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Abstract

This paper introduces parity versions of familiar graph theoretic results, in par-

ticular results related to 2-connectedness. The even and odd circuit connected

graphs are characterized. The realizable, even-realizable, alternating-realizable,

dual realizable and dual even-realizable graphs are classified.

1 Introduction

Connectivity is a basic concept in graph theory. In particular, 2-connectedness plays an
indispensable role throughout the subject. The intent of this paper is to provide parity
versions of a few results concerning 2-connectedness. To simplify statements it will be
assumed throughout that all graphs are connected. The definition of 2-connectivity for
such a graph is as follows. A connected graph G with at least 3 vertices is 2-connected if
the removal of at least 2 vertices is required to disconnect G. Concerning notation, the
vertex and edge sets of a graph G are denoted V (G) and E(G), respectively. A circuit in
G is the edge set of a non-empty connected subgraph in which each vertex is of degree 2.
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A circuit or path will be considered to be a set of edges. A circuit or path is even or odd
according to its cardinality. For any set E of edges of G, the subgraph induced by E is
denoted G[E].

A classic result is that a graph is 2-connected if and only if, for every pair of edges,
there is a circuit containing them. A related concept is that of circuit connectedness. Call
a graph G circuit connected if, for any partition of the edges of G into two non-empty
parts S and T , there is a circuit C such that

C ∩ S 6= ∅ and C ∩ T 6= ∅.

It is easy to show that a graph G is 2-connected if and only if it is circuit connected. Call
a graph G even (odd) circuit connected if, in the above definition, C must have even (odd)
length. The graphs that are even (odd) circuit connected are characterized in Section 2.
The notion of (even) circuit connectedness originated in [1] where it played an integral
part in the proof of the main theorem. Note that the even (odd) circuit connectedness
property and the property that every pair of edges is contained in an even (odd) circuit
are not equivalent. Figure 1 shows a graph that is both even and odd circuit connected,
but the two “thick” edges are not, in the first case, contained in any odd circuit and, in
the second case, in any even circuit.

Figure 1: Even and odd circuit connected.

Another context in which parity in a 2-connected graph plays a role is that of realizable
graphs [1, 3]. To each circuit of a 2-connected graph G assign a parity - even or odd. If
C denotes the set of all circuits, then this assignment can be considered a function

f : C → Z2,

where 0 is even and 1 is odd. Call f realizable if there exists a set E of edges of G such
that

|C ∩ E| ≡ f(C) (mod 2)

for every circuit C ∈ C. Call G realizable if every function f : C → Z2 is realizable. The set
C generates the cycle space of G. Likewise the set C0 of even length circuits generates the
even cycle space. Call G even-realizable if every function f : C0 → Z2 is realizable. The
even-realizable graphs are characterized in [1] in terms of forbidden subgraphs. Section 3
of this paper provides a complete classification of the even-realizable graphs with a short
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proof that is independent of previous results. Also contained in Section 3 is an analogous
classification with respect to the cocycle space, a classification of the graphs that are the
subject of [4]. The proof is based on a dual version of the well-known Ear Decomposition
Theorem for 2-connected graphs.

The matter of realizability arises in connection with the study of Pfaffian graphs
[2, 4, 5, 6]. A circuit in a graph G that admits a 1-factor is alternating if it is a symmetric
difference of two 1-factors. In other words, a circuit C in G is alternating if G − V (C)
has a 1-factor. Alternating circuits are clearly of even length. An alternating circuit
in a directed graph is evenly or oddly oriented according to the parity of the number of
its edges that are oriented in agreement with a preassigned sense. The orientation of G
is said to be Pfaffian if every alternating circuit is oddly oriented. A graph is Pfaffian
if it admits such an orientation. The Pfaffian property of graphs is related to various
properties of 0 − 1 matrices and of hypergraphs [7]. Pfaffian bipartite graphs have been
characterized in [6] and Pfaffian near bipartite graphs in [2, 5], but no characterization of
Pfaffian graphs is known as yet.

In order to try to find a Pfaffian orientation for a given graph G, one might begin by
trying an arbitrary orientation. If this orientation is not Pfaffian, then some alternating
circuits are evenly oriented. If A is the set of all alternating circuits, one may define a
function f : A → Z2 such that f(A) has opposite parity to the orientation of A for each
alternating circuit A. In order to obtain a Pfaffian orientation, one must then choose a set
E of edges such that |E ∩A| ≡ f(A) (mod 2) for each A ∈ A. Reorientation of the edges
in E will then secure the required Pfaffian orientation. If E exists, then we say that f is
alternating-realizable. The graph G is alternating-realizable if every function f : A → Z2

is alternating-realizable. This paper includes a characterization of alternating-realizable
graphs.

2 Circuit connectedness

The graphs that are even (odd) circuit connected are characterized in this section. As
noted in the introduction, this is not equivalent to characterizing the graphs for which
every pair of edges are contained in an even (odd) circuit. A characterization in the latter
case follows routinely from results in [8] for 3-connected graphs.

An ear of a graph G is a maximal path whose internal vertices have degree 2 in G. Let
P be an ear of G and let H be the subgraph of G obtained by deleting the internal vertices
of P . Then G is said to be obtained from H by an ear addition. An ear decomposition of
G is a sequence G0, G1, . . . , Gn of subgraphs of G such that G0 = K2, Gn = G and Gi is
obtained from Gi−1 by an ear addition for each i > 0. In the proof of Theorem 3 in this
section the following well known facts will be used.

1. A graph G with at least 3 vertices is 2-connected if and only if G has an ear
decomposition.
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2. Any graph obtained from a 2-connected graph by an ear addition is also 2-connected.

3. Let H be a proper subgraph of a 2-connected graph G with E(H) 6= ∅. If e ∈
E(G) − E(H), then e is contained in a subgraph K of G obtained from H by a
single ear addition.

The following lemmas will also be used.

Lemma 1 Let C be an odd circuit in a 2-connected graph G and let e ∈ E(G)−C. Then
G has an even (odd) circuit through e containing an edge of C.

Proof: Choose f ∈ C. By 2-connectedness G has a circuit D through e and f . Some
subset of D must be an ear P in G[C ∪D] containing e. Then P ∪C includes two circuits
through e. Since C is odd, one of these circuits is even and the other is odd. Both contain
an edge of C.

Lemma 2 Let H and K be even (odd) circuit connected subgraphs of a 2-connected graph
G and suppose E(H)∩E(K) 6= ∅. Then G[E(H)∪E(K)] is even (odd) circuit connected.

Proof: Let {S, T} be a partition of E(H) ∪ E(K) and without loss of generality suppose
that S ∩ E(H) 6= ∅. If also T ∩ E(H) 6= ∅ then some even (odd) circuit meets both
S and T by the even (odd) circuit connectedness of H. Therefore we may assume that
∅ 6= T ⊆ E(K)−E(H). But then S ∩E(K) 6= ∅, since E(H)∩E(K) 6= ∅, and so there is
an even (odd) circuit meeting S and T by the even (odd) circuit connectedness of K.

Call a graph G twin bipartite if G is the union of two bipartite subgraphs H and H ′

such that

1. E(H) ∩ E(H ′) = ∅ and,

2. V (H) ∩ V (H ′) = {u, v}, where u and v lie in the same partite set of H and in
different partite sets of H ′.

Theorem 3 A 2-connected graph G is

1. odd circuit connected if and only if G is not bipartite,

2. even circuit connected if and only if G is not twin bipartite.

Proof: The proof in one direction is easy in both cases. If G is bipartite, then G has no
odd circuits, hence cannot be odd circuit connected. If G is twin bipartite, any circuit that
contains edges of both E(H) and E(H ′) must be odd. Therefore taking the bipartition
{S, T} where S = E(H) and T = E(H ′) shows that G is not even circuit connected.

Consider statement (2) in the other direction. Assume that G is 2-connected but
not even circuit connected. We must show that G is twin bipartite. Not being even
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circuit connected, G has an odd circuit C. If G = G[C] then G is twin bipartite. (Take
H = G[{e}] for some edge e of C.)

If, on the other hand, there is an edge e ∈ E(G) − C, then Lemma 1 implies the
existence of an even circuit and hence the existence of a non-empty even circuit connected
subgraph. Let H be a maximal even circuit connected subgraph. Recall that H is 2-
connected because it is circuit connected. But H must be a proper subgraph of G as G
is not even circuit connected.

Let H ′ = G[E(G) − E(H)]. There is no even circuit Q in G meeting both E(H)
and E(H ′). Otherwise G[Q] would be even circuit connected, and by Lemma 2 so would
G[E(H)∪Q], contradicting the maximality of H. Both H and H ′ are bipartite. Otherwise
we can choose an odd circuit from one and an edge from the other and apply Lemma 1
to obtain an even circuit in G meeting E(H) and E(H ′).

Clearly E(H) ∩ E(H ′) = ∅. It now suffices to verify condition (2) for H and H ′ in
the definition of twin bipartite. Since H is a proper subgraph of the 2-connected graph
G, there is a path P in H ′ having exactly two vertices u, v in common with H. There
is also a path P ′ in H joining u and v. Consequently there exists a circuit A = P ∪ P ′

in E(H) ∪ P meeting both E(H) and E(H ′). By what was proved above, the circuit A
must be odd.

We next claim that V (H) ∩ V (H ′) = {u, v}. If not, there is a w 6= u, v such that
w ∈ V (H) ∩ V (H ′). Let e be an edge of H ′ incident with w. There must exist a 2-
connected subgraph K of G that contains e and is obtained from the 2-connected graph
G[E(H) ∪ P ] by an ear addition. Note that K contains the odd circuit A not containing
e. By Lemma 1 there exists an even circuit C in K containing e. But by the definition
of e, the even circuit C must meet both E(H) and E(H ′), a contradiction to what was
proved above.

To complete the proof that G is twin bipartite, it suffices to show that u and v lie in
the same partite set of one of H or H ′ and in different partite sets of the other. Since A
is an odd circuit containing u and v this must be the case.

Finally consider part (1) of the theorem. By way of contradiction, suppose G is not
odd circuit connected and not bipartite. Then G has an odd circuit C, and G[C] is a
non-empty odd circuit connected subgraph of G. Choose H to be a maximal odd circuit
connected subgraph of G. Since H is circuit connected, it is 2-connected. As G is not odd
circuit connected, H 6= G. By Lemma 1 there is an odd circuit A such that A∩E(H) 6= ∅
and A∩(E(G)−E(H)) 6= ∅. But by Lemma 2, G′ = G[E(H)∪A] is odd circuit connected,
contradicting the maximality of H.

3 Realizable graphs

A graph is allowed to have vertices of degree 2 and multiple edges. A subdivision of a
graph G is obtained from G by adding any number of vertices of degree 2 to existing
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edges. An even subdivision of G is obtained from G by adding an even number of vertices
of degree 2 to each of any number of existing edges. Two graphs are said to be (even)
equivalent if they have a common (even) subdivision. A graph H is said to be (even)
contained in graph G if H is (even) equivalent to a subgraph of G.

Lemma 4 A graph is (even) realizable if and only if there exists no linearly dependent
set of circuits in its (even) cycle space. A graph is alternating-realizable if and only there
exists no linearly dependent set of alternating circuits.

Proof: Let E denote the set of edges and C the set of (even) circuits of G. Let M be a (0, 1)-
matrix whose rows are indexed by C and columns by E and whose entry mC,e = 1 if and
only if e ∈ C. By definition G is (even) realizable if and only if dim (column space M) =
|C|. But dim (column space M) = dim (row space M), and dim (row space M) = |C|
if and only if there are no dependencies among the rows. No dependencies among the
rows means no linearly dependent sets of circuits in its (even) cycle space. The same
proof holds for the alternating-realizable case.

The following two results follow immediately from Lemma 4.

Corollary 5 If G is (even) realizable and H is (even)-contained in G, then H is (even)
realizable.

In Figure 2F, the edges {a, b}, {c, d}, {e, f} are meant to represent paths of any length,
including length 0. It is possible, for example, that a = b.

Figure 2: Forbidden graphs.

Corollary 6 None of the graphs in Figure 2 is even-realizable.
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Call each of the graphs in Figure 2 a forbidden graph.

Corollary 7 If G even-contains a forbidden graph, then G is not even-realizable.

Define three families of graphs G0,G1,G2 as follows. The family G0 consists of all
circuits (even and odd). The family G1 consists of all graphs obtained from an odd circuit
by replacing any number of single edges by copies of the graph in Figure 3A, and any
number of pairs of consecutive edges by copies of the graph in Figure 3B. An examples
of a graph in G1 also appears in Figure 3. The family G2 is represented by the graph in
Figure 4, where the line joining vertices u and v represents a path of any length, even or
odd, including the empty path, in which case u = v. The same is true for the line joining
u′ and v′. A graph even-equivalent to a graph from G0,G1 or G2 will be referred to as a
graph of type G0,G1 or G2, respectively.

Figure 3: An example of a graph in G1.

Figure 4: The graphs G2.

Concerning alternating-realizability only edges that belong to a 1-factor are relevant.
For this reason the notion of 1-extendability is required. A graph is said to be 1-extendable
if for each edge e there is a 1-factor that contains e.

Theorem 8 Let G be a 2-connected graph.

1. G is realizable if and only if G is a circuit.

2. G is even-realizable if and only if G is of type G0, G1 or G2.
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3. A 1-extendable graph G is alternating-realizable if and only if E(G) is an even circuit
or G is isomorphic to K2.

Proof: Concerning statement (1), if G is a single circuit, then G is obviously realizable.
In the other direction, if G is 2-connected but not a circuit, then G contains the graph
2A. But 2A is not realizable. By Corollary 5, G is also not realizable.

Concerning statement (2), if G is a graph of type G0, G1 or G2, then it follows from
Lemma 4 that G is even-realizable. In the other direction, assume that G is even-
realizable. We must show that G is of type G0, G1 or G2. The first step is to show
that certain configurations cannot appear in G.

1. G contains no K4.

Suppose, by way of contradiction, that G does contain a subdivision J of K4. Any
embedding of J in the plane has four faces. If one of the face boundaries has even
length, then at least two of them have even length since the sum of the lengths of
the face boundaries is even. But any two face boundaries share an edge. Therefore
in this case G even-contains 2A or 2B and hence, by Corollary 7, G cannot even-
contain J . We may therefore suppose that all the face boundaries of J have odd
length. One possibility is an even subdivision of the graph 2C. The only other
possibilities are obtained from an even subdivision of the graph 2C by choosing an
even number of edges from each face boundary of K4 and changing the parity of
the lengths of the paths of J corresponding to the chosen edges. The set of chosen
edges of K4 is a non-empty cocycle of K4 since the face boundaries span the cycle
space of K4. The resulting graphs are therefore even subdivisions of those of 2D
and 2E, again forbidden by Corollary 7.

Let {vi, vj} and {vs, vt} be two chords, with no vertex in common, of a circuit with
successive vertices v0, v1, . . . , vn = v0. Without loss of generality assume that 0 = i < s <
j. These chords are said to be crossing if j < t. Three distinct chords {vi, vj}, {vp, vq} and
{vs, vt} of a circuit, no pair crossing, are called parallel if the indices cannot be assigned
so that i < j ≤ p < q ≤ s < t.

2. G contains no circuit with crossing chords.

Otherwise G would contain a K4 which is impossible by statement (1).

3. G contains no circuit with 3 parallel chords.

Indeed, let J be a subdivision of a graph induced by a circuit and three parallel
chords. The graph is drawn in Figure 5 where the labels on the edges indicate
the lengths of the corresponding paths in J . In the following argument, equality
denotes congruence modulo 2. If a 6= b and d 6= e, then we may choose x ∈ {a, b}
and y ∈ {d, e} such that f + x + h = g + y + i = c, so that G even-contains 2A or
2B. We may therefore assume without loss of generality that a = b. Then d = e,
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for otherwise we may choose y ∈ {d, e} so that a = b = f + g + y + i + h and
hence G even-contains 2A or 2B. Similarly g + d + i = c; otherwise we may choose
y ∈ {c, g + d + i} so that a = b = f + y + h. By symmetry f + b + h = c, and
yet again we find that G even-contains 2A or 2B. Thus in every case we obtain a
contradiction to Corollary 7.

Figure 5: A circuit with 3 parallel chords.

4. G can contain no circuit with one edge replaced by 3A or 3B and another edge
replaced by 3C.

Otherwise G would even-contain a forbidden graph 2A or 2B.

5. G can contain no circuit with three edges replaced by 3C.

Otherwise G would even-contain the forbidden graph 2F.

Since G is 2-connected it has an ear decomposition. It will now be shown, by induction
on the number of ears in an ear decomposition of G, that G must be of type G0, G1 or G2.
If there is just one ear in the ear decomposition, then G is in G0. Let G′ be the second to
last stage in the ear decomposition. The addition of one more ear to G′ will give G. Since
G′ is a subgraph of G, it is even-realizable by Corollary 5. By the induction hypothesis
G′ is of type G0, G1 or G2.

Suppose G′ is of type G0. Addition of an ear results in a graph with two vertices of
degree 3 joined by three independent paths. If the lengths of these paths are of equal
parity, then G even-contains 2A or 2B. Otherwise G is of type G1.

In the remaining cases G′ has a circuit C of odd length containing two vertices joined
by three independent paths P, Q, R, where P ∪ Q = C. Any ear added to the graph
G′[C ∪ R] must join two vertices of the same such path, since G contains no K4.

Suppose first that there exists a path S 6= R joining two vertices of C and having no
internal vertex in C. Then S must be parallel to R. The graph G′[C ∪ R ∪ S] is shown
in Figure 6, where W, X, Y, Z denote disjoint paths in C whose union is C. An ear added
to this graph cannot join a vertex of R to a vertex of S because G contains no K4. Nor
can it join a vertex of X to a vertex of Z since no circuit of G has three parallel chords.
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Similarly it cannot join two vertices of Y . By symmetry and the result of the previous
paragraph, we may therefore assume that it joins two vertices of X. It then follows from
(4) and (5) that G is of type G1.

Figure 6: Diagram for the proof of Theorem 8.

It remains to consider the case where R is the only path in G′ joining two vertices in
C and having no internal vertex in C. The addition of an ear F joining two vertices of
U ∈ {P, Q, R} yields a uniquely determined circuit D ⊆ F ∪ U . If U = P then D and
R ∪ Q have the same parity by (4). Moreover G is of type G1 if that parity is even and
of type G2 otherwise. We may therefore assume by symmetry that U = R. If D is even
then G even-contains 2A or 2B since C is odd. Otherwise G is of type G2.

Concerning statement (3), if E(G) is an even circuit or G is isomorphic to K2, then
G is alternating-realizable. Suppose on the other hand that G is 1-extendable but that G
is not isomorphic to K2 and E(G) is not an even circuit. Then some alternating circuit
A is a proper subset of E(G). Let f and g be 1-factors of G such that A = f + g. Since
A 6= E(G) there is an edge e of E(G) − A incident on a vertex of A, and since G is
1-extendable e must belong to a 1-factor h 6∈ {f, g}. Hence f + h is the union of a set S
of alternating circuits. The sum of the circuits in S ∪ {A} is (f + h) + (f + g) = h + g,
which is the union of another set T of alternating circuits. The sum of the circuits in
S ∪ T ∪ {A} being empty, we deduce from Lemma 4 that G is not alternating-realizable.

There is a dual version of Theorem 8. Concerning terminology, if G is a plane graph
(a particular planar embedding of a planar graph), then G∗ denotes its dual graph. Note
that, for any connected graph G embedded in the plane, G∗∗ = G. If H is a subgraph of
the embedded graph, then H∗ is the subgraph of G∗ consisting of the dual edges of H.

A bond of G is the minimal nonempty edge cut. To each bond of a 2-connected graph
G assign a parity - even or odd. If B denotes the set of all bonds, then this assignment
can be considered a function

f : B → Z2,
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where 0 is even and 1 is odd. Call f dual realizable if there exists a set E of edges of G
such that

|B ∩ E| ≡ f(B) (mod 2)

for every bond B ∈ B. Call G dual realizable if every function f : B → Z2 is realizable.

The set B generates the cocycle space of G. Likewise the set B0 of even cardinality
bonds generates the even cocycle space. Call G dual even-realizable if every function
f : B0 → Z2 is dual realizable.

A rope of a (multi)graph G is a subgraph induced by two adjacent vertices. Let N be
a rope of G and let H be the graph obtained by contracting the edges of N . Then G is
said to be obtained from H by a rope addition. A rope decomposition of G is a sequence
G0, G1, . . . , Gn of contractions of G such that G0 = K1, Gn = G and Gi is obtained from
Gi−1 by a rope addition for each i > 0. Our proof of Theorem 15 below is based on the
following analog of the well-known Ear Decomposition Theorem.

Lemma 9 Any 2-connected graph has a rope decomposition.

Proof: It is sufficient to show that any 2-connected graph G has a rope r such that the
graph G/r obtained by contracting r to a vertex vr remains 2-connected (or has fewer
than 3 vertices). Assume not. Then for any rope r of G, the graph G/r has at least two
blocks. Choose r and a block Br of G/r to minimise the number of ropes of Br. Let s be
a rope of Br. If every rope in Br is incident with vertex vr, then G/s is 2-connected, a
contradiction. Otherwise assume s is not incident with vr. In this case G/s has a block
with fewer ropes than Br, contradicting the choice of r and Br.

A dual subdivision of a graph G is obtained from G by adding any number of multiple
edges to existing edges. An even dual subdivision of G is obtained from G by adding an
even number of multiple edges to each of any number of existing edges. Two graphs are
said to be (even) dual equivalent if they have a common (even) dual subdivision.

Define three families of graphs G∗

0
,G∗

1
,G∗

2
as follows. The family G∗

0
consists of two

vertices joined by any number of edges. The family G∗

1
consists of all graphs obtained

from a graph in G∗

0
with an odd number of edges by the following procedure. Replace any

number of single edges by a path of length 2, and any number of pairs of edges by copies
of the first graph in Figure 7. An example of a graph in G∗

1
also appears in Figure 7.

The family G∗

2
is represented by the graphs in Figure 8, where the thick line represents a

multiple edge (any number of edges including zero). A graph even dual equivalent to a
graph from G∗

0
,G∗

1
or G∗

2
will be referred to as a graph of type G∗

0
,G∗

1
or G∗

2
, respectively. The

following lemmas correspond to those preceding Theorem 8, and the proofs are similar in
most cases.

Lemma 10 A graph is dual (even) realizable if and only if there exists no linearly depen-
dent set of bonds in its (even) cocycle space.
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Figure 7: A graph in G∗

1
.

Figure 8: The graphs in G∗

2
.

Lemma 11 Let G be a connected plane graph. Then G is (even) realizable if and only if
G∗ is dual (even) realizable.

Proof: Assume that G is not (even) realizable. Then there exists a dependent set C of
(even) circuits in G. The set B consisting of the duals of these circuits is a dependent set
of (even) bonds in G∗. The converse is proved similarly.

Lemma 12 The dual of a graph of type G0, G1 or G2 embedded in the plane is of type
G∗

0
, G∗

1
or G∗

2
.

Lemma 13 If G′ is a contraction of G, and G is dual (even) realizable, then G′ is also
dual (even) realizable.

Proof: This result follows from Lemma 10 and the fact that each bond of G′ is a bond of
G.

Lemma 14 If G is obtained from a graph of type G∗

0
, G∗

1
or G∗

2
by a rope addition, then

G is planar or G is not dual even-realizable.

Proof: If G is obtained from a graph of type G∗

0
or G∗

2
by a rope addition, then G is clearly

planar.

Let H be a graph of type G∗

1
. Let G be a non-planar graph obtained from H by the

addition of a rope r. The rope r in G, after contraction, corresponds to a vertex x in H.
Let u, v be the vertices of rope r in G. Now G must have the following structure. The
set of vertices is {u, v, y, 1, 2, . . . , n, u1, u2, . . . , uj, v1, v2, . . . , vk}, j, k ≥ 0, where
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1. vertices u and v are joined by the rope r;

2. u and v are each adjacent to each vertex 1, 2, . . . , n;

3. u is adjacent to each vertex u1, u2, . . . , uj (by a single or double edge) and v is
adjacent to each vertex v1, v2, . . . , vk (by a single or double edge);

4. y is adjacent to each vertex 1, 2, . . . , n by a double edge;

5. y is adjacent to u by some number (possibly 0) of edges and to v by some number
(possibly 0) of edges;

6. each ui is adjacent to y by as many edges as to u, and each vi is adjacent to y by
as many edges as to v;

7. there are no other edges; and

8. n ≥ 3 since G is non-planar.

Lemma 10 will be used to show that G is not dual even-realizable. Hence it is sufficient
to find a dependent set of even bonds in G. By the definition of G∗

1
, exactly one of the

two vertices u, v has even degree, say vertex u. In general, if W is a set of vertices then
∂ W denotes the bond such that one component of G − ∂ W is the graph induced by W .
(This assumes that the graphs induced by W and by V (G) − W are connected.) Note
that ∂ W =

∑
w∈W ∂{w}, where the addition is symmetric difference. In our situation, let

Bi = ∂ {u, i}, i ∈ {1, 2, 3}, and B0 = ∂ {u, 1, 2, 3}. Then B0, B1, B2, B3 are all even bonds
since vertices u, 1, 2, 3 have even degree. Also B0 +B1 +B2 +B3 = ∂ {u)+∂ {1}+∂ {2}+
∂ {3} + ∂ {u} + ∂ {1} + ∂ {u} + ∂ {2} + ∂ {u} + ∂ {3} = ∅. Therefore {B0, B1, B2, B3} is
a dependent set of bonds.

Theorem 15 Let G be a 2-connected graph.

1. G is dual realizable if and only if G is of type G∗

0
.

2. G is dual even-realizable if and only if G is of type G∗

0
, G∗

1
or G∗

2
.

Proof: Concerning statement (1), if G is of type G∗

0
, then G is obviously dual realizable.

In the other direction, if G is 2-connected but not of type G∗

0
, then G can be contracted

to a circuit of length at least 3 (with possibly multiple edges). But such a circuit is not
dual realizable by Lemma 10. By Lemma 13, G is also not dual realizable.

Concerning statement (2), if G is a graph of type G∗

0
, G∗

1
or G∗

2
, then it follows from

Lemma 10 that G is dual even-realizable. In the other direction, assume that G is dual
even-realizable. We must show that G is of type G∗

0
, G∗

1
or G∗

2
.

Since G is 2-connected it has a rope decomposition by Lemma 9. It will now be shown,
by induction on the number of ropes in the decomposition of G, that G must be of type

the electronic journal of combinatorics 13 (2006), #R96 13



G∗

0
, G∗

1
or G∗

2
. If there is just one rope in the decomposition, then G is in G∗

0
. Let G′ be

the second to last stage in the rope decomposition. The addition of one more rope to
G′ will give G. Since G′ is a contraction of G, it is dual even-realizable by Lemma 13.
By the induction hypothesis G′ is of type G∗

0
, G∗

1
or G∗

2
. By Lemma 14 the graph G is

planar or not dual even-realizable. The latter is not possible, so G is planar. Consider
any embedding of G in the plane. Since G is dual even-realizable, G∗ is even-realizable
by Lemma 11. Therefore G∗ is of type G0, G1 or G2 by Theorem 8. By Lemma 12 the
graph G = G∗∗ is of type G∗

0
, G∗

1
or G∗

2
.
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