section we review some facts that will be used in our proof of Theorem 4.1. Let
G and G′ be 1-extendable bipartite graphs, and suppose that ψ : E(G) → E(G′) is a
matching preserver. By Theorem 2.4 of [2], and it is not difficult to prove, there is a
bijection between the components of G and G′ such that ψ induces a matching preserver
between corresponding components. Hence we may restrict our attention to connected,
1-extendable bipartite graphs—in matrix terms, to fully indecomposable matrices.

The next lemma follows from the inductive structure of a nearly decomposable matrix
(see [3]), equivalently from the ear structure of elementary bipartite graphs (see [4]). For
convenience, we give a short self-contained proof.

Lemma 2.1 Let G = (V,E) be a 1-extendable, connected bipartite graph. Then G has a
perfect matching M such that for each edge e of M , the vertices of e do not form a cut
in G.

Proof: It suffices to show that if {u, v} is a vertex cut such that e = uv is an edge, then
the graph G \ e obtained from G by deleting edge e is 1-extendable and connected. By
recursively deleting such edges we arrive at a 1-extendable, connected bipartite graph G′,
where G′ has a perfect matching M and for all edges e′ = u′v′ of G′, in particular for
those in M , {u′, v′} is not a cut of G′ and hence not a cut of G.

Since 1-extendable, connected graphs are always 2-connected, it suffices to show that
G \ e is 1-extendable. There are subgraphs G1 and G2 such that V (G1)∪ V (G2) = V (G),
V (G1)∩V (G2) = {u, v}, E(G1)∪E(G2) = E(G) and E(G1)∩E(G2) = {e}. Each perfect
matching not containing e has both of the edges incident with {u, v} contained in the
same Gi.

Let e′ be an edge of G\ e. Let M ′ be a perfect matching of G containing e′. If e 6∈M ′,
then M ′ is also a perfect matching of G′ and contains e′. Assume that e ∈ M ′, and that
e.g. e′ is an edge of G1. Let M ′′ be the restriction of M ′ to a perfect matching of G1.
Let f 6= e be an edge of G2 incident with {u, v} and let N be a perfect matching of G
containing f . Then N contains a perfect matching N2 of G2. Thus (M ′′ \ {e}) ∪N2 is a
perfect matching of G \ e containing e′, and this completes the proof.

�
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We now review a classical theorem of Whitney [8]. Let G be a 2-connected graph with
vertex cut {u, v}. There are subgraphs G1 and G2 such that V (G1) ∪ V (G2) = V (G),
V (G1) ∩ V (G2) = {u, v}, E(G1) ∪ E(G2) = E(G) and E(G1) ∩ E(G2) = {uv} or ∅
depending on whether or not uv is an edge of G. Define a graph G′ as follows: Let G′

be the graph obtained from G by replacing each occurrence of u in an edge of G1 with
v and each occurrence of v in an edge of G1 with u (the neighbors of u and v in G1 are
interchanged). Then G′ is obtained from G by a twist, and G′ is a twist of G (again with
respect to vertices u and v). (If uv is an edge of G, then it is also an edge of G′.) It was
proved by Whitney [8] that each graph with the same cycles as the 2-connected graph
G—that is, a graph that is 2-isomorphic to G—can be obtained from G by a sequence of
twists. Truemper [6] simplified the proof and obtained a bound on the number of twists
needed.

Theorem 2.2 Let G be a 2-connected graph with n ≥ 2 vertices, and let H be a graph
2-isomorphic to G. Then G can be transformed into a graph G∗ which is isomorphic to
H by a sequence of at most n− 2 twists.

The technique of Truemper uses the concept of generalized cycles. A graph G is a
generalized cycle with constituents G1, G2, . . . , Gk (k ≥ 2) provided that the following
hold:

(i) each Gi is a connected subgraph of G having nonempty edge set Ei; additionally, if
k = 2 then both G1 and G2 contain at least three vertices;

(ii) the edge sets Ei, 1 ≤ i ≤ k, partition the edge set E(G), and each Gi has exactly
two vertices in common with ∪j 6=iGj (these vertices are called the contact vertices
of Gi);

(iii) replacing each Gi by an edge joining the contact vertices of Gi produces an ordinary
cycle.

The generalized cycle G is a connected graph. If k ≥ 3 and each Gi has only two
vertices (since Gi is connected, these two vertices are joined by an edge), then G is an
ordinary cycle.

The first assertion in the next lemma is due to Tutte [7]; the second assertion is due to
Truemper [6]. In the lemma, a Gi consisting of a single edge is regarded as 2-connected.

Lemma 2.3 If a graph G is 2-connected but not 3-connected, then there exists a repre-
sentation of G as a generalized cycle where each constituent is 2-connected.

Moreover, let G be a 2-connected, generalized cycle as above. If ψ : E(G) → E(H) is a
2-isomorphism of G to H, then H is a generalized cycle with constituents H1, H2, . . . , Hk,
where Hi is the subgraph of H induced by ψ(Ei) for 1 ≤ i ≤ k.
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3 Directed graphs

There is a well-known correspondence between matchings in a bipartite graph G and cir-
cuits in a directed graph (digraph) D constructed from G and a specified perfect matching
of G. This correspondence can be easily understood by using adjacency matrices. Let
M = {u1v1, u2v2, . . . , unvn} be a perfect matching of G and let A = [aij] be the bi-
adjacency matrix of G where aij = 1 if and only if uivj is an edge of G, 1 ≤ i, j ≤ n.
Thus A has all 1’s on its main diagonal and these 1’s correspond to the edges of M . The
matrix A − In is the adjacency matrix of a digraph D(G,M). The digraph can also be
understood as obtained from G by orienting each edge from one part of G to its other
part,and then contracting all of the edges of M .

A circuit of a digraph is a circular sequence of distinct edges such that the terminal
vertex of each edge is the initial vertex of the edge that follows. As such, a circuit may be
identified with its collection of edges, since its circular arrangement is unique. Similarly,
we may identify a path in a digraph with its collection of edges.

Let M ′ be another perfect matching in G. Then (M \M ′) ∪ (M ′ \M) is a collection
of pairwise vertex disjoint cycles of G of even length whose edges alternate between M

and M ′. In D(G,M) these cycles correspond to pairwise vertex-disjoint circuits (not
necessarily a spanning set since M and M ′ may have edges in common). Using the
matching M , we may reverse this construction to obtain, given a collection of pairwise
vertex-disjoint circuits of D(G,M), a perfect matching M ′ of G. Thus, there is a one-
to-one correspondence between perfect matchings in G and collections of pairwise-vertex
disjoint circuits in D(G,M). This well-known observation allows us to reformulate our
problem in terms of digraphs and pairwise vertex-disjoint circuits.

A digraph is strongly connected provided that for each ordered pair of vertices u, v,
there is a path from u to v. The 1-extendability of the connected bipartite graph is
equivalent to the strong connectivity of D(G,M). We formalize this well-known property
in the next lemma (see e.g. [3]). (In matrix terms this property is usually stated as: A
(0, 1)-matrix A of order n with all 1’s on its main diagonal is fully indecomposable if and
only if the matrix A− In is irreducible.

Lemma 3.1 Let G be a connected bipartite graph and let M be a perfect matching of G.
Then G is 1-extendable if and only if the digraph D(G,M) is strongly connected.

The analogue of Whitney’s theorem for digraphs was proved by Thomassen [5]. First,
recall that an isomorphism, respectively, an anti-isomorphism, of a digraph D onto a
digraph D′ is a bijection f : V (D) → V (D′) such that, for all u, v ∈ V (D), there is an
arc in D from vertex u to vertex v if and only if there is an arc in D′ from vertex f(u) to
vertex f(v), respectively, from f(v) to f(u).

A directed twist of a digraph D is defined in a similar way to a twist in a graph.
Let D1, D2 be subgraphs of D of order at least 3, such that V (D1) ∪ V (D2) = V (D),
V (D1) ∩ V (D2) = {u, v}, E(D1) ∪ E(D2) = E(D). Let D′ be obtained from D by
replacing arcs of the form uw, wu, vw, and wv by, respectively, wv, vw, wu and uw for
each w ∈ V (D2) and then reversing the direction of all the remaining arcs of D2. Then
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D′ is obtained from D by a directed twist (or di-twist), with respect to the vertices u and
v, and D′ is a di-twist of D (again with respect to the vertices u and v). Clearly, D and
D′ have the same circuits and D is strongly connected if and only if D′ is.

In the language of matrices, a directed twist is described as follows. Let A be the
adjacency matrix of the digraph D where the vertices have been ordered so that u and
v come first followed by the remaining vertices of D1 and then the remaining vertices of
D2. Thus A has the form

























a b α1 α2

c d β1 β2

γ1 δ1 A1 O

γ2 δ2 O A2

























, (5)

where

(i)













a b α1

c d β1

γ1 δ1 A1













and (ii)













a b α2

c d β2

γ2 δ2 A2













(6)

are the adjacency matrices of D1 andD2, respectively. An adjacency matrix of the digraph
D′ is obtained from (5) by replacing (6)(ii) in (5) with













a c δT
2

b d γT
2

βT
2 αT

2 AT
2













(7)

Thomassen [5] proved a analogue of Whitney’s theorem for digraphs, applying Whit-
ney’s theorem to the underlying graph. If D is a digraph, then GD denotes the underlying
graph of G.

Theorem 3.2 Let D and D′ be two strongly connected digraphs with 2-connected under-
lying graphs GD and GD′. Let ϕ : E(D) → E(D′) be a bijection such that ϕ and ϕ−1

preserve circuits. Then there exist a sequence of di-twists of D resulting in a digraph D∗

such that ϕ is induced by an isomorphism or anti-isomorphism of D∗ onto D′.

Note that the requirement of the 2-connectivity of the underlying graphs is necessary
only for GD. That GD′ is 2-connected then follows from Whitney’s theorem.

Let D be a digraph. Then D is a generalized circuit provided D is strongly connected
and the underlying graph GD is a generalized cycle. Let D be a generalized circuit such
that the constituents of its underlying graphG areG1, G2, . . . , Gk, and the contact vertices
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in Gi are ui and vi, i = 1, 2, . . . , k. Then the corresponding digraphs D1, D2, . . . , Dk are
called the constituents of the generalized circuitD, and the vertices ui, vi inDi are called its
contact vertices, i = 1, 2, . . . , k. Note that vi = ui+1 where the subscripts are interpreted
modulo k. Moreover, in the rest of the paper, we work only with generalized circuits with
the underlying graphs of all the constituents 2-connected.

Since D is assumed to be strongly connected, it follows that, for each constituent
Di, either Di is strongly connected or the digraph obtained from Di by contracting each
strong component to a vertex contains a path with initial vertex corresponding to the
strong component containing ui and final vertex corresponding to the strong component
containing vi, or the other way around. The following lemma is now easily verified.

Lemma 3.3 If D is a generalized circuit, then D has a circuit C containing all of the
contact vertices, and passing through all of its constituents.

In a generalized circuit D, we always assume that its constituents have been labeled
D1, D2, . . . , Dk in such a way that the circuit C in Lemma 3.3 comes into Di at ui (=vi−1)
and leaves Di at vi (=ui+1).

Now we state a directed analogue of the second assertion in Lemma 2.3.

Lemma 3.4 Let D be a generalized circuit with constituents D1, D2, . . . , Dk and let the
underlying graphs of all Di be 2-connected, i = 1, 2, . . . k. Let Ei denote the edge-set of
Di. Let ϕ : E(D) → E(D′) be a bijection such that ϕ and ϕ−1 preserve circuits. Then D′

is a generalized circuit with constituents D′
1, D

′
2, . . . , D

′
k (not necessarily ordered in this

way), where D′
i is the subgraph of D′ induced by ϕ(Ei) for 1 ≤ i ≤ k.

Proof: The corresponding underlying graphs GD and GD′ are 2-isomorphic by Theo-
rem 3.2. The lemma now follows by applying Lemma 2.3.

�

The contact vertices of the generalized circuit D are partitioned into three types. If
there is a circuit in Di meeting one of its contact vertices ui, vi but not the other, then
we say that that contact vertex is heavy in Di. If there is no circuit in Di containing
a particular contact vertex, then we call that contact vertex light in Di; in this case,
the strong component of Di containing the contact vertex contains no other vertex. If a
contact vertex in Di is neither light nor heavy, then it is called cyclic in Di; if e.g. ui is
cyclic in Di, then there is a circuit containing ui, and each circuit in Di containing ui also
contains vi. Note that if one of the contact vertices is cyclic in Di, then the second one
clearly cannot be light.

Let D be a generalized circuit with constituents Di (each of them has 2-connected
underlying graph) and contact vertices ui, vi, i = 1, 2, . . . , k. Let σ be a permutation of
{1, 2, . . . , k} and let ε ∈ {−1,+1}k. Let the digraph Dσ,ε be obtained from D by rear-
ranging the constituents in the following way: First, assume a directed graph consisting
of disjoint components D1, D2, . . .Dk. Then, for i = 1, 2, . . . k, if εi = −1 reverse the
orientation of the edges of Di and set xi = vi, yi = ui; if ε = +1 set xi = ui and yi = vi.
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Finally, we identify vertices yσ(i) and xσ(i+1) (modulo k), for i = 1, 2, . . . , k. Moreover, we
call the rearrangement Dσ,ε an admissible rearrangement of D if the following property
holds:

(*) If vi is heavy or cyclic in Di and ui+1 is heavy or cyclic in Di+1, then Di+1 follows
Di in Dσ,ε as it does in D or Di follows Di+1, i = 1, 2, . . . , k. If, in addition, vi (ui+1,
respectively) is actually heavy in Di (Di+1, respectively) then vi (ui+1, respectively) is
one of the contact vertices of Di and Di+1 in Dσ,ε.

It follows, in particular, that an admissible rearrangement of a circuit produces either
the circuit itself or its reversal (as, by our convention, a set of edges).

The definition of an admissible rearrangement defines implicitly a partition of the con-
stituents of D into superconstituents, where each superconstituent is a maximal sequence
of consecutive constituents of D with the property that no inner contact vertex is light.
It follows that a common contact vertex of two different superconstituents is light in at
least one of them.

It is straightforward to verify the following lemma.

Lemma 3.5 Let D be a generalized circuit. A rearrangement of the constituents of D
does not change the set of circuits incident to any vertex of D if and only if it is an
admissible rearrangement.

The following theorem is a first step towards characterizing bijections between the
edges of two digraphs that preserve the union of vertex-disjoint circuits.

Theorem 3.6 Let D and D′ be two strongly connected digraphs and let ϕ : E(D) →
E(D′) be a bijection. Then ϕ induces a bijection between unions of vertex-disjoint circuits
of D and unions of vertex-disjoint circuits of D′ (that is, ϕ and ϕ−1 preserve unions of
vertex-disjoint circuits) if and only if, starting with D, there is a sequence of admissible
rearrangements of generalized circuits that results in a digraph D† such that ϕ is induced
by an isomorphism or anti-isomorphism of D† onto D′.

Proof: It follows from Lemma 3.5 that admissible rearrangements do not change the set
of vertex-disjoint circuits. We now consider the converse. First we note that the converse
holds when D (and hence D′) is a circuit. Let D be a minimal counterexample, and let Γ
be a generalized circuit ofD with the underlying graphs of all its constituents 2-connected;
Γ exists by Lemma 2.3. Lemma 3.4 implies that the image Γ′ of Γ under ϕ is a generalized
circuit of D′ whose constituents Γ′

i are images under ϕ of the constituents Γi of Γ. Let
Γ∗

i be the strongly connected digraph obtained from Γi by adding a new edge from its
contact vertex vi to its contact vertex ui, and let Γ′∗

i be defined in a similar way using
contact vertices u′i and v′i. Let ϕ∗

i be the extension of ϕ|Γi to Γ∗
i which maps the edge

(vi, ui) to the edge (v′i, u
′
i). In particular, ϕ∗

i is a bijection from the edges of Γ∗
i to those of

Γ′∗
i preserving the set of unions of vertex-disjoint circuits of Γ∗

i . Hence, by minimality of
D, each ϕ∗

i is realized by admissible rearrangements of constituents of generalized circuits
of Γ∗

i . Each admissible rearrangement of Γ∗
i corresponds to an admissible rearrangement

of Γ. It follows that the generalized circuit Γ′ is obtained by a rearrangement of the
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constituents of the generalized circuit whose constituents are admissible rearrangements
of the constituents of Γ. By Lemma 3.5, this rearrangement must be admissible, since a
non-admissible rearrangement would change the set of unions of vertex-disjoint circuits.

�

By Theorem 3.6, to fully characterize mappings that preserve unions of vertex-disjoint
circuits, it suffices to describe how admissible rearrangements can be carried out. To do
this, we introduce two operations, that of a cyclic di-twist and of a supertransposition.

A di-twist of a strongly connected digraph D with parts D1 and D2 is cyclic if both
twist vertices are light in one of the parts, say in D1 (here we regard D as a generalized
circuit with two constituents each with at least three vertices). What this means is the
following: Let V (D1)∩ V (D2) = {u, v} where u and v are light in D1. Then {u} and {v}
are strong components of D1 with, say, each edge of D1 incident with u directed from u

and each edge of D1 incident with v directed to v. Then the di-twist with respect to the
parts D1 and D2 is a cyclic di-twist. It follows directly that a cyclic di-twist of a digraph
preserves unions of vertex-disjoint circuits.

Now let D be a generalized circuit. Let S and S ′ be consecutive superconstituents
and let u and v (respectively, u′ and v′) be the contact vertices of S (respectively, of S ′),
where u′ = v. Further, let T be the union of all remaining superconstituents with contact
vertices uT and vT where uT = v′ and vT = u. Assume that u, u′, and uT are light in,
respectively, S, S ′, and T . Then the operation of supertransposition of superconstituents
S and S ′ results in the digraph D′ constructed by transposing S and S ′ in the following
way: D′ is obtained from the disjoint union of S, S ′, and T by identifying u with v′, u′

with vT and uT with v. It is straightforward to verify that supertransposition does not
change vertex-disjoint unions of circuits. Our goal is now to show that cyclic di-twists and
supertransposition can be used to completely describe edge bijections between strongly
connected digraphs which preserve vertex-disjoint unions of circuits.

Consider a generalized circuit D with constituents D1, . . . , Dk and superconstituents
S1, S2, . . . , Sl. We associate with D an object called an auxiliary circuit that captures the
relationship between the superconstituents. The auxiliary circuit has length l and an edge
ei, joining the contact vertices ui, vi of Si, i = 1, 2, . . . , l; thus, each superconstituent is
contracted to an edge joining its two contact vertices, and these edges are of three types.
Edge ei is a fat-edge provided that neither ui nor vi is a light vertex of Si (fat-edges have
no direction); ei is a thin-edge and is directed from ui to vi provided that vi is a light
vertex of Si while ui is not: ei is a two-way edge directed to both ui and vi provided both
ui and vi are light vertices of Si. Important properties of the auxiliary circuit, following
from the definition of superconstituents, are:

AC1. There is at least one edge directed to each of the vertices of an auxiliary circuit.
Hence:

AC2. If an auxiliary circuit has at least one fat-edge, then it has a two-way edge.

AC3. If an auxiliary circuit contains no two-way edges, then it is just an ordinary directed
circuit.
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We now define admissible rearrangements for auxiliary circuits. A two-way path is a
path of the auxiliary circuit which starts and ends with a two-way edge. An admissible
rearrangement of the edges of an auxiliary circuit C is an auxiliary circuit C ′ obtained
by arbitrarily rearranging the fat-edges amongst themselves, arbitrarily rearranging the
two-way paths amongst themselves, and removing thin-edges from their places and rein-
serting them in other places with orientations reversed (with respect to the clockwise
orientation). Note that fat-edge rearrangements and two-way path rearrangements ap-
plied to an auxiliary circuit always result in an auxiliary circuit; a thin-edge shift requires
that the property that at least one edge is directed to each of the vertices be maintained.
The next lemma shows that two auxiliary circuits, with the same number of edges of each
of the three types and with at least one two-way edge, are admissible rearrangements of
one another.

Lemma 3.7 Let C and C ′ be auxiliary circuits containing the same number of edges of
each type, with at least one two-way edge. For C and C ′, let there be assigned labels
so that for each of the three types of edges, the edges have the same set of labels in C

as in C ′. Then C ′ can be obtained from C by fat-edge rearrangements, two-way path
rearrangements, and thin-edge shifts.

Proof: First we rearrange the labeled fat-edges and rearrange the labeled two-way paths
of C so that the fat edges and the two-way edges agree with their cyclic positioning in
C ′. As remarked above, the result is an auxiliary circuit. Then by shifting the labeled
thin-edges of C, we get them to be in the right position in C ′: if the orientation of a
thin-edge needs to be changed, then one shift is sufficient; otherwise, we shift the thin
edge next to a two-way edge, thereby changing its orientation and then shift it to its right
place, thereby changing its orientation back to what it was.

�

We next consider how a cyclic di-twist of a generalized circuit D relates to the corre-
sponding auxiliary circuit C. Let T1 and T2 be a partition of the superconstituents of D
into two consecutive parts, where V (T1) ∩ V (T2) = {u, v}. The di-twist with respect to
T1 and T2 is cyclic provided that u and v are light in one of the parts, say T1. Denote
by Pi the set of edges of the auxiliary circuit corresponding to the superconstituents in
Ti, i = 1, 2. Then P1 and P2 partition the edges of the auxiliary circuit into two paths
(consisting of the three types of edges). Since u and v are light in T1, the edge of P1 at
u, respectively, v is either a two-way edge or a thin edge directed to u, respectively, to v.
Conversely, when we have such a partition of the auxiliary circuit with these properties,
the di-twist with respect to corresponding parts of D is cyclic.

Lemma 3.8 Let C and C ′ be auxiliary circuits containing the same number of edges of
each type, with at least one two-way edge. For C and C ′, let there be assigned labels so
that for each of the three types of edges, the edges have the same set of labels in C as in
C ′. Then C ′ can be obtained from C by a sequence of cyclic di-twists.
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Proof: First consider an exchange of two fat-edges edges ei and ej. Let Si and Sj be
corresponding superconstituents. Since no fat-edges are consecutive in C, C \{ei, ej} con-
sists of two paths P1 and P2. Denote by Tm the union of superconstituents corresponding
to edges of Pm, m = 1, 2. Then the exchange of ei and ej can be constructed by two
cyclic di-twists: first twist with parts T1 and Si ∪ T2 ∪ Sj and then twist with parts T2

and Si ∪ T1 ∪ Sj.
Now consider an exchange of two two-way paths ei and ej. Their exchange by

cyclic di-twists is similar to that for fat-edges. Let Si and Sj be the corresponding
superconstituents. First suppose that the two-way paths ei, ej are consecutive so that
P = C \{ei, ej} is a path. Denote by T the union of the corresponding superconstituents.
Then the exchange of ei and ej can be carried out by the cyclic di-twist with parts T and
Si ∪ Sj. Now suppose that ei, ej are not consecutive. Let P1 and P2 be the two paths of
C \ {e′i, e

′
j}, and let T1 and T2 be the corresponding unions of superconstituents. Then

the exchange of ei and ej can be carried out by two cyclic di-twists: first twist with parts
T1 and Si ∪ T2 ∪ Sj and then twist with parts T2 and Si ∪ T1 ∪ Sj.

Finally, we show how a thin-edge shift can be carried out by cyclic di-twists. Let e be
a thin-edge, and let v be the vertex of C (and so a contact vertex of the corresponding
generalized circuit) to which e is to be shifted. Let Se be the superconstituent corre-
sponding to e. Finally, let P1 and P2 be the paths from v to the closest vertex of e in
both directions of C, and let T1 and T2 be the corresponding unions of superconstituents.
Then the shift of e can be constructed by two cyclic di-twists: first twist with parts T1

and T2 ∪ Se and then twist with parts T2 and T1 ∪ Se.
�

We now apply the previous two lemmas to admissible rearrangements of generalized
circuits. An admissible rearrangement of a generalized circuit is an admissible supercon-
stituent rearrangement provided that it only rearranges the superconstituents.

Lemma 3.9 Let D be a generalized circuit. Then each admissible superconstituent rear-
rangement D′ of D can be accomplished by a sequence of cyclic di-twists and supertrans-
positions.

Proof: Let C and C ′ be the auxiliary circuits corresponding to D and D′, respectively.
Then the superconstituent rearrangement induces a bijection between the edges of C and
those of C ′ that preserves edge types. If the auxiliary circuit C of D contains at least
one two-way edge, then by Lemma 3.7, C ′ may be obtained from C by a sequence of
fat-edge exchanges, two-way edge exchanges, and thin-edge shifts. By Lemma 3.8, this
can be accomplished by a sequence of cyclic di-twists. Suppose that C does not contain
any two-way edges. Then C is an ordinary circuit, and C ′ is also an ordinary circuit
obtained by a rearrangement of the edges of C. But then C ′ can be obtained from C by
a sequence of transpositions of consecutive edges. Each such transposition of edges can
be accomplished by a supertransposition.

�
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We now characterize bijections between the edges of digraphs that preserve unions of
vertex-disjoint circuits.

Theorem 3.10 Let D and D′ be two strongly connected digraphs, and let ϕ : E(D) →
E(D′) be a bijection. Then ϕ induces a bijection between unions of vertex-disjoint circuits
of D and unions of vertex-disjoint circuits of D′ if and only if, starting with D, there is a
sequence of cyclic di-twists and supertranspositions that results in a digraph D† such that
ϕ is induced by an isomorphism or anti-isomorphism of D† onto D′.

Proof: Each admissible rearrangement consists of an admissible rearrangement of super-
constituents and admissible rearrangements within a superconstituent. Moreover, admis-
sible rearrangements within a superconstituent can be accomplished by cyclic di-twists.
Hence the theorem follows by Theorem 3.6 and Lemma 3.9.

�

4 Perfect Matching Preservers

We can now prove the main result of this paper.

Theorem 4.1 Let G and G′ be two 1-extendable, bipartite graphs and let ψ : E(G) →
E(G′) be a matching preserver. Then there is a sequence of bi-twists and bi-transpositions
of G resulting in a graph isomorphic to G′ and ψ is induced by this isomorphism.

Proof: By Lemma 2.1, G has a perfect matching M with the property that the two
vertices of each edge do not form a cut of G. A bi-twist of the bipartite graph G corre-
sponds to a cyclic twist of the digraph D(G,M), and it follows from the definition of the
supertransposition, in particular from the assumption of the lightness of the connecting
vertices, that bi-transposition of G corresponds to a supertransposition of D(G,M). As
observed previously, bi-twists and bi-transpositions preserve perfect matchings.

For the converse, assume that ψ : E(G) → E(G′) is a matching preserver. Let
M ′ = ψ(M). Let ϕ : E(D(G,M)) → E(D(G′,M ′)) be the bijection naturally determined
by ψ. From the correspondence between matchings in G, respectively, G′, and unions of
vertex-disjoint circuits of D(G,M), respectively D(G′,M ′), ϕ induces a bijection between
pairwise vertex-disjoint circuits of D(G,M) and those of D(G′,M ′). Hence by Theorem
3.10, D(G′,M ′) may be obtained from D(G,M) by cyclic twists and supertranspositions,
and so G′ may be obtained from G by bi-twists and bi-transpositions.

�
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