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Abstract

Coloured generalised Young diagrams T (w) are introduced that are in bijective
correspondence with the elements w of the Weyl-Coxeter group W of g, where g is

any one of the classical affine Lie algebras g = A
(1)
` , B

(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`−1

or D
(2)
`+1. These diagrams are coloured by means of periodic coloured grids, one for

each g, which enable T (w) to be constructed from any expression w = si1si2 · · · sit

in terms of generators sk of W , and any (reduced) expression for w to be obtained
from T (w). The diagram T (w) is especially useful because w(Λ)−Λ may be readily
obtained from T (w) for all Λ in the weight space of g.

With g a certain maximal finite dimensional simple Lie subalgebra of g, we
examine the set Ws of minimal right coset representatives of W in W , where W is
the Weyl-Coxeter group of g. For w ∈ Ws, we show that T (w) has the shape of
a partition (or a slight variation thereof) whose r-core takes a particularly simple
form, where r or r/2 is the dual Coxeter number of g. Indeed, it is shown that Ws

is in bijection with such partitions.

1 Prologue

1.1 Introduction

In this paper, we introduce a novel means of depicting elements, w, of the Weyl-Coxeter
groups, W , of the classical affine Lie algebras g = A

(1)
` , B

(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`+1, D

(2)
`+1.

In this scheme, every Weyl-Coxeter group element w corresponds to a generalised Young
diagram which is coloured according to the entries of an underlying g-dependent periodic
grid. The resulting object is denoted T (w) and we refer to it as a coloured diagram. A
typical T (w) is given in Fig. 1.
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T (w) =

0 1

2

21 31 41 41 31 21 1 3

2

0 3

2

22 32 42 42 32

1 1

2

0 1

2

21 31 41 41 31 21 0 3

2

20 1 1

2

0 1

2

21 31 41 41

30 20 1 1

2

0 1

2

Figure 1: Typical coloured diagram in the case g = A
(2)
7

One way to arrive at T (w) is to evaluate w(ρ)− ρ where ρ is the Weyl vector of g. In
fact, T (w) serves to encode w(ρ)−ρ by means of its shape, which is specified by means of
a generalised partition λ(w), and certain depth parameters referred to as charges. More
generally, T (w) encodes w(Λ) − Λ in an equally simple way by means of its coloured
entries and associated depth charges for all Λ ∈ h∗, where h∗ is the dual of the Cartan
subalgebra h of g.

We characterise the set {T (w) |w ∈ W} and show that the correspondence between
w and T (w) is a bijection. In addition, we provide algorithms for passing from w to T (w)
and vice versa. These owe their origin to the fact that T (wsk) can be readily obtained
from T (w), where sk is any one of the Coxeter generators of W . This property enables
T (w) itself to be constructed using only an expression w = si1si2 · · · sit for w in terms
of the generators of W . Moreover, by comparing T (w) and T (wsk), it can be easily
ascertained whether `(wsk) = `(w) + 1 or `(wsk) = `(w) − 1, where ` : W → Z≥0 is the
length function on W . Given T (w), this enables the generation of one or more expressions
w = si1si2 · · · sit for w that are reduced in that t = `(w).

In this paper, we are especially concerned with the relationship between g and a
natural maximal simple Lie subalgebra g. Consequently, we view the Weyl-Coxeter group
W of g as a subgroup of W , and we study the set Ws of minimal length (right) coset
representatives of W with respect to W . In this context, the use of coloured generalised
Young diagrams is convenient in that, given T (w), it may be immediately decided whether
or not w ∈ Ws. In this paper we characterise the set {T (w) |w ∈ Ws} in terms of partitions
having certain cores. This characterisation is useful in applications to the character theory
of g.

1.2 Overview

This paper is an outgrowth of material presented in Chapter 5 of Hussin’s thesis [8]. In

fact, for the g = A
(1)
` case, some of the results presented here were first proved in [8] using

different methods. These results were then used to provide a method for determining
branching rules A

(1)
` ↓ A` through the calculation of w(Λ)−Λ and w(ρ)−ρ, where Λ ∈ h∗

[8, 9]. Hussin [8] also made progress in obtaining periodic grids that he conjectured would

be appropriate to each of the other classical affine Lie algebras except D
(1)
` . The core parts

of these grids were then used in [16] to provide a method for determining branching rules
g ↓ g, where g is a certain maximal finite dimensional Lie subalgebra of g. In Section
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2.2, we introduce periodic grids which are a refinement of the grids of [8], and introduce
factors that account for the depth component. These grids can now be employed in the
context of [16] to improve and complete the program begun there.

Doubly periodic versions of the A
(1)
` grids described in Section 2.2 (up to a trivial

renumbering) appear in the study of the representation theory of the symmetric group,
particularly with regard to modular representations (see [10] and references therein). In
[4], these doubly periodic grids were also shown to have a relevance in the representation

theory of A
(1)
` . They soon became a cornerstone of the crystal basis theory of A

(1)
` [21, 11].

More recently, realisations of the crystal graphs of the other classical affine Lie algebras
have been given in terms of ‘Young Walls’ [14, 6]. These objects are based on grids
that bear similarities to those that we give in Section 2.2. In fact, it is also possible to
define realisations of the crystal graphs based on our grids, and these realisations are not
obviously equivalent to those of [14, 6]. We will give details of this construction elsewhere.
Here we confine our attention to singly periodic coloured grids.

In [18], elements of the affine Coxeter group Ã` are realised as permutations of Z

that commute with a translation. This idea was extended to the other classical affine
Coxeter groups B̃`, C̃` and D̃` in [5], where these groups are realised as permutations of
Z that commute with certain rigid transformations of Z. The Weyl-Coxeter groups of
A

(1)
` , B

(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`−1 and D

(2)
`+1 are isomorphic to Ã`, B̃`, C̃`, D̃`, C̃`, B̃` and

C̃` respectively. For the Weyl-Coxeter group W , the characterisation of {λ(w) : w ∈ W}
given in Section 2.7 is then seen to correspond to the above realisation of [18, 5]. The
bijective map from each P(g) of Section 2.7 to the corresponding realisation of [18, 5]
may then be easily constructed.

This paper is organised in such a way that all our key results are presented and
copiously exemplified in Section 2. In Section 3, we gather together the definitions and
results from the theories of affine Lie algebras, simple Lie algebras and Coxeter groups
that are required in our proofs. The proofs themselves are given in Sections 4 and 5.

1.3 Bases of h∗

Before discussing the construction of T (w), we deviate briefly to mention the three useful
bases of h∗, each of which plays a role in what follows. These bases will be properly
defined in Section 3 and the relationship between them expounded. Let g have rank `
(each of the seven affine algebras pinpointed above has rank `) and let I = {0, 1, 2, . . . , `}.

In addition set n = `, apart from the case g = A
(1)
` for which we set n = ` + 1, and let

N = {1, 2, . . . , n}. Then h∗ has the three convenient bases:

• The root basis {Λ0, αj | j ∈ I}. The αj are the simple roots of g.

• The weight basis {δ, Λj | j ∈ I}. The Λj are the fundamental weights of g, and δ is
the null root.

• The natural basis {Λ0, δ, εj | j ∈ N}. The εj are Euclidean unit vectors orthogonal
to Λ0 and δ.
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In the weight basis, the Weyl vector ρ ∈ P + is defined by ρ =
∑

j∈I Λj. In the natural

basis, let h∗ = span{ε1, ε2, . . . , εn}, with the usual constraint ε1 + ε2 + · · ·+ εn = 0 in the

case g = A
(1)
n−1. Then for all g and all λ ∈ h∗, we can write:

λ = λ + L̃(λ)Λ0 − D(λ)δ, (1.1)

where λ ∈ h∗ is the restriction of λ from h∗ to h∗, D(λ) is the depth of λ, and

L̃(λ) =

{
L(λ) if g 6= A

(2)
2` ;

1
2
L(λ) if g = A

(2)
2` ,

(1.2)

where L(λ) is the level of λ.

1.4 Method of attack

In recursively calculating w(ρ) − ρ using an expression w = sisj · · · sk in terms of the
generators of W , and setting w = w′sk, we are led to consider:

w(ρ) − ρ = w′(ρ) − ρ − w′(αk). (1.3)

The difference between w(ρ) − ρ and w′(ρ) − ρ, namely w′(αk), when expressed in the
natural basis, represents the difference between the generalised partitions λ(w) and λ(w ′).
This latter difference defines a set of nodes, which when coloured k, constitutes the dif-
ference between T (w) and T (w′).

For an arbitrary weight Λ =
∑`

j=0 mj(Λ)Λj in the weight basis, we find similarly:

w(Λ) − Λ = w′(Λ) − Λ − mk(Λ)w′(αk). (1.4)

The difference between w(Λ)−Λ and w′(Λ)−Λ is then obtained by taking the contribution
from the nodes coloured k above and multiplying it by mk(Λ).

If we do indeed proceed recursively, w′(αk) itself can be calculated from the previously
constructed T (w′) applied to Λ = αk, after noting that mj(αk) is nothing other than the
element Ajk of the generalised Cartan matrix of g.

The result is that for general Λ =
∑`

j=0 mj(Λ)Λj, the value of w(Λ) − Λ is obtained
by stretching each node coloured k in T (w) by a factor mk(Λ) for each k ∈ I.

Remarkably, for a given g and any particular k ∈ I, nodes coloured k are positioned
consistently, whatever w, and independently of the expression for w in terms of the gener-
ators. This fact enables us to define coloured grids upon which we base our combinatorial
constructions.

2 Main results

2.1 Generalised partitions

There are two different ways to construct T (w). The first, more direct way, requires an
independent means of calculating w(ρ)−ρ in the natural basis. In the second construction,
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T (w) is built recursively using an expression for w in terms of the Coxeter generators of
W , and w(ρ) − ρ is calculated as a byproduct. Later, in Section 4, we show that these
two constructions are consistent in that they lead from a given w to the same T (w). In
Sections 2.7 and 2.10, we characterise the set of all T (w) as w runs through the sets W
and Ws.

For the moment, we shall concentrate on the first means of constructing T (w): so let
λ = w(ρ)−ρ. Quite generally, the level is invariant under the Weyl-Coxeter group action.
In particular, L(w(ρ)) = L(ρ) for all w ∈ W , and thus L(λ) = 0. Thereupon, (1.1) leads
to:

λ = w(ρ) − ρ = λ − D(w(ρ) − ρ)δ. (2.1)

Since λ ∈ h∗, we can write:

λ =
n∑

i=1

λi(w)εi, (2.2)

where
∑n

i=1 λi(w) = 0 in the g = A
(1)
` case. This allows us to define the generalised

partition λ(w) = (λ(w)1, λ(w)2, . . . , λ(w)n).
It should be noted that the parts λ(w)i of λ(w), although integers, are not necessarily

positive nor weakly decreasing. This generalised partition serves to specify a correspond-
ing generalised Young diagram or Ferrers diagram F (w) = F λ(w), where the numbers of
boxes in the rows of F (w) are given by the parts of λ(w), extending to the right or left of
a vertical axis according to whether the parts are positive or negative, respectively.

We can then obtain T (w) by superposing F (w) on a certain g-dependent periodic
coloured grid which we describe below in Section 2.2. T (w) is then a coloured generalised
Young diagram. Hereafter, we refer to such diagrams as coloured diagrams. It might be
noted that although the depth factor D(w(ρ)− ρ) 6= 0 in general, it is not required in the
construction of T (w). In fact, as will be seen in Section 2.5, D(w(ρ) − ρ) can itself be
readily obtained using T (w).

2.2 Coloured grids

The grid associated with the classical affine Lie algebra g of rank `, has n rows where, as
above, n = ` apart from the case g = A

(1)
` for which n = `+1. The grid is of infinite extent

in both horizontal directions. Each node of the grid is then coloured with an element of
the index set I. To be precise, let h∨ be the dual Coxeter number of g, and define:

h̃∨ =

{
h∨ if g 6= C

(1)
` ,

2h∨ if g = C
(1)
` .

(2.3)

If Cij = (i − j)mod h̃∨, the colour ηij ∈ I of the node in the ith row and jth column of
each grid is specified in the following table:
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A
(1)
` : h̃∨ = ` + 1; ηij = Cij;

B
(1)
` : h̃∨ = 2` − 1; ηij =

{
Cij if Cij ≤ l,

2l − Cij if Cij ≥ l;

C
(1)
` : h̃∨ = 2` + 2; ηij =

{
Cij if Cij ≤ l,

2l + 1 − Cij if Cij > l;

D
(1)
` : h̃∨ = 2` − 2; ηij =

{
Cij if Cij ≤ l,

2l − 1 − Cij if Cij > l;

A
(2)
2` : h̃∨ = 2` + 1; ηij =

{
Cij if Cij ≤ l,

2l − Cij if Cij ≥ l;

A
(2)
2`−1 : h̃∨ = 2`; ηij =

{
Cij if Cij ≤ l,

2l + 1 − Cij if Cij > l;

D
(2)
`+1 : h̃∨ = 2`; ηij =

{
Cij if Cij ≤ l,

2l − Cij if Cij ≥ l;

(2.4)

The grids extend both to the right (j > 0) and to the left (j ≤ 0) of a fixed vertical
axis. For the ` = 4 case of each of the seven sequences of g, we show the first 15 columns
of the grid to the right of the vertical axis and the first five columns to the left.

A
(1)
4 : h̃∨ = 5;

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1
1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2
2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3
3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

B
(1)
4 : h̃∨ = 7;

3 4 3 2 1 0 2 3 4 3 2 1∼0 2 3 4 3 2 1∼0
2 3 4 3 2 1∼0 2 3 4 3 2 1∼0 2 3 4 3 2 1∼

∼0 2 3 4 3 2 1∼0 2 3 4 3 2 1∼0 2 3 4 3 2
1∼0 2 3 4 3 2 1∼0 2 3 4 3 2 1∼0 2 3 4 3

C
(1)
4 : h̃∨ = 10;

4−4 3 2 1 0−0 1 2 3 4−4 3 2 1 0−0 1 2 3
3 4−4 3 2 1 0−0 1 2 3 4−4 3 2 1 0−0 1 2
2 3 4−4 3 2 1 0−0 1 2 3 4−4 3 2 1 0−0 1
1 2 3 4−4 3 2 1 0−0 1 2 3 4−4 3 2 1 0−0

D
(1)
4 : h̃∨ = 6;

2 4∼3 2 1 0 2 4∼3 2 1∼0 2 4∼3 2 1∼0 2 4∼
∼0 2 4∼3 2 1∼0 2 4∼3 2 1∼0 2 4∼3 2 1∼0 2

1∼0 2 4∼3 2 1∼0 2 4∼3 2 1∼0 2 4∼3 2 1∼0
2 1∼0 2 4 3 2 1∼0 2 4∼3 2 1∼0 2 4∼3 2 1∼
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A
(2)
8 : h̃∨ = 9;

3 4 3 2 1 0−0 1 2 3 4 3 2 1 0−0 1 2 3 4
2 3 4 3 2 1 0−0 1 2 3 4 3 2 1 0−0 1 2 3
1 2 3 4 3 2 1 0−0 1 2 3 4 3 2 1 0−0 1 2

−0 1 2 3 4 3 2 1 0−0 1 2 3 4 3 2 1 0−0 1

A
(2)
7 : h̃∨ = 8;

4−4 3 2 1 0 2 3 4−4 3 2 1∼0 2 3 4−4 3 2
3 4−4 3 2 1∼0 2 3 4−4 3 2 1∼0 2 3 4−4 3
2 3 4−4 3 2 1∼0 2 3 4−4 3 2 1∼0 2 3 4−4

∼0 2 3 4−4 3 2 1∼0 2 3 4−4 3 2 1∼0 2 3 4−

D
(2)
5 : h̃∨ = 8;

3 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4 3 2
2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4 3
1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4
0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3

For each g, the colouring of the nodes of the grid is directly related to the structure
of the Dynkin diagram of g shown in Table 1. In fact, the colour k of a node in a grid
is nothing other than the label k ∈ {0, 1, . . . `} of the vertex in the Dynkin diagram that
corresponds to the simple root αk of g.

In each grid, the vertical axis separates two columns of nodes. The nodes of the column
j = 1 to its immediate right are coloured 0, 1, . . . , n−1 from top to bottom. The sequence
of colours reading from left to right across each row must then accord with reading the
labels of the vertices of the corresponding Dynkin diagram either clockwise for A

(1)
` or to

and fro across the diagram with a reflection of the sequence at either end for each of the
other classical affine Lie algebras, g. If a node coloured k is associated with a long root αk

corresponding to a vertex at the end of a Dynkin diagram (in that it is linked to only one
other vertex) then each node coloured k in the grid is doubled to give a tied pair k − k.
The grids also feature unordered pairs i ∼ j when the corresponding ith and jth vertices
of the Dynkin diagram of g occur at a branched end, with both linked to the same vertex
by a single edge. It will be convenient to refer to such values i and j as associated. The
values 1 and 0 are associated for each g = B

(1)
` , D

(1)
` and A

(2)
2`−1, and the values ` and

` − 1 are associated for g = D
(1)
` . We also refer to a neighbouring pair of nodes in the

grid with associated colours as an associated pair. Whenever an associated pair in the
grid doesn’t straddle the vertical axis, the pair is unordered and denoted i ∼ j. However,
if an associated pair straddles the vertical axis, the pair is always ordered as indicated in
the above grids.

In each of the above grids, the colourings are periodic across each row with period h̃∨.
Moreover, within each period each colour k appears precisely c̃∨k times where,

c̃∨k =

{
c∨k if g 6= C

(1)
` ;

2c∨k if g = C
(1)
` ,

(2.5)
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Algebra Dynkin diagram Range

A
(1)
1

α0 α1

` = 1

A
(1)
`

α2α1 α`α0 α`−1α`−2

` ≥ 2

B
(1)
`

α2 α3

α0

α1

α`−1α`−2 α`

` ≥ 3

C
(1)
`

α2α1α0 α`α`−1α`−2

` ≥ 2

D
(1)
`

α2 α3

α0

α1 α`

α`−1

α`−3 α`−2

` ≥ 4

A
(2)
2

α0 α1

` = 1

A
(2)
2`

α2α1α0 α`α`−1α`−2

` ≥ 2

A
(2)
2`−1

α2 α3

α0

α1

α`−1α`−2 α`

` ≥ 3

D
(2)
`+1

α2α1α0 α`α`−1α`−2

` ≥ 2

Table 1: Dynkin diagrams of classical affine Lie algebras

and c∨k is the kth comark of g for k ∈ I. In addition, if we define the diagonal of the node
in the ith row and jth column of each grid to be the value i − j, then two nodes whose
diagonals differ by a multiple of h̃∨ are of the same colour. Moreover, the sequence of
colours obtained from reading a h̃∨-ribbon (a contiguous sequence of h̃∨ nodes for which
the difference between the diagonals of one node and the next is precisely −1) is a cyclic
permutation of the sequence of colours associated with the basic horizontal period.

As will be seen later, the structure of the coloured grid for each g can be traced to
the properties of the generalised Cartan matrix A = (Aij)i,j∈I of g, and the relationship
between the simple root basis and the natural basis.

A node in any one of the above grids that has colour k is simply referred to as a k-node.
In what follows, a tied pair of nodes k − k cannot be bisected. On the other hand, the
constituent i-node and j-node of an unordered pair of nodes i ∼ j may be interchanged
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in certain circumstances, and they may be bisected.

2.3 Definition of the coloured diagram

The coloured diagram T (w) is now obtained by superposing the generalised Young dia-
gram F (w) on the coloured grid of g. The superposition must be such that the n rows of
F (w) coincide with the n rows of the coloured grid, and the vertical axis of F (w) must also
coincide with that of the coloured grid. T (w) then consists of that part of the coloured
grid overlapped by F (w), modified if necessary by interchanging the colours of some, but
not necessarily all, unordered pairs i ∼ j if one of the pair of nodes lies within F (w) and
the other does not. In addition, if λ(w)i = 0 and the values i and j are associated, then
in some instances T (w) is augmented by the pair of boxes i j in the ith row of T (w).

Example 2.3.1 For A
(1)
4 and w = s0s3s4s3s1s0, we obtain λ(w)= (3, 2,−3, 0,−2). There

are neither tied pairs nor unordered pairs in the coloured grid and the passage from F (w)
to T (w) by way of superposition on the coloured grid is as follows:

F (w) =

4 3 2 1 0 4 3 2
0 4 3 2 1 0 4 3
1 0 4 3 2 1 0 4
2 1 0 4 3 2 1 0
3 2 1 0 4 3 2 1

T (w) =

0 4 3
1 0

0 4 3

1 0

.

In the above example, we have marked with lines of double thickness both the reference
vertical axis and the vertical edges in each row of F (w) and T (w) that are furthest from
the vertical axis. The profiles of F (w) and T (w) are defined to be this latter set of vertical
edges. Of course, the profile of T (w) is identical to that of F (w).

In this example it can be seen that T (w) is not only weight-balanced, in the sense that
there are equal numbers of boxes to the left and to the right of the vertical axis, but also
colour-balanced in that for any colour k there as many k-nodes to the left of the vertical
axis as there are to the right. In fact, these properties always hold in the A

(1)
` case, but

are peculiar to that case.
When for given λ(w), the profile of F (w) bisects an unordered pair i ∼ j, the order of

the pair is then fixed, with one or other of the i-node and the j-node being included in
T (w). This situation arises in the following D

(1)
4 example.

Example 2.3.2 For g = D
(1)
4 and w = s0s2s1s4s2s3s0, we find that λ(w) = (4, 4, 3,−3).

The superposition of F (w) on the coloured grid then gives:

F (w) =

4∼3 2 1 0 2 4∼3 2
2 4∼3 2 1∼0 2 4∼3

∼0 2 4∼3 2 1∼0 2 4∼
1∼0 2 4 3 2 1∼0 2
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However, the profile of F (w) bisects two unordered pairs, 4 ∼ 3 in the second row and
1 ∼ 0 in the fourth. The corresponding coloured diagram in this case is given by:

T (w) =

0 2 4∼3
1∼0 2 3∼
2 1∼0

∼0 2 4

where we see that the bisected unordered pair 4 ∼ 3 in the second row has been reordered
to give 3 ∼ 4 with the 3-node included in T (w) and the 4-node excluded. All other entries

of T (w) appear as in the D
(1)
4 grid.

In the above example, the apparently arbitrary choice as to which bisected unordered
pairs are to be reordered is in fact dictated by the general requirement that T (w) is even-
handed, where we say that a coloured diagram T is even-handed if the numbers of i-nodes
and j-nodes in T are both even for all associated pairs i and j.

We must also consider the special case where λ(w)i = 0 and the reference vertical axis
is straddled by an associated i-node and j-node. If the numbers of i-nodes and j-nodes in
the superposition of F (w) on the grid are both odd, then in passing from F (w) to T (w)
the diagram is augmented by the inclusion of a pair i j in the ith row. If these numbers
of nodes are both even then no augmentation occurs.

These two situations are illustrated in the following two examples for which g = D
(1)
4

and i = 4.

Example 2.3.3 For g = D
(1)
4 and w = s0s3s1s4s3s2s4s3, we obtain λ(w) = (5, 5, 2, 0) so

that λ(w)4 = 0. Superposition of F (w) on the grid gives:

F (w) =

1 0 2 4∼3 2 1∼0
2 1∼0 2 4∼3 2

4∼3 2 1∼0 2 4∼3
4 3 2 1∼0 2 4∼3

Here, the number of k-nodes inside the superposition of F (w) on the grid is even for each
k ∈ {0, 1, 3, 4}. Therefore, on the one hand, it is unnecessary to reorder the pair 1 ∼ 0
bisected by the profile of F (w) in the third row. On the other hand, it is not required to
augment the fourth row of T (w) by 4 3 . Hence:

T (w) =

0 2 4∼3 2
1∼0 2 4∼3
2 1∼

.

Example 2.3.4 For g = D
(1)
4 and w = s0s2s4s3s2, we obtain λ(w) = (5, 1, 0, 0). Once

again λ(w)4 = 0 and superposition of F (w) on the grid gives:

F (w) =

2 1 0 2 4∼3 2 1∼0
∼3 2 1∼0 2 4∼3 2

4∼3 2 1∼0 2 4∼3
2 4 3 2 1∼0 2 4∼3

the electronic journal of combinatorics 14 (2007), #R13 10



This time, the number of k-nodes inside the superposition of F (λ) on the grid is odd for
each k ∈ {0, 1, 3, 4}. It follows that the pair 1 ∼ 0 bisected by the profile in the second row
must be reordered, and the fourth row augmented with 4 3 to give:

T (w) =

0 2 4∼3 2
0∼

4 3

.

Note that, even in this previous example, the profile of T (w) coincides with that of F (w).
In the case w = 1, we have w(ρ) − ρ = 0. Therefore, λ(1) = (0, 0, . . . , 0), and both

F (1) and T (1) are trivial diagrams whose profiles coincide with the vertical axis.

2.4 Recursive generation of coloured diagrams

Let W be the Weyl-Coxeter group of g and let w ∈ W . The prescription of T (w) given
in Sections 2.1, 2.2 and 2.3 above relies on first being able to calculate w(ρ) − ρ. In this
section, we show how the necessity of using this prescription can be obviated, and T (w)
constructed recursively using no more than an expression for w in terms of the generators
s0, s1, . . . , s` of W and the coloured grid pertaining to g.

The construction owes its existence to the fact that for each w′ ∈ W and k ∈ I,
the coloured diagram T (w′sk) is readily obtained from T (w′) using the coloured grid
pertaining to g. To be precise we have the following algorithm:

Algorithm 2.4.1 Let T (1) be the trivial diagram with profile coinciding with the vertical
axis of the coloured grid for g. Let w = si1si2 · · · sit be any expression for w ∈ W in terms
of generators sk of the Weyl-Coxeter group W of g. Then T (w) is constructed from T (1)
through the successive action of si1, si2 , . . . , sit, where this action is defined as follows.
For w = w′sk, the action of sk on T (w′) gives T (w) where T (w) is obtained from T (w′)
by appending or deleting as appropriate all those k-nodes that are adjacent to the profile
of T (w′) when superposed on the coloured grid of g. For this purpose, a k-node in the
coloured grid of g is said to be adjacent to the profile of T (w ′) if it is either:

• next to one of the vertical edges that define the profile; or

• one of a tied pair next to such an edge; or

• one of an associated pair next to such an edge.

This procedure is illustrated in the following examples in which all nodes adjacent to
the profile of T (w′) are identified in the diagram next to T (w′), whether or not they lie
within T (w′) itself.
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Example 2.4.2 Consider the case g = C
(1)
4 where, for w′ = s0s1s2s3s4s0s1s0 the coloured

diagram T (w′) takes the form:

T (w′) =

0 0 1 2 3 4 4
1 0 0 1
2 1 0 0
3

,

0 0 1 2 3 4 4 3
1 0 0 1 2
2 1 0 0 1
3 2

.

In the diagram to the right here we have written T (w′) together with all nodes from the

underlying C
(1)
4 grid that are adjacent to its profile. We now form T (w′sk) for k = 0 and

k = 3 using Algorithm 2.4.1. For k = 0 we remove the tied pair 0 − 0 adjacent to the
profile, and for k = 3 we add the adjacent 3-node in the first row and remove the adjacent
3-node in the fourth row to give:

T (w′s0) =

0 0 1 2 3 4 4
1 0 0 1
2 1
3

and T (w′s3) =

0 0 1 2 3 4 4 3
1 0 0 1
2 1 0 0

respectively.

Example 2.4.3 For g = B
(1)
4 and w′ = s0s2s3s4s3s2, we have:

T (w′) =

0 2 3 4 3 2
0

,

0 2 3 4 3 2 1∼0
0∼1

3 2
4 3

.

We apply Algorithm 2.4.1 twice to obtain:

T (w′s1) =

0 2 3 4 3 2 1
1∼0

and T (w′s1s0) =

0 2 3 4 3 2 1∼0
1∼

.

Note that here in passing from T (w′) to T (w′s1), a 1-node has been appended to both the
first and second rows (the pair 1 ∼ 0 in the second row is then unordered: we choose to
display the 1 to the left of the 0 to accord with the coloured grids described previously).

The above rule also applies to the special case in which T (w′) contains the augmented
pair i j , after noting that here λ(w′)i = 0, and the profiles of F (w′) and T (w′) coincide
with the vertical axis in the ith row. We use the case considered in Example 2.3.4 above
to illustrate the application of the rule given above in Algorithm 2.4.1 in this instance.
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Example 2.4.4 Let g = D
(1)
4 and w′ = s0s2s4s3s2, so that λ(w′) = (5, 1, 0, 0) and:

T (w′) =

0 2 4∼3 2
0∼

4 3

,

0 2 4∼3 2 1∼0
0∼1

4∼3 2
4 3

.

Here, the profile of T (w′) in the 4th row is adjacent to nodes of colours 3 and 4 in T (w′).
We thus obtain:

T (w′s3) =

0 2 4∼3 2
0∼

∼3
4

and T (w′s4) =

0 2 4∼3 2
0∼

∼4
3

,

with λ(w′s3) = (5, 1,−1,−1) and λ(w′s4) = (5, 1,−1, 1). Note that the profiles of T (w′s3)
and T (w′s4) in the 4th row lie one unit to the left and right respectively of the vertical
axis.

If the vertical axis bisects an associated pair, i and j, in the ith row, and λ(w)i = ±1
then, by definition, the profile of F (w) is adjacent to both an i-node and a j-node.
However, only one of these two nodes is present in T (w). This is the case for i = 4 in
both T (w′s3) and T (w′s4) in Example 2.4.4 above. Assume that it is the i-node (resp.
j-node) that is the single node present. Then that node is removed from the ith row to
produce the ith row of T (wsi) (resp. T (wsj)) which is now empty. On the other hand,
T (wsj) (resp. T (wsi)) is obtained by replacing the single node with the augmentation
i j . Note that, in effect, a j-node (resp. i-node) has been added to the ith row of

T (w), but not immediately next to the profile. This is entirely in accordance with the
rules described in Algorithm 2.4.1, together with the reordering necessary for consistency
with the requirements that any associated pair straddling the vertical axis must take the
particular order specified in the coloured grid. This latter case is illustrated by the passage
from T (w′s3) back to T (w′s3s3) = T (w′) (resp. T (w′s4) back to T (w′s4s4) = T (w′)) in the
above Example 2.4.4 where i = 4 and j = 3. Note that λ(wsi)i = λ(wsj)i = 0 and that
the profile in the ith row of both T (wsi) and T (wsj) coincides with that of the vertical
axis.

Having illustrated the passage from T (w′) to T (w′sk), we see, as stated in Algorithm
2.4.1, that given an expression w = si1si2 · · · sit, we may start from the trivial coloured
diagram T (1) and construct T (w) in a sequence of t steps starting first with T (si1), then
T (si1si2), and so on.

Example 2.4.5 For g = A
(1)
4 , consider w = s0s3s4s3s1s0. Then T (w) is obtained from

T (1) via the following six steps:

→

0

0

→

0

3
3

0

→

0 4

4 3
3

0
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→

0 4 3

4 3

0

→

0 4 3
1

4 3

1 0

→

0 4 3
1 0

0 4 3

1 0

.

Note that the resulting T (w) agrees with that given in Example 2.3.1, and that at every
stage the coloured diagram is both weight-balanced and colour-balanced in that the same
number of k-nodes lie on each side of the vertical axis for all k ∈ {0, 1, 2, 3, 4}.

Example 2.4.6 For g = B
(1)
4 , consider w = s0s2s3s4s3s2s1. Then T (w) is obtained from

T (1) via the following seven steps:

→

0
0

→

0 2
0
2

→

0 2 3
0
2
3

→

0 2 3 4
0
2
3

→

0 2 3 4 3
0
2

→

0 2 3 4 3 2
0

→

0 2 3 4 3 2 1
1 0

.

We note that the T (w) produced by this means is independent of the particular ex-
pression for w that is used. Indeed, it does not matter whether the expression is reduced.
Of course, this should be the case, because in the prescription of Sections 2.1, 2.2 and 2.3,
T (w) is seen to depend only on w(ρ) − ρ. In Section 2.8, we show conversely how T (w)
may be used to produce a reduced expression for w.

Having now obtained T (w), it is an easy matter to read w(ρ) − ρ from it. The
generalised partition λ(w) = (λ(w)1, λ(w)2, . . . , λ(w)n) is given by setting λ(w)i to be
the displacement of the profile of T (w) in the ith row from the vertical axis, with dis-
placements to the right and left treated as positive and negative respectively. Then
w(ρ) − ρ =

∑n
i=1 λ(w)iεi.

In the next section, we show how T (w) can also be used to obtain D(w(ρ) − ρ), so
that w(ρ) − ρ is immediately known in full.

2.5 Depth charges

In order to obtain the value of D(w(ρ) − ρ) from T (w), we use an enhancement of the
grids that were defined in Section 2.2. Every node in those grids is given a charge which
is calculated using Bij and Cij defined by Bij = b(i − j)/h̃∨c and Cij = (i − j)mod h̃∨.
The charge ζij ∈ 1

2
Z of the node in the ith row and jth column of each grid is specified
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in the following table:

A
(1)
` : h̃∨ = ` + 1; ζij = −Bij;

B
(1)
` : h̃∨ = 2` − 1; ζij =

{
1
2
− Bij if Cij ∈ {0, 1},
−Bij otherwise;

C
(1)
` : h̃∨ = 2` + 2; ζij =





1
2
− Bij if Cij = 0,

−1
2
− Bij if Cij = h̃∨ − 1,

−Bij otherwise;

D
(1)
` : h̃∨ = 2` − 2; ζij =

{
1
2
− Bij if Cij ∈ {0, 1},
−Bij otherwise;

A
(2)
2` : h̃∨ = 2` + 1; ζij =





1
2
− Bij if Cij = 0,

−1
2
− Bij if Cij = h̃∨ − 1,

−Bij otherwise;

A
(2)
2`−1 : h̃∨ = 2`; ζij =

{
1
2
− Bij if Cij ∈ {0, 1},
−Bij otherwise;

D
(2)
`+1 : h̃∨ = 2`; ζij =

{
1 − 2Bij if Cij = 0,
−2Bij otherwise.

(2.6)

In the enhanced grid, the charge ζij is displayed as a subscript of the corresponding colour.
As in Section 2.2, we illustrate this definition with the ` = 4 case of each of the seven

sequences of g. In each case, we again show the first 15 columns of the grid to the right
of the vertical axis and the first five columns to the left. Here, we suppress the indication
of unordered and tied entries for typographical reasons.

A
(1)
4 :

01̄ 40 30 20 10 00 41 31 21 11 01 42 32 22 12 02 43 33 23 13

11̄ 01̄ 40 30 20 10 00 41 31 21 11 01 42 32 22 12 02 43 33 23

21̄ 11̄ 01̄ 40 30 20 10 00 41 31 21 11 01 42 32 22 12 02 43 33

31̄ 21̄ 11̄ 01̄ 40 30 20 10 00 41 31 21 11 01 42 32 22 12 02 43

41̄ 31̄ 21̄ 11̄ 01̄ 40 30 20 10 00 41 31 21 11 01 42 32 22 12 02

B
(1)
4 :

30 40 30 20 1 1

2

0 1

2

21 31 41 31 21 1 3

2

0 3

2

22 32 42 32 22 1 5

2

0 5

2

20 30 40 30 20 1 1

2

0 1

2

21 31 41 31 21 1 3

2

0 3

2

22 32 42 32 22 1 5

2

0 1̄

2

20 30 40 30 20 1 1

2

0 1

2

21 31 41 31 21 1 3

2

0 3

2

22 32 42 32 22

1 1̄

2

0 1̄

2

20 30 40 30 20 1 1

2

0 1

2

21 31 41 31 21 1 3

2

0 3

2

22 32 42 32

C
(1)
4 :

40 40 30 20 10 0 1

2

0 1

2

11 21 31 41 41 31 21 11 0 3

2

0 3

2

12 22 32

30 40 40 30 20 10 0 1

2

0 1

2

11 21 31 41 41 31 21 11 0 3

2

0 3

2

12 22

20 30 40 40 30 20 10 0 1

2

0 1

2

11 21 31 41 41 31 21 11 0 3

2

0 3

2

12

10 20 30 40 40 30 20 10 0 1

2

0 1

2

11 21 31 41 41 31 21 11 0 3

2

0 3

2
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D
(1)
4 :

20 40 30 20 1 1

2

0 1

2

21 41 31 21 1 3

2

0 3

2

22 42 32 22 1 5

2

0 5

2

23 43

0 1̄

2

20 40 30 20 1 1

2

0 1

2

21 41 31 21 1 3

2

0 3

2

22 42 32 22 1 5

2

0 5

2

23

1 1̄

2

0 1̄

2

20 40 30 20 1 1

2

0 1

2

21 41 31 21 1 3

2

0 3

2

22 42 32 22 1 5

2

0 5

2

21̄ 1 1̄

2

0 1̄

2

20 40 30 20 1 1

2

0 1

2

21 41 31 21 1 3

2

0 3

2

22 42 32 22 1 5

2

A
(2)
8 :

30 40 30 20 10 0 1

2

0 1

2

11 21 31 41 31 21 11 0 3

2

0 3

2

12 22 32 42

20 30 40 30 20 10 0 1

2

0 1

2

11 21 31 41 31 21 11 0 3

2

0 3

2

12 22 32

10 20 30 40 30 20 10 0 1

2

0 1

2

11 21 31 41 31 21 11 0 3

2

0 3

2

12 22

0 1̄

2

10 20 30 40 30 20 10 0 1

2

0 1

2

11 21 31 41 31 21 11 0 3

2

0 3

2

12

A
(2)
7 :

40 40 30 20 1 1

2

0 1

2

21 31 41 41 31 21 1 3

2

0 3

2

22 32 42 42 32 22

30 40 40 30 20 1 1

2

0 1

2

21 31 41 41 31 21 1 3

2

0 3

2

22 32 42 42 32

20 30 40 40 30 20 1 1

2

0 1

2

21 31 41 41 31 21 1 3

2

0 3

2

22 32 42 42

0 1̄

2

20 30 40 40 30 20 1 1

2

0 1

2

21 31 41 41 31 21 1 3

2

0 3

2

22 32 42

D
(2)
5 :

30 40 30 20 10 01 12 22 32 42 32 22 12 03 14 24 34 44 34 24

20 30 40 30 20 10 01 12 22 32 42 32 22 12 03 14 24 34 44 34

10 20 30 40 30 20 10 01 12 22 32 42 32 22 12 03 14 24 34 44

01̄ 10 20 30 40 30 20 10 01 12 22 32 42 32 21 12 03 14 24 34

It should be noted, quite generally, that on reading the coloured grids from left to
right, a change in the value of the depth charge occurs only between certain nodes that
are associated with the left hand end of the corresponding Dynkin diagram. Specifically,
there is an increase of one between the 0 and `-nodes for g = A

(1)
` , of 1

2
between the 0 and

1-nodes for g = C
(1)
` and A

(2)
2` , of one between the 0 and 1-nodes for g = D

(2)
`+1, and of 1

2

between both 2 and 0-nodes and 2 and 1-nodes for the cases g = B
(1)
` , D

(1)
` and A

(2)
2`−1.

With each entry in T (w) assigned the corresponding charge, let d(w) be the signed
sum of the charges contained within T (w), that is the sum of the charges to the right of
the vertical axis minus the sum of those to the left of the vertical axis, which are for the
most part negative. Then, as will be proved later, d(w) = D(w(ρ) − ρ). Since the shape,
that is to say the row lengths, of T (w) determine the generalised partition λ(w), it follows
from (2.1) and (2.2) that T (w) completely determines

w(ρ) − ρ =
n∑

i=1

λ(w)iεi − d(w)δ, (2.7)

as claimed.
We illustrate this rule in the following three examples, the first two of which deal with

the cases from Examples 2.4.5 and 2.4.6 respectively.
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Example 2.5.1 Let g = A
(1)
4 and w = s0s3s4s3s1s0. With the enhanced grid, T (w) takes

the form:

T (w) =

00 41 31

10 00

01̄ 40 30

11̄ 01̄

.

This gives d(w) = (0 + 1 + 1 + 0 + 0) − (−1 + 0 + 0 − 1 − 1) = 5. Then, since λ(w) =
(3, 2,−3, 0,−2), from (2.7) we obtain w(ρ) − ρ = 3ε1 + 2ε2 − 3ε3 − 2ε5 − 5δ.

Example 2.5.2 Let g = B
(1)
4 and w = s0s2s3s4s3s2s1. With the enhanced grid, T (w)

takes the form:

T (w) =

0 1

2

21 31 41 31 21 1 3

2

1 1

2

0 1

2 .

This gives d(w) = 1
2

+ 1 + 1 + 1 + 1 + 1 + 3
2

+ 1
2

+ 1
2

= 8. Then, since λ(w) = (7, 2, 0, 0),
from (2.7) we obtain w(ρ) − ρ = 7ε1 + 2ε2 − 8δ.

Example 2.5.3 Let g = D
(1)
4 and w = s0s2s4s3s2. With the enhanced grid, T (w) takes

the form:

T (w) =

0 1

2

21 41 31 21

0 1

2

40 30

.

This gives d(w) = 1
2

+ 1 + 1 + 1 + 1 + 1
2

+ 0− 0 = 5. Then, since λ(w) = (5, 1, 0, 0), from
(2.7) we obtain w(ρ) − ρ = 5ε1 + ε2 − 5δ.

2.6 Stretched coloured diagrams

Let Λ be any integral weight of the form Λ = −D(Λ)δ+
∑`

j=0 mj(Λ)Λj, with mj(Λ) ∈ Z≥0

for j ∈ I. Then, given T (w), the value of w(Λ)−Λ is obtained by first constructing T Λ(w)
from T (w) by stretching horizontally each node coloured j by a factor of mj(Λ) to give
a sequence of mj(Λ) j-nodes, each carrying their original depth charge. In effect, each
j-node in T (w) is simply multiplied by mj(Λ) to form T Λ(w). Now let λΛ(w)i be the
length of the ith row of T Λ(w) taken positive or negative depending on whether the row
extends to the left or right of the vertical axis. Let dΛ(w) be the signed sum of the depth
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charges in T Λ(w). With this notation:

w(Λ) − Λ =

n∑

i=1

λΛ(w)iεi − dΛ(w)δ. (2.8)

Example 2.6.1 For g = A
(1)
4 and w = s0s3s4s3s1s0, T (w) is stated in Example 2.5.1.

With Λ = 3Λ0 + Λ1 + 4Λ2 + 5Λ4, the stretched coloured diagram T Λ(w) takes the form:

TΛ(w) =

00 00 00 41 41 41 41 41

10 00 00 00

01̄ 01̄ 01̄ 40 40 40 40 40

11̄ 01̄ 01̄ 01̄

.

Thus λΛ(w) = (8, 4,−8, 0,−4) and dΛ(w) = 12. From (2.8), we then obtain w(Λ) − Λ =
8ε1 + 4ε2 − 8ε3 − 4ε5 − 12δ.

Example 2.6.2 For g = B
(1)
4 and w = s0s2s3s4s3s2s1, T (w) is stated in Example 2.5.2.

With Λ = 3Λ1 + 2Λ2 + 3Λ3, the stretched coloured diagram T Λ(w) takes the form:

TΛ(w) =

21 21 31 31 31 31 31 31 21 21 1 3

2

1 3

2

1 3

2

1 1

2

1 1

2

1 1

2 .

Thus λΛ(w) = (13, 3, 0, 0) and dΛ(w) = 16. From (2.8), we then obtain w(Λ) − Λ =
13ε1 + 3ε2 − 16δ.

In those cases in which T (w) has been augmented with a pair i j in the ith row, the
stretching process places mi(Λ) nodes coloured i immediately to the left of the vertical
axis in the ith row of T Λ(w), and mj(Λ) nodes coloured j immediately to their right. In
accordance with the corresponding entries in T (w), each of these colours receives a depth
charge of 1

2
if i = 1 and a depth charge of 0 if i = `. In these cases, we naturally set

λΛ(w)i = mj(Λ) − mi(Λ). We encounter this situation in the following example.

Example 2.6.3 For g = D
(1)
4 and w = s0s2s4s3s2, T (w) is stated in Example 2.5.3.

With Λ = 3Λ0 + Λ3 + 4Λ4, the stretched coloured diagram T Λ(w) takes the form:

TΛ(w) =

0 1

2

0 1

2

0 1

2

41 41 41 41 31

0 1

2

0 1

2

0 1

2

40 40 40 40 30

.

Thus λΛ(w) = (8, 3, 0,−3) and dΛ(w) = 8. From (2.8), we then obtain w(Λ) − Λ =
8ε1 + 3ε2 − 3ε4 − 8δ.

the electronic journal of combinatorics 14 (2007), #R13 18



2.7 Characterisation for affine Weyl-Coxeter elements

In this section, we provide characterisations of the sets of generalised partitions {λ(w)|w ∈
W} and coloured diagrams {T (w)|w ∈ W}. We give the latter characterisation first, and
from this the former follows.

To characterise {T (w)|w ∈ W}, we introduce the notion of edge-balanced. This no-
tion describes a particular distribution of the nodes adjacent to the profile of a coloured
diagram T . Naturally, it depends on which g is under consideration.

If g = A
(1)
` , we say that T is edge-balanced if the ` + 1 segments of the profile of T

bisect each of the following pairs exactly once:

1 0 , 2 1 , 3 2 , . . . , ` `−1 , 0 ` .

If g = C
(1)
` , A

(2)
2` or D

(2)
`+1, we say that T is edge-balanced if the ` segments of the profile

of T bisect each of the following pairs exactly once, with any pair reversed:

1 0 , 2 1 , 3 2 , . . . , ` `−1 .

If g = B
(1)
` or A

(2)
2`−1, we say that T is edge-balanced if the ` segments of the profile of T

bisect each of the following pairs exactly once, with any pair reversed:

1 0 , 2 1∼0 , 3 2 , . . . , ` `−1 .

Here, we say that the profile bisects the pair k i∼j if k is adjacent to the profile, and
either element of the associated pair i and j is adjacent to the profile on the other side. If
g = D

(1)
` , we say that T is edge-balanced if the ` segments of the profile of T bisect each

of the following pairs exactly once, with any pair reversed:

1 0 , 2 1∼0 , 3 2 , . . . , `−2 `−3 , ` ∼ `−1 `−2 , ` `−1 .

We can now state that T (w) is edge-balanced for all w ∈ W .

Conversely, in the cases for which g = C
(1)
` , A

(2)
2` or D

(2)
`+1, if T is an edge-balanced

coloured diagram, then there exists a unique w ∈ W such that T = T (w). In the cases for

which g = B
(1)
` , D

(1)
` or A

(2)
2`−1, if T is an edge-balanced even-handed coloured diagram,

then there exists a unique w ∈ W such that T = T (w). Finally, in the case g = A
(1)
` , if T

is an edge-balanced weight-balanced coloured diagram, then there again exists a unique
w ∈ W such that T = T (w).

Example 2.7.1 Let g = B
(1)
4 and consider the following coloured diagram:

T =

1 1

2

0 1

2

1 1

2

0 1

2

21 31 41

20 30 40 30

30

.

the electronic journal of combinatorics 14 (2007), #R13 19



From top to bottom, the profile of T bisects the pairs 1 0 , 4 3 , 1∼0 2 and 3 2 . Then,
by the above definition, T is edge-balanced. Note also that T is even-handed, and that this
would not be the case if the augmented pair 1 0 were omitted from the first row. The
above result then states that there exists w ∈ W such that T = T (w). In Section 2.8, we

will obtain an explicit expression for this w in terms of the Coxeter generators of B
(1)
4 .

By examining the grids pertaining to each g, and in particular their periodic nature,
we are now able to immediately characterise {λ(w)|w ∈ W}. To do this, we introduce
the sets P(g) of generalised partitions defined by:

P(A
(1)
` ) = {(λ1, λ2, . . . , λ`+1) |

∑`+1
i=1 λi = 0,

{(λi − i)mod (` + 1)}`+1
i=1 = {0, 1, . . . , `}},

P(B
(1)
` ) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2` − 1) − ` + 1|}`
i=1 = {0, 1, . . . , ` − 1}};

P(C
(1)
` ) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2` + 2) − `|}`
i=1 = {1, 2 . . . , `}};

P(D
(1)
` ) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2` − 2) − ` + 1|}`
i=1 = {0, 1, . . . , ` − 1}};

P(A
(2)
2` ) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2` + 1) − `|}`
i=1 = {1, 2 . . . , `}};

P(A
(2)
2`−1) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2`) − `|}`
i=1 = {0, 1, . . . , ` − 1}};

P(D
(2)
`+1) = {(λ1, λ2, . . . , λ`) |

{|(λi − i + `)mod (2`) − ` + 1
2
|}`

i=1 = {1
2
, 3

2
, . . . , ` − 1

2
}}.

Note that in each case, we calculate modulo h̃∨, where the values of h̃∨ for each of the
seven cases are given in (2.4).

With the above definitions, we can now state that {λ(w) |w ∈ W} = P(g). Moreover,
for each generalised partition λ ∈ P(g), there is a unique w ∈ W such that λ(w) = λ.

The set {T (w) |w ∈ W} is now obtained from {λ(w) |w ∈ W} by the means described
in Section 2.3.

2.8 Reduced expressions

Let w ∈ W . If w = si1si2 · · · sit and t is the smallest value for which such an expression
exists, then si1si2 · · · sit is said to be a reduced expression for w. The length `(w) of w is
then defined by `(w) = t. It is then the case that `(wsk) = `(w) ± 1 for all k ∈ I. Here,
we show that T (w) may be used to produce a reduced expression for w.

We first define the notion of a k-shift. If the profile in a particular row of a coloured
diagram T is adjacent to k-nodes, performing a k-shift on that row moves the profile so
that it lies on the other side of those k-nodes. The k-shift is described as leftward or
rightward if the k-nodes in T lie to the left or to the right, respectively, of the profile.
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We also describe the k-shift as single or double if a lone k-node or a tied pair of k-nodes,
respectively, is adjacent to the profile. If the profile in a particular row is not adjacent
to a k-node, a k-shift on that row leaves it unchanged. We say that T is obtained from
a k-shift on a coloured diagram T ′ if each row of T is obtained from a k-shift on the
corresponding row of T ′.

The description in Section 2.4 then shows that if w′ ∈ W and w = w′sk for k ∈ I,
then T (w) is obtained from T (w′) by a k-shift.

We write T (w) � T (w′), if T (w) is obtained from T (w′) in one of the following four
ways:

• a single rightward k-shift in row i and a single leftward k-shift in row j for i < j;

• a single rightward k-shift in each of rows i and j for i 6= j;

• a single rightward k-shift in row i;

• a double rightward k-shift in row i.

Conversely, we write T (w) ≺ T (w′), if T (w) is obtained from T (w′) in one of the following
four ways:

• a single leftward k-shift in row i and a single rightward k-shift in row j for i < j;

• a single leftward k-shift in each of rows i and j for i 6= j;

• a single leftward k-shift in row i;

• a double leftward k-shift in row i.

We see that T (w) � T (w′) if and only if T (w′) ≺ T (w). In fact, as shown later, T (w)
is necessarily obtained from T (w′) in one of the eight ways given above. Thus either
T (w) � T (w′) or T (w) ≺ T (w′).

With w′ and w as above, we also show that `(w) = `(w′) + 1 if and only if either:

• d(w) > d(w′); or

• d(w) = d(w′) and T (w) ≺ T (w′).

Armed with this fact, we can now find a reduced expression for w ∈ W . In the first step,
we seek k ∈ I such that `(wsk) = `(w) − 1. Note that there is necessarily at least one
such value. On setting w′ = wsk so that w = w′sk, each such value can be located by
comparing T (w) and T (w′) according to the above criterion. Set k1 = k. If T (w′) is not
the trivial coloured diagram, we now repeat this procedure with w′ in place of w. In this
way, we locate k2 ∈ I such that `(wsk1

sk2
) = `(wsk1

) − 1. Eventually, this must lead
to the trivial coloured diagram T (1), implying that wsk1

sk2
· · · skt−1

skt = 1, and hence
w = sktskt−1

· · · sk2
sk1

. By construction, this is necessarily a reduced expression for w.
In fact, by choosing between the different values of k that arise at each step, all reduced
expressions for w can be produced in this way.
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Example 2.8.1 Let g = B
(1)
4 and consider the coloured diagram T given in Example

2.7.1. As stated in that example, there exists w ∈ W for which T = T (w). Here, we use
the above method to find a reduced expression for w.

First note that d(w) = 4. Using the method of Section 2.4, we obtain:

T (ws0) =

1 1

2

1 1

2

0 1

2

21 31 41

0 1̄

2

20 30 40 30

30

,

T (ws1) =

0 1

2

1 1

2

0 1

2

21 31 41

1 1̄

2

20 30 40 30

30

, T (ws2) =

1 1

2

0 1

2

1 1

2

0 1

2

21 31 41

30 40 30

30 20

,

T (ws3) =

1 1

2

0 1

2

1 1

2

0 1

2

21 31 41 31

20 30 40 30
, T (ws4) =

1 1

2

0 1

2

1 1

2

0 1

2

21 31

20 30 40 30

30

.

Thus d(ws0) = 4, d(ws1) = 5, d(ws2) = 4, d(ws3) = 5 and d(ws4) = 3. In the cases
for which d(wsk) = d(w), we see that T (w) � T (ws0) and T (w) ≺ T (ws2). We therefore
conclude that `(wsk) < `(w) for k ∈ {2, 4} and `(wsk) > `(w) for k ∈ {0, 1, 3}.

The calculation of a reduced expression for w proceeds recursively, using now either
ws2 or ws4 in place of w. We choose ws4. Using T (ws4) given above, we produce:

T (ws4s3) =

1 1

2

0 1

2

1 1

2

0 1

2

21

20 30 40 30
.

We then see that d(ws4s3) = 2 < d(ws4) and therefore `(ws4s3) < `(ws4). In the
other cases resulting from T (ws4), it may be verified that d(ws4s0) = 3, d(ws4s1) = 4,
d(ws4s2) = 3 and that T (ws4) � T (ws4s0) and T (ws4) ≺ T (ws4s2). Thus `(ws4sk) <
`(ws4) if and only if k ∈ {2, 3}. We choose k = 3.

From T (ws4s3) we obtain, in particular,

T (ws4s3s2) =

1 1

2

0 1

2

1 1

2

0 1

2

30 40 30
.
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We then see that d(ws4s3s2) = 1 < d(ws4s3) and therefore `(ws4s3s2) < `(ws4s3). In
the other cases k 6= 2, it may be verified that either d(ws4s3sk) > d(ws4s3) or that
T (ws4s3) � T (ws4s3sk), and thus `(ws4s3sk) > `(ws4s3). So now we must proceed using
T (ws4s3s2). This yields:

T (ws4s3s2s0) =

1 1

2

1 1

2

30 40 30
.

We see that d(ws4s3s2s0) = 0 < d(ws4s3s2). Additionally, d(ws4s3s2sk) = 1 = d(ws4s3s2)
and T (ws4s3s2) ≺ T (ws4s3s2sk), and d(ws4s3s2s4) = 1 and T (ws4s3s2) � T (ws4s3s2s4).
Therefore, `(ws4s3s2sk) < `(ws4s3s2) if and only if k ∈ {0, 1, 3}. Choosing k = 0, we
may now proceed:

1 1

2

1 1

2

30 40 30
≺

1 1

2

1 1

2

40 30

30

≺

1 1

2

1 1

2

30

30

≺

1 1

2

1 1

2 ≺ ,

where, in each instance, the signed sum of the depth charges is 0. Altogether we thus have
ws4s3s2s0s3s4s3s1 = 1, whereupon w = s1s3s4s3s0s2s3s4 is a reduced expression for w.
Of course, it is one of many such expressions, and each one can be obtained by making
appropriate choices in the above iterative process.

2.9 Coloured diagrams for coset representatives of natural sub-

group

For each affine Lie algebra g, we let g be the maximal Lie subalgebra of g whose Dynkin
diagram is obtained from that of g by omitting the node labelled 0. The Lie algebra g is
finite-dimensional and simple. For those cases in which g is a classical affine Lie algebra,
these natural embeddings g ⊃ g are as follows:

A
(1)
` ⊃ A`, B

(1)
` ⊃ B`, C

(1)
` ⊃ C`, D

(1)
` ⊃ D`, A

(2)
2` ⊃ B`, A

(2)
2`−1 ⊃ C`, D

(2)
`+1 ⊃ B`.

If we denote the Weyl-Coxeter group of g by W , it follows that W ⊂ W . In fact, if
{s0, s1, s2, . . . , s`} is the set of Coxeter generators of W , then {s1, s2, . . . , s`} is the set of
Coxeter generators of W . Note that even though W is of infinite order, W is of finite
order.

In what follows, we are especially interested in a particular set, Ws, of right coset
representatives of W in W defined as follows:

Definition 2.9.1 Let I = I\{0}, and set

Ws = {w ∈ W | `(siw) ≥ `(w) for all i ∈ I}. (2.9)
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It can be shown that Ws contains precisely one element from each right coset Ww. It
can also be shown that each w ∈ Ws is the unique element of minimal length in the coset
Ww. Consequently, Ws is termed the set of minimal right coset representatives of W in
W .

Let w′ ∈ Ws and w = w′sk for k ∈ I. Later, we show that in the case for which
`(w) > `(w′), then w ∈ Ws if and only if T (w) � T (w′). On the other hand, in the case
for which `(w) < `(w′), then necessarily w ∈ Ws and T (w) ≺ T (w′). These facts enable
Ws to be constructed recursively by length, starting with 1 ∈ Ws. Indeed, if we define:

W (t)
s = {w ∈ Ws | `(w) = t} (2.10)

for t ∈ Z≥0, we have the following:

Proposition 2.9.2 W
(0)
s = {1}. For t > 0

W (t)
s = {w = w′sk |w

′ ∈ W (t−1)
s , k ∈ I, T (w) � T (w′)}. (2.11)

Thus for t > 0, for each pair w′ ∈ W
(t−1)
s and k ∈ I, we can now construct W

(t)
s by

constructing T (w′sk) from T (w′). If T (w′sk) � T (w′) then w′sk ∈ W
(t)
s . All w ∈ W

(t)
s

necessarily arise in this way.
The above iteration process can be conveniently depicted on a directed rooted graph:

the vertices of the graph are labelled by T (w) for w ∈ Ws with the root vertex labelled
by the trivial coloured diagram T (1), and a directed edge links T (w′) to T (w) whenever
w = w′sk with `(w) > `(w′). We call the graph obtained in this way the Bruhat graph for

Ws. In the cases g = C
(1)
3 , B

(1)
3 , D

(1)
4 and A

(1)
2 , the upper portions of the Bruhat graphs

for Ws are displayed in Figs. 2, 3, 4 and 5 respectively. In each case, all the vertices that
correspond to the elements of W

(t)
s for some fixed t, and as such lie at a distance t from

the root vertex, have been placed on the same horizontal level as one another.

2.10 Cores for coset representatives of natural subgroup

In this section, we characterise of the set of (generalised) partitions {λ(w)|w ∈ Ws} in
terms of their h̃∨-cores. For a definition of a p-core see [10, §2.7] or [19, p12], for example.
These cores will be elements of one of the sets F ,A, C, E that we now specify. First, define
F to be the set of all (genuine) partitions. Using Frobenius notation for partitions [17,
§5.1 and §11.9], we now define:

A = {α ∈ F |α = ( a1 a2 a3 ··· at
a1+1 a2+1 a3+1 ··· at+1 )} ;

C =
{
α ∈ F |α =

(
b1+1 b2+1 b3+1 ··· bt+1

b1 b2 b3 ··· bt

)}
;

E = {α ∈ F |α = ( a1 a2 a3 ··· at
a1 a2 a3 ··· at )} .

The characterisation then involves the sets P+(g) of generalised partitions or partition
pairs defined by:

P+(B
(1)
` ) = {λ ∈ F |λ ≡ ζ mod (2` − 1), ζ ∈ A, `(λ) ≤ `, `(ζ) ≤ `};
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Figure 2: Top of Bruhat graph for Ws in the case g = C
(1)
3

P+(C
(1)
` ) = {λ ∈ F |λ ≡ ζ mod (2` + 2), ζ ∈ C, `(λ) ≤ `, `(ζ) ≤ `};

P+(A
(2)
2` ) = {λ ∈ F |λ ≡ ζ mod (2` + 1), ζ ∈ C, `(λ) ≤ `, `(ζ) ≤ `};

P+(A
(2)
2`−1) = {λ ∈ F |λ ≡ ζ mod (2`), ζ ∈ A, `(λ) ≤ `, `(ζ) ≤ `};

P+(D
(2)
`+1) = {λ ∈ F |λ ≡ ζ mod (2`), ζ ∈ E , `(λ) ≤ `, `(ζ) ≤ `};

P+(D
(1)
` ) = {(λ1, λ2, . . . , λ`−1, λ`) | (λ1, λ2, . . . , λ`−1, |λ`|) ∈ F ,

(λ1, λ2, . . . , λ`−1, |λ`|) ≡ ζ mod (2` − 2), ζ ∈ A, `(ζ) < `};

P+(A
(1)
` ) = {(µ; ν) |µ ∈ F , ν ∈ F , |µ| = |ν|, `(µ)+`(ν) ≤ `+1,

µ ≡ ζ mod (`+1), ν ≡ ζ ′ mod (`+1), ζ ∈ F , `(ζ)+`(ζ ′) ≤ `+1}.

Here, if λ and ζ are partitions then we write λ ≡ ζ mod p to indicate that λ and ζ have
the same p-core. `(λ) is the number of non-zero parts of the partition λ.

Note that for g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1, the set P+(g) is comprised of genuine

partitions, and for g = D
(1)
` , only the `th part of each member of P+(g) is permitted to

be negative. In the g = A
(1)
` case, the definition above is in terms of pairs (µ; ν) where

µ and ν are both genuine partitions. We will use the notation λ = (µ; ν) to mean that
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Figure 3: Top of Bruhat graph for Ws in the case g = B
(1)
3

µ, ν ∈ F with `(µ) + `(ν) ≤ n where n = ` + 1, and λ is the generalised partition for
which λi = µi for 1 ≤ i ≤ `(µ), λi = 0 for `(µ) < i ≤ n − `(ν), and λi = −νn+1−i for
n − `(ν) < i ≤ n so that λ = (µ1, µ2, . . . , µ`(µ), 0, . . . , 0,−ν`(ν), . . . ,−ν2,−ν1).

With the above definitions, we can now state:

Proposition 2.10.1 If g = B
(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1, then {λ(w) |w ∈ Ws} =

P+(g). Moreover, for each generalised partition λ ∈ P+(g), there is a unique w ∈ Ws

such that λ(w) = λ.

If g = A
(1)
n−1, then {λ(w) |w ∈ Ws} = P+(g). Moreover, for each generalised partition

(µ; ν) ∈ P+(g), there is a unique w ∈ Ws such that λ(w) = (µ; ν).

The set {T (w) |w ∈ Ws} is now obtained from {λ(w) |w ∈ Ws} by the means described
in Section 2.3. To recapitulate briefly, for each λ(w), the corresponding F (w) is superposed

on the grid for g. This yields T (w) unless g = B
(1)
` , D

(1)
` or A

(2)
2`−1. In these cases

it is further required to ensure that T (w) is even-handed by, where necessary, either

interchanging unordered pairs, or where appropriate in the D
(1)
` case, by augmenting the

`th row with ` `−1 .
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Figure 4: Top of Bruhat graph for Ws in the case g = D
(1)
4

3 Background

In the following sections, we prove all the assertions made in Section 1. In this section,
we gather together the parts of the theory of affine Lie algebras, simple Lie algebras and
Coxeter groups that we use. We draw extensively on the texts [12, 7].

3.1 Affine Lie algebras

The classification theorem of Kac and Moody shows that each affine Lie algebra g is
isomorphic to one of:

A
(1)
` ; B

(1)
` ; C

(1)
` ; D

(1)
` ; A

(2)
2` ; A

(2)
2`+1; D

(2)
`+1;

E
(1)
6 ; E

(1)
7 ; E

(1)
8 ; F

(1)
4 ; G

(1)
2 ; E

(2)
6 ; D

(3)
4 ,

where ` ∈ Z>0, with some restrictions of the form ` ≥ `min ≥ 1. The first seven cases are
known as classical affine Lie algebras. Each of their ranks is `. The final seven cases are
known as exceptional affine Lie algebras. Their ranks are 6,7,8,4,2,4,2 respectively. Those
cases with superscript (1) are also known as untwisted (or direct) affine Lie algebras. The
others are known as twisted affine Lie algebras.

To each affine Lie algebra g of rank `, the classification theorem associates an (` +
1) × (` + 1) generalised Cartan matrix A = (Aij)i,j∈I , where I = {0, 1, 2, . . . , `}. The
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Figure 5: Top of Bruhat graph for Ws in the case g = A
(1)
2

affine Lie algebra g is then the complex Lie algebra generated by the set of elements
{d, ei, fi, hi : i ∈ I} subject to the relations:

[hi, hj] = 0, [ei, fj] = δijhi,
[hi, ej] = Aijej, [hi, fj] = −Aijfj,
(ad ei)

1−Aijej = 0 for i 6= j, (ad fi)
1−Aijfj = 0 for i 6= j,

(3.1)

and
[d, hi] = 0, [d, ei] = δi0ei, [d, fi] = −δi0fi. (3.2)

The generalised Cartan matrices of the affine Lie algebras may be found in [3, App. N].
They are often encoded in directed multigraphs known as Dynkin diagrams. The Dynkin
diagram of an affine Lie algebra of rank ` has ` + 1 vertices labelled αj for j ∈ I. If, for
i 6= j, the vertices αi and αj are not linked then Aij = Aji = 0. Otherwise, αi and αj are
linked: if no arrow points from αj to αi then Aij = −1, and if an arrow points from αj

to αi then Aij = −m where m is the multiplicity of the edge linking αi and αj. As usual,
Aii = 2 for all i ∈ I. The Dynkin diagrams of the classical affine Lie algebras are listed
in Table 1.

The Cartan subalgebra h of g is the (` + 2)-dimensional algebra with basis {d, hi | i ∈
I}. Its dual h∗ has basis {Λ0, αi | i ∈ I} where for i, j ∈ I, αj(hi) = Aij, αj(d) = δj0,
Λ0(hi) = δi0 and Λ0(d) = 0. {αi | i ∈ I} is the set of simple roots of g.

For each of the affine Lie algebras, the generalised Cartan matrix A has corank 1.
The marks ci for i ∈ I are the smallest positive integers such that

∑`
j=0 cjAij = 0 for
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all i ∈ I. Similarly, the comarks c∨i for i ∈ I are the smallest positive integers such that∑`
i=0 c∨i Aij = 0 for all j ∈ I. In this paper, we use a labelling of the simple roots such

that c0 = 1 for each g, while c∨0 = 1 for each g except A
(2)
2` for which c∨0 = 2. This follows

the convention of [20, 3] but not of [12].
The Coxeter number h and the dual Coxeter number h∨ of g are defined by h =

∑`

i=0 ci

and h∨ =
∑`

i=0 c∨i respectively. In (2.3), we defined h̃∨ = 2h∨ if g = C
(1)
` and h̃∨ = h∨

otherwise, and in (2.5), for each i ∈ I, we defined c̃∨i = 2c∨i if g = C
(1)
` and c̃∨i = c∨i

otherwise. Note that h̃∨ =
∑`

i=0 c̃∨i .

The null root δ is defined by δ =
∑`

i=0 ciαi, whereupon δ(hi) = 0 for all i ∈ I, and

δ(d) = c0 = 1. From c0 = 1, it also follows that δ = α0 + θ with θ =
∑`

i=1 ciαi.

3.2 Weight basis of h∗

Having defined Λ0 above, for j ∈ I\{0}, the Dynkin weight Λj is defined by Λj(d) = 0
and Λj(hi) = δij for each i ∈ I. It immediately follows that

αk =
∑

j∈I

AjkΛj + δk0δ. (3.3)

Moreover, {δ, Λj | j ∈ I} is a basis for h∗. The integral weight lattice of g is defined

by P = Cδ +
∑`

i=0 ZΛi. The dominant integral weight lattice of g is defined by P + =

Cδ +
∑`

i=0 Z≥0Λi.
Since {δ, Λj | j ∈ I} is a basis for h∗, for any λ ∈ h∗ we can write:

λ = −D(λ)δ +
∑̀

i=0

mi(λ)Λi, (3.4)

where D(λ) = −λ(d) and mi(λ) = λ(hi) for all i ∈ I. We refer to D(λ) as the depth of
λ. We also define the level of λ by L(λ) =

∑`
i=0 c∨i mi(λ), or equivalently by L(λ) = λ(c)

where c ∈ h is defined by c =
∑`

i=0 c∨i hi. Then D and L are linear operators on h∗.
We now immediately obtain L(Λi) = c∨i and D(Λi) = 0 for i ∈ I, and L(δ) =

δ(c) =
∑`

i=0 c∨i δ(hi) = 0 and D(δ) = −δ(d) = −1. Using (3.3), we then also obtain

L(αk) =
∑`

j=0 Ajkc
∨
j = 0 and D(αk) = −δk0 for k ∈ I. The Weyl vector ρ of g is defined

by ρ =
∑`

i=0 Λi. Then L(ρ) = h∨ and D(ρ) = 0.
Now define h∗ = span{α1, α2, . . . , α`}, so that h∗ = h∗ ⊕ CΛ0 ⊕ Cδ.

Lemma 3.2.1 Let λ ∈ h∗. Then

λ = λ + L̃(λ)Λ0 − D(λ)δ, (3.5)

where λ ∈ h∗ and L̃(λ) = L(λ)/c∨0 .

Proof: In accordance with the above decomposition of h∗, we can write λ = λ+mΛ0−pδ
for some m, p ∈ C, with λ ∈ h∗. Then D(λ) = p since D(αj) = 0 for all j ∈ I\{0},
D(Λ0) = 0 and D(δ) = −1. Similarly, L(λ) = mc∨0 since L(αj) = 0 for all j ∈ I\{0},
L(Λ0) = c∨0 and L(δ) = 0. These results immediately imply (3.5). �
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3.3 Root systems and natural basis of h∗

As usual, an element α ∈ h∗\{0} is said to be a root of g if there exists non-zero eα ∈ g

such that [h, eα] = α(h)eα for all h ∈ h. The set of all roots is denoted ∆. In the case of
affine Lie algebras g, ∆ has infinite cardinality. As usual, we can write ∆ = ∆+ ∪ ∆−,
where the set ∆− of negative roots is obtained from the set ∆− of positive roots by
∆− = {−α |α ∈ ∆+}. On the other hand, we can write ∆ = ∆re ∪ ∆im, where ∆re is a
set of real roots, and ∆im is a set of imaginary roots given by ∆im = {mδ |m ∈ Z\{0}}.
We also define ∆±

re = ∆± ∩ ∆re and ∆±
im = ∆± ∩ ∆im, whereupon ∆re = ∆+

re ∪ ∆−
re. and

∆im = ∆+
im ∪ ∆−

im.

In this paper, we concentrate on the classical affine Lie algebras g = A
(1)
` , B

(1)
` , C

(1)
` ,

D
(1)
` , A

(2)
2` , A

(2)
2`−1, D

(2)
`+1. In all cases other than g = A

(1)
` we set n = `, while for g = A

(1)
`

we set n = ` + 1. We now embed h∗ in En, where En is the n-dimensional Euclidean
vector space having basis vectors ε1, ε2, . . . , εn. Then h∗ ⊂ En ⊕Cδ ⊕CΛ0. The following
theorem (selecting details from [12, Theorems 7.4 and 8.3]) specifies the simple roots
and the positive real and imaginary roots of each classical affine Lie algebra g in the
corresponding natural basis.

Theorem 3.3.1 In terms of δ and the Euclidean basis elements ε1, ε2, . . . , εn, the simple
roots α0, α1, . . . , α` of g are as tabulated below. For all g, the set ∆+

im of positive imaginary
roots is given by

∆+
im = {mδ |m ∈ Z>0}.

For untwisted g, the set ∆+
re of positive real roots is given by:

∆+
re = ∆+

0 ∪ {mδ ± α |m ∈ Z>0, α ∈ ∆+
0 },

and for twisted g by:

∆+
re = ∆+

0 ∪ {2mδ ± α |m ∈ Z>0, α ∈ ∆+
0 } ∪ {(2m − 1)δ ± α |m ∈ Z>0, α ∈ ∆+

1 },

with ∆+
0 and ∆+

1 also as tabulated below.

A
(1)
` : α0 = δ − θ where θ = ε1 − ε`+1,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α` = ε` − ε`+1;

∆+
0 = {εi − εj | 1 ≤ i < j ≤ ` + 1}.

B
(1)
` : α0 = δ − θ where θ = ε1 + ε2,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`;

∆+
0 = {εi ± εj, εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `}.

C
(1)
` : α0 = δ − θ where θ = 2ε1,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = 2ε`;

∆+
0 = {εi ± εj, 2εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `}.
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D
(1)
` : α0 = δ − θ where θ = ε1 + ε2,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`−1 + ε`;

∆+
0 = {εi ± εj | 1 ≤ i < j ≤ `}.

A
(2)
2` : α0 = δ − θ where θ = 2ε1,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`;

∆+
0 = {εi ± εj, εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `},

∆+
1 = {εi ± εj, εk, 2εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `}.

A
(2)
2`−1 : α0 = δ − θ where θ = ε1 + ε2,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = 2ε`;

∆+
0 = {εi ± εj, 2εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `},

∆+
1 = {εi ± εj | 1 ≤ i < j ≤ `}.

D
(2)
`+1 : α0 = δ − θ where θ = ε1,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`;

∆+
0 = {εi ± εj, εk | 1 ≤ i < j ≤ `, 1 ≤ k ≤ `},

∆+
1 = {εk | 1 ≤ k ≤ `}.

In the cases g = A
(1)
` , B

(1)
` , C

(1)
` and D

(1)
` , it will be notationally convenient to set

∆+
1 = ∆+

0 . Note then that ∆+
1 ⊆ ∆+

0 except when g = A
(2)
2` , in which case ∆+

0 ⊆ ∆+
1 .

With ∆+
0 and ∆+

1 as specified above, we also define ∆−
0 = {−α |α ∈ ∆+

0 } and ∆−
1 =

{−α |α ∈ ∆+
1 }.

Note that h∗ = En ⊕Cδ⊕CΛ0 except in the case g = A
(1)
` , for which h∗ = En ⊕Cδ⊕

CΛ0/(ε1+ε2 + · · ·+εn). In this latter case, it is then convenient to set ε1 +ε2+ · · ·+εn = 0.
Then h∗ = span{ε1, ε2, . . . , εn} for each classical g. It is now clear that (1.1) follows from

(3.5) since L(λ) = c∨0 L̃(λ) and c∨0 = 1 for all g other than g = A
(2)
2` , for which c∨0 = 2.

3.4 Bilinear form on h∗

A non-degenerate symmetric bilinear form (·|·) on En ⊕ Cδ ⊕ CΛ0 is specified by setting
(εi|εj) = δij for 1 ≤ i, j ≤ n; (εi|δ) = (εi|Λ0) = 0 for 1 ≤ i ≤ n; (Λ0|Λ0) = (δ|δ) = 0
and (δ|Λ0) = 1

2
(α0|α0). After defining α∨

i = 2αi/(αi|αi), it may then be checked that the
expressions in Theorem 3.3.1 satisfy (Λ0|α

∨
i ) = δ0i for i ∈ I, and (α∨

i |αj) = Aij for i, j ∈ I.
It follows that (α∨

i |δ) = (αi|δ) = 0 for i ∈ I. In addition, because (α∨
i |αj) = αj(hi),

(α∨
i |Λ0) = Λ0(hi) and h∗ has basis {Λ0, αj|j ∈ I}, it follows that (α∨

i |Λj) = Λj(hi) = δij

for all i, j ∈ I.
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One important distinction between real and imaginary roots is that for all α ∈ ∆re

we have (α|α) > 0, whereas for all α ∈ ∆im we have (α|α) = 0. Note also that for any
λ ∈ h∗ we have λ =

∑n
i=1 λiεi where λi = (λ | εi) = (λ | εi) for i = 1, 2, . . . , n.

3.5 The Weyl group of g as a Coxeter group

Here, we review some basic facts and results about the Weyl-Coxeter group of an affine
Lie algebra g.

If α ∈ ∆re the action sα : h∗ → h∗ is defined by:

sα(η) = η − (η |α∨)α, (3.6)

for all η ∈ h∗. Note that sα = smα for m ∈ Z\{0}. The group W generated by {sα |α ∈
∆re} is the Weyl-Coxeter group of g. The following facts are easily established:

(w(η) |w(ζ)) = (η | ζ), (3.7)

s2
α = 1, (3.8)

wsαw−1 = sw(α), (3.9)

w(α) = −α if and only if w = sα, (3.10)

for all w ∈ W , η, ζ ∈ h∗ and α ∈ ∆.
It is customary to set si = sαi

for i ∈ I. Then S = {si | i ∈ I} is a minimal generating
set for W , and (W, S) is a Coxeter system. This is a consequence of the fact that:

(sisj)
mij = 1 (3.11)

for all i, j ∈ I where the mij are certain positive integers. The relations (3.11) actually
provide a presentation of W . It follows that there is a homomorphism sgn : W → {±1}
given by sgn(w) = (−1)t whenever w = si1si2 · · · sit with ij ∈ I for j = 1, 2, . . . , t.

The length function ` : W → Z≥0 was defined in Section 2.8. It has the following
properties (see [7, §5]):

`(wsi) = `(w) ± 1, `(siw) = `(w) ± 1, (3.12)

`(w−1) = `(w), (3.13)

`(wsi) > `(w) if and only if w(αi) ∈ ∆+, (3.14)

for all w ∈ W and i ∈ I. More precisely, we have

`(wsi) > `(w) if and only if w(αi) ∈ ∆+
re, (3.15)

for all w ∈ W and i ∈ I. This is a simple consequence of the fact that ∆+ = ∆+
re ∪ ∆+

im

and the observation that (w(αi)|w(αi)) = (αi|αi) > 0, so that w(αi) /∈ ∆+
im. Of course,

the affine Weyl-Coxeter group W is not finite and `(w) is not bounded.
We also note that not only ∆, but both ∆+

im and ∆−
im, are invariant under the action

of W . Moreover,
si(∆

+\{αi}) = ∆+\{αi}. (3.16)
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It is easily checked that the Weyl-Coxeter groups of B
(1)
` and A

(2)
2`−1 are isomorphic.

Additionally, C
(1)
` , A

(2)
2` and D

(2)
`+1 are mutually isomorphic. The Weyl-Coxeter groups of

A
(1)
` , B

(1)
` , C

(1)
` and D

(1)
` are respectively isomorphic to the groups denoted Ã`, B̃`, C̃` and

D̃` in [1, 7].

3.6 Weyl-Coxeter action on natural basis

Here we deduce the action of the generators s0, s1, . . . , s` of W on the natural basis
elements Λ0, δ, ε1, ε2, . . . , εn of h∗. Using (3.6) and the bilinear form of Section 3.4, we
immediately obtain si(δ) = δ for all i ∈ I, s0(Λ0) = Λ0 −α0 = Λ0 − δ + θ and si(Λ0) = Λ0

for all i ∈ I\{0}.
In the case of each classical affine algebra g, the use of (3.6) together with the bilin-

ear form defined in Section 3.4 and the data tabulated in Theorem 3.3.1, enables us to
calculate si(εj) for 1 ≤ j ≤ n and all i ∈ I. For i = 0 and i = ` we find that si(εj) is
dependent on the g in question. For i = 0, we obtain:

A
(1)
` : s0(ε`+1) = ε1 − δ, s0(ε1) = ε`+1 + δ;

B
(1)
` , D

(1)
` , A

(2)
2`−1 : s0(ε1) = δ − ε2, s0(ε2) = δ − ε1;

C
(1)
` , A

(2)
2` : s0(ε1) = δ − ε1;

D
(2)
`+1 : s0(ε1) = 2δ − ε1,

(3.17)

with s0(εj) = εj for the values of j not covered here. For i = `, we obtain:

A
(1)
` : s`(ε`) = ε`+1, s`(ε`+1) = ε`;

D
(1)
` : s`(ε`) = −ε`−1, s`(ε`−1) = −ε`;

B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1, D

(2)
`+1 : s`(ε`) = −ε`,

(3.18)

again with s`(εj) = εj for the values of j not covered here. Finally, for i = 1, 2, . . . , ` − 1
and all classical affine Lie algebras g,

si(εi) = εi+1, si(εi+1) = εi, (3.19)

with si(εj) = εj for j /∈ {i, i + 1}.

3.7 Natural simple Lie subalgebra g

Let I = I\{0} = {1, 2, . . . , `}. Then any affine Lie algebra g generated by the elements
{d, ei, fi, hi | i ∈ I} subject to the relations (3.1) and (3.2) possesses a subalgebra g gen-
erated by the elements {ei, fi, hi | i ∈ I} subject just to the relations (3.1). Moreover,
the restriction of the generalised Cartan matrix A = (Aij)i,j∈I to the relevant submatrix
A = (Aij)i,j∈I is such that A is the Cartan matrix of a finite-dimensional simple Lie
algebra. Thus, the subalgebra g of g is a finite-dimensional simple Lie algebra.
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The classification theorem of Cartan and Killing [2, 15] shows that each simple Lie
algebra g is isomorphic to one of:

A`; B`; C`; D`; E6; E7; E8; F4; G2,

where ` ≥ 1, 2, 3, 4 for g = A`, B`, C`, D` respectively. In each case, the rank is specified
by the relevant subscript.

In fact, for each of the affine Lie algebras g the natural embeddings g ⊃ g arising as
above are given by:

A
(1)
` ⊃ A`; B

(1)
` ⊃ B`; C

(1)
` ⊃ C`; D

(1)
` ⊃ D`;

A
(2)
2` ⊃ B`; A

(2)
2`−1 ⊃ C`; D

(2)
`+1 ⊃ B`;

E
(1)
6 ⊃ E6; E

(1)
7 ⊃ E7; E

(1)
8 ⊃ E8; F

(1)
4 ⊃ F4; G

(1)
2 ⊃ G2;

E
(2)
6 ⊃ F4; D

(3)
4 ⊃ G2.

The Cartan subalgebra h of g is the `-dimensional algebra with basis {hi|i ∈ I}. Its
dual has basis {αi|i ∈ I} where for i, j ∈ I, αj(hi) = Aij. By comparing the definition of
αj with that of αj, we see that we can identify αj = αj (in their actions on h) for j ∈ I.
Consequently, the dual of h is precisely h∗ as defined in Section 3.2.

In view of the above embeddings and the fact that we are considering just the classical
affine Lie algebras, we need only consider here the classical simple Lie algebras g = A`,
B`, C` and D`. In the following theorem, we state standard expressions (see [1, §4] and
[7, §2.10]) for the simple roots of g in terms of the Euclidean basis elements ε1, ε2, . . . , εn,
where n = ` except for the case g = A` for which n = ` + 1. These expressions may be
obtained by suitably restricting the expressions of Theorem 3.3.1.

Theorem 3.7.1 In terms of the Euclidean basis elements ε1, ε2, . . . , εn, the simple roots
α1, α2, . . . , α` of g are as tabulated below. The full set ∆0 of roots of g is given by
∆0 = ∆+

0 ∪ ∆−
0 , where the set ∆+

0 of positive roots is tabulated below, and the set ∆−
0 of

negative roots is defined by ∆−
0 = {−α|α ∈ ∆+

0 }.

A` : α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α` = ε` − ε`+1;

∆+
0 = {εi − εj|1 ≤ i < j ≤ ` + 1}.

B` : α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`;

∆+
0 = {εi ± εj, εk|1 ≤ i < j ≤ `, 1 ≤ k ≤ `}.

C` : α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = 2ε`;

∆+
0 = {εi ± εj, 2εk|1 ≤ i < j ≤ `, 1 ≤ k ≤ `}.

D` : α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α`−1 = ε`−1 − ε`,

α` = ε`−1 + ε`;

∆+
0 = {εi ± εj|1 ≤ i < j ≤ `}.
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Note that for the embedding g ⊃ g, the set of positive roots of g coincides with the
subset ∆+

0 of roots of the affine Lie algebra g identified in Theorem 3.3.1. It is well known
that any root α ∈ ∆0 is either positive or negative, and that it may be correspondingly
expressed as a linear sum of simple roots with either all non-negative or all non-positive
integer coefficients, respectively. As can be seen from Theorem 3.3.1, any γ ∈ ∆+

1 of our
classical affine algebras g is such that either γ = α or γ = 2α with α ∈ ∆+

0 in both cases.
It follows that for all γ ∈ ∆0 ∪ ∆1 we have γ =

∑`

i=0 riαi with either all ri ∈ Z≥0 or all
ri ∈ Z≤0, corresponding to whether γ ∈ ∆+

0 ∪ ∆+
1 or γ ∈ ∆−

0 ∪ ∆−
1 , respectively.

Since Λi ∈ h∗ and, via (3.5), Λi(hj) = Λi(hj) − (c∨i /c∨0 )Λ0(hj) = δij for all i, j ∈ I,
it follows that for i ∈ I, the weights Λi are the fundamental weights of the simple Lie
subalgebra g. Therefore ρ =

∑
i∈I Λi is the Weyl vector of g. Also note that (Λi|α

∨
j ) =

(Λi|α
∨
j ) − (c∨i /c∨0 )(Λ0|α

∨
j ) = δij for all i, j ∈ I.

The integral weight lattice of g is defined by P =
∑`

i=1 ZΛi. The dominant integral

weight lattice of g is defined by P
+

=
∑`

i=1 Z≥0Λi.

Lemma 3.7.2 Let λ ∈ h∗ and write λ =
∑n

i=1 λiεi. Then λ ∈ P
+

if and only if λi −
λi+1 ∈ Z≥0 for 1 ≤ i < n and

•
∑n

i=1 λi = 0 if g = A`;

• λ` ∈
1
2
Z≥0 if g = B`;

• λ` ∈ Z≥0 if g = C`;

• λ` ∈
1
2
Z and λ`−1 ≥ |λ`| if g = D`.

Proof: Let mi = (λ|α∨
i ) for 1 ≤ i ≤ ` so that λ =

∑`

i=1 miΛi. For 1 ≤ i < n, Theorem
3.7.1 gives αi = εi − εi+1, whereupon mi = (

∑n

j=1 λjεj|εi − εi+1) = λi − λi+1.
Now, for g = B`, C` and D`, consider i = n (= `). For g = B`, we have α` = ε`

whereupon m` = 2(λ|ε`) = 2λ`. For g = C`, we have α` = 2ε` whereupon m` = (λ|ε`) =
λ`. For g = D`, we have α` = ε`−1 + ε` whereupon m` = (λ|ε`−1 + ε`) = λ`−1 + λ` and

m` − m`−1 = 2λ`. Since each mi ∈ Z≥0 for λ ∈ P
+
, the required conditions follow.

For g = A`, each αi is orthogonal to ε1 +ε2 + . . .+ε`+1. It follows that h∗ is orthogonal
to this vector because {αi | 1 ≤ i ≤ `} is a basis for h∗. The required conditions then also
follow for g = A`. �

Let W be the subgroup of W generated by S = {si|i ∈ I}. Then (W, S) is a Coxeter
system, and W is the Weyl-Coxeter group of g. It is a finite Coxeter group, and has
properties analogous to those of W given in Section 3.5. In particular, the action of W
on h∗ is given by (3.6) where we restrict α ∈ ∆0 and η ∈ h∗. We also note that length
functions defined on W and W are compatible in that if w ∈ W and `(w) = t, then there
exists i1, i2, . . . , it ∈ I such that w = si1si2 · · · sit (see [7, Prop. 5.5]).
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4 Unveiling the colours

4.1 Casting the rainbow

In this section, we prove that if w ∈ W and Λ ∈ h∗ then:

w(Λ) − Λ =

n∑

i=1

λΛ(w)iεi, (4.1)

where each λΛ(w)i is obtained from the coloured diagram T (w) as described in Section
2.6. This will follow from Theorem 4.1.4 below. The proof of the full (2.8) will be obtained
in Section 4.3 below.

The simplest way to proceed here is to adopt the description of T (w) given in Section
2.4 as the definition of T (w). In particular, if w′ ∈ W , k ∈ I and w′′ = w′sk, then T (w′′)
is obtained from T (w′) by a k-shift. By this means, T (w) is built up recursively using
any expression for w in terms of the generators s0, s1, . . . , s` of W .

Once (4.1) has been established, it follows that:

w(ρ) − ρ =

n∑

i=1

λ(w)iεi. (4.2)

Thereupon, the above definition of T (w) is consistent with that given in Sections 2.1, 2.2
and 2.3. This also shows that T (w) is independent of the expression used to produce it
in the previous paragraph.

For each coloured diagram T , j ∈ I and 1 ≤ i ≤ n, we let nij(T ) and dij(T ) denote
respectively the number (positive or negative) of j-nodes and the signed sum of their
charges in the ith row of T . As usual, nodes to the left of the vertical axis give a negative
contribution. We also let dj(T ) =

∑n

i=1 dij(T ) for each j ∈ I, so that dj(T ) is the
signed sum of the charges of j-nodes throughout T . For w ∈ W , it will be useful to set
nij(w) = nij(T (w)), dij(w) = dij(T (w)) and dj(w) = dj(T (w)). Our proofs below and in
Section 4.3 proceed by relating these values to those defined in the next paragraph.

For each w ∈ W , we define the values Nij(w) and Pj(w) for j ∈ I and 1 ≤ i ≤ n by
setting:

w(Λj) − Λj =
n∑

i=1

Nij(w)εi − Pj(w)δ, (4.3)

in accordance with (3.5) after noting that L(w(Λj) − Λj) = 0.

Now if Λ ∈ h∗ and mj(Λ) = (Λ |α∨
j ) for 0 ≤ j ≤ `, then Λ =

∑`

j=0 mj(Λ)Λj − D(Λ)δ,
whereupon, since w(δ) = δ, (4.3) immediately implies that:

w(Λ) − Λ =
n∑

i=1

∑̀

j=0

mj(Λ)Nij(w)εi −
∑̀

j=0

mj(Λ)Pj(w)δ. (4.4)

The following result provides useful recursive expressions for Nij(w) and Pj(w).
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Lemma 4.1.1 Let w′ ∈ W , k ∈ I and w = w′sk. Then:

Nij(w) =

{
Nij(w

′) − (αk|εi) −
∑`

m=0 AmkNim(w′) if j = k;

Nij(w
′) if j 6= k,

(4.5)

for 1 ≤ i ≤ n, and

Pj(w) =

{
Pj(w

′) + δk,0 −
∑`

m=0 AmkPm(w′) if j = k;

Pj(w
′) if j 6= k.

(4.6)

If w = 1, then Nij(w) = Pj(w) = 0 for j ∈ I and 1 ≤ i ≤ n.

Proof: Using (4.3), we calculate:

n∑

i=1

Nij(w)εi − Pj(w)δ = w(Λj) − Λj

= w′(sk(Λj) − Λj) + w′(Λj) − Λj

= −δjkw
′(αk) +

n∑

i=1

Nij(w
′)εi − Pj(w

′)δ.

We then write w′(αk) = αk +(w′(αk)−αk), so that, since αk =
∑`

m=0 AmkΛm + δk,0δ and
w′(δ) = δ, we have:

w′(αk) = αk +
∑̀

m=0

Amk(w
′(Λm) − Λm)

= αk +
∑̀

m=0

Amk

(
n∑

i=1

Nim(w′)εi − Pm(w′)δ

)
.

After combining these results, (4.5) and (4.6) follow from the linear independence of
δ, ε1, ε2, . . . , εn.

The final statement is immediate. �

In order to show that T (w), defined as described above, satisfies (4.1), we will use an
induction argument. The induction step is encapsulated in the following lemma. In this
lemma, and in Section 4.3, we make use of the notion of a k-block, which we now describe.

We define a k-block for all g and k ∈ I, except in a few instances. These instances
are g = A

(1)
1 ; g = A

(2)
2 ; k = 1 for g = C

(1)
2 , A

(2)
6 and D

(2)
3 ; and k = 2 for g = B

(1)
3 , D

(1)
4

and A
(2)
5 . Apart from these, a k-block is a finite contiguous portion of a row of the grid

pertaining to g, in which an m-node is present if and only if either Amk 6= 0, or m and
k are associated. All possible k-blocks are shown in Tables 2 and 3 (for g = A

(1)
` , the

labels on the nodes are taken modulo ` + 1). Alongside each k-block is the portion of the
corresponding Dynkin diagram comprised of all vertices labelled αm whenever Amk 6= 0
or k and m are associated. The value of Amk pertaining to the αmth vertex is displayed
above that vertex.
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Case k-block Linkage of αkth node

1a k + 1 k k − 1
2−1 −1

αkαk−1 αk+1

1b k − 1 k k + 1
2−1 −1

αkαk−1 αk+1

2a k + 1 k k − 1 k k + 1
αkαk−1 αk+1

2−2 −1

2b k − 1 k k + 1 k k − 1
αkαk−1 αk+1

2−1 −2

3a k + 1 k k − 1 k − 1 k k + 1
2−1 −1

αkαk−1 αk+1

3b k − 1 k k + 1 k + 1 k k − 1
2−1 −1

αkαk−1 αk+1

4a k + 1 k k − 1∼k − 2 k k + 1
αk−2

αk−1

−1

−1

2 −1

αk+1αk

4b k − 1 k k + 2∼k + 1 k k − 1
−1

−1

−1

αk+2

αk+1

αk

2

αk−1

Table 2: k-blocks

Lemma 4.1.2 Let T ′ and T be coloured diagrams with T obtained from T ′ by a k-
shift, where k ∈ I. For 1 ≤ i ≤ n, set ϑik(T

′) = nik(T ) − nik(T
′) and Σik(T

′) =∑`
m=0 Amknim(T ′). Then:

ϑik(T
′) = −Σik(T

′) − (αk|εi). (4.7)

Proof: We first claim that (4.7) holds when the ith row of T ′ is empty, so that this
portion of the profile of T ′ coincides with the vertical axis,. In this case, the second
term on the right of (4.7) is trivially 0. Note that here ϑik(T

′) is non-zero only if the

vertical axis is adjacent to a k-node. For g = A
(1)
` , examination of the grid shows that

ϑik(T
′) = δi,k+1 − δik − δi−n,k for 1 ≤ i ≤ n. Using Theorem 3.3.1, we see that this

equals −(αk|εi) and the claim holds. For g = C
(1)
` , A

(2)
2` or D

(2)
`+1, examination of the

grids gives ϑik(T
′) = δi,k+1 − δik for 1 ≤ i ≤ `, except when i = 1 and k = 0 for

g = C
(1)
` or A

(2)
2` , or when i = k = ` for g = C

(1)
` . In the first of these excepted instances
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Case k-block Linkage of αkth node

5a k + 1 k k + 1
αk αk+1

2 −1

5b k − 1 k k − 1
αkαk−1

2−1

6a k + 1 k k k + 1
αk αk+1

2 −2

6b k − 1 k k k − 1
αkαk−1

2−2

7a k + 1 k ∼ k − 1 k + 1
2

0

αk

αk−1

αk+1

−1

7b k + 2 k + 1 ∼ k k + 2
0

2

αk+1

αk

αk+2

−1

7c k − 2 k ∼ k − 1 k − 2
2

0

αk

αk−1

αk−2

−1

7d k − 1 k + 1 ∼ k k − 1
0

2

αk

αk+1

−1

αk−1

Table 3: k-blocks (cont.)

ϑ10(T
′) = 2, while in the second ϑ``(T

′) = −2. In each instance, Theorem 3.3.1 shows

that ϑik(T
′) = −(αk|εi), as required. For g = B

(1)
` , D

(1)
` or A

(2)
2`+1, examination of the

grids gives ϑik(T
′) = δi,k+1 − δik for 1 ≤ i ≤ `, except when i = 2 and k = 0 for either

g, when i = ` − 1 and k = ` for g = D
(1)
` , or when i = k = ` for g = A

(2)
2`+1. In the

first of these excepted instances ϑ20(T
′) = 1, in the second ϑ`−1,`(T

′) = −1, and in the
third ϑ``(T

′) = −2. In each instance, Theorem 3.3.1 again shows that ϑik(T
′) = −(αk|εi),

as required. In fact the requirement ϑik(T
′) = −(αk|εi) is sufficient to determine all the

entries in the grid that are adjacent to the vertical axis, including tied pairs and unordered
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pairs.
We now claim that, whatever the length of the ith row of T ′, the values of the two sides

of (4.7) change by the same amount when the profile is moved to the next possible position
on its right. This claim will be verified below cases by case. Once verified, its iterative
application shows that (4.7) holds for rows of positive length. Of course, the periodicity
of the grids ensures that the two sides of the expression also change by the same amount
when the profile is moved to the next possible position on its left. Thereupon, we conclude
that (4.7) holds in all cases.

For convenience, we will denote the change in Σik(T
′) by ∆Σ, and the change in ϑik(T

′)
by ∆ϑ. In particular, if the profile of the original T ′ moves to its right past nj adjacent
j-nodes then ∆Σ = njAjk, where of course nj is either 1 or, in the case of a tied pair, 2. If
in the ith row of the original T ′ the profile is not adjacent to any k-nodes then ϑik(T

′) = 0
since the ith row of T and T ′ must coincide. On the other hand if it is adjacent to nk

k-nodes in the ith row then ϑik(T
′) = nk or −nk according to whether these are to the

right or to the left of the profile, since the ith row of T is necessarily formed by adding or
deleting the nk adjacent k-nodes to T ′. It follows that ∆ϑ may be read off the k-blocks
rather easily as the profile of T ′ advances from left to right by first enumerating ϑik(T

′)
in accordance with the above rule, and then calculating differences in these values.

To prove our claim, we must show that ∆ϑ = −∆Σ in every possible case. We first
consider those cases for which k-blocks are defined. If the profile passes over a j-node
which is not in a k-block then ∆ϑ = 0 since before and after the change, the profile is
not adjacent to a k-node. On the other hand, Ajk = 0 for this case, which implies that
∆Σ = 0, as required.

For each of the k-blocks listed in Tables 2 and 3, we examine ∆ϑ and ∆Σ as the profile
passes over a j-node that is in the k-block.

For cases 1a and 1b, there are three nodes to pass over. Thus there are four profile
positions which yield ϑik = (0, 1,−1, 0) in correspondence with the initial profile being
not adjacent to a k-node, being to the left of a k-node, being to the right of a k-node,
and finally being no longer adjacent to a k-node. These values give, in turn, the values
(1,−2, 1) for ∆ϑ. Reading the values of Ajk for the j-nodes k + 1, k and k + 1 from
the accompanying Dynkin diagram immediately gives the values (−1, 2,−1) for ∆Σ. The
above claim thus holds here.

For Cases 2a and 2b, we have k = 1 and k = ` − 1 respectively. In either case, the
six possible positions of profile give ϑik(T

′) = (0, 1,−1, 1,−1, 0), so the five moves give
(1,−2, 2,−2, 1) for ∆ϑ in agreement with the values (−1, 2,−2, 2,−1) for ∆Σ.

For Cases 3a and 3b, we have k = 1 and k = ` − 1 respectively. Since the profile
cannot lie in the central position between the two tied nodes, there are again five moves
to consider. They give (1,−2, 2,−2, 1) for ∆ϑ and (−1, 2,−2, 2,−1) for ∆Σ.

For Cases 4a and 4b, we have k = 2 and k = ` − 2 respectively. Here there are six
moves to consider, with the order of the central interchangeable pair irrelevant. These
moves give (1,−2, 1, 1,−2, 1) for ∆ϑ and (−1, 2,−1,−1, 2,−1) for ∆Σ.

For Cases 5a and 5b, we have k = 0 and k = ` respectively. The three moves give
(1,−2, 1) for ∆ϑ and (−1, 2,−1) for ∆Σ.
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For Cases 6a and 6b, we have k = 0 and k = ` respectively. Since the profile cannot
lie in the central position between the two tied nodes, there are again three moves to
consider. They give (2,−4, 2) for ∆ϑ and (−2, 4,−2) for ∆Σ.

For Case 7a, we have k = 1. If the unordered pair 1 ∼ 0 is ordered as shown one
obtains ϑik(T

′) = (0, 1,−1,−1, 0) so that the four moves give (1,−2, 0, 1) for ∆ϑ. Corre-
spondingly, we find ∆Σ = (−1, 2, 0,−1) as required. On the other hand if the unordered
pair 1 ∼ 0 is actually reordered as 0 ∼ 1 then one obtains ϑik(T

′) = (0, 1, 1,−1, 0), so
that ∆ϑ = (1, 0,−2, 1). This time we find ∆Σ = (−1, 0, 2,−1), again as required.

For Case 7b, we have k = 0. The details of this case read exactly as for Case 7a,
except for the interchange of the 1 ∼ 0 and 0 ∼ 1 cases.

For Cases 7c and 7d, we have k = ` and k = `−1 respectively. These cases are similar to
Cases 7a and 7b respectively with the contributions corresponding to the configurations
1 ∼ 0 and 0 ∼ 1 cases now applying to the ` ∼ ` − 1 and ` − 1 ∼ ` contributions,
respectively.

The completes the verification of the claim that ∆ϑ = −∆Σ in the cases for which
k-blocks are defined. The cases for which there are no k-blocks are tabulated in Tables 4,
5, and 6. We tackle each of them in turn.

g grid k Dynkin graph αk i −(αk|εi)

1 1
0

αk αk+1

2 −2

δ − ε1 + ε2 2 −1

1 −1
A

(1)
1

0 1

1 0
1

αkαk−1

2−2

ε1 − ε2 2 1

0
αk αk+1

2 −4

δ − 2ε1 1 2

A
(2)
2 0 0 1

1
αkαk−1

2−1

ε1 1 −1

Table 4: Data for A
(1)
1 and A

(2)
2

For g = A
(1)
1 , each row comprises a sequence of 0 1 blocks. For k = 0, we obtain

the values (−2, 2) for ∆ϑ and the values (2,−2) for ∆Σ, as the profile passes between
the three valid positions. For k = 1, we obtain the values (2,−2) for ∆ϑ and the values
(−2, 2) for ∆Σ.

For g = A
(2)
2 , the single row comprises a sequence of 0 0 1 blocks. For k = 0, we obtain

the values (−4, 4) for ∆ϑ and the values (4,−4) for ∆Σ, as the profile passes between
the three valid positions. For k = 1, we obtain the values (2,−2) for ∆ϑ and the values
(−2, 2) for ∆Σ.
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g grid k Dynkin graph αk i −(αk|εi)

1 −1
C

(1)
2

0 0 1 2 2 1

1 0 0 1 2 2
1

2−1 −1

αkαk−1 αk+1

ε1 − ε2 2 1

1 −1
A

(2)
4

0 0 1 2 1

1 0 0 1 2
1

2−1 −2

αkαk−1 αk+1

ε1 − ε2 2 1

1 −1
D

(2)
3

0 1 2 1

1 0 1 2
1

2−2 −2

αkαk−1 αk+1

ε1 − ε2 2 1

Table 5: Data for C
(1)
2 , A

(2)
4 and D

(2)
3 when k = 1

For g = D
(2)
3 , each row comprises a sequence of 0 1 2 1 blocks. With k = 1, as we pass

between the five valid positions, we obtain the values (2,−2, 2,−2) for ∆ϑ and the values
(−2, 2,−2, 2) for ∆Σ.

For g = A
(2)
4 , each row comprises a sequence of 0 0 1 2 1 blocks, and the details of this

case are precisely the same as for the g = D
(2)
3 case above.

For g = C
(1)
2 , each row comprises a sequence of 0 0 1 2 2 1 blocks, and once again the

details are the same as for the g = D
(2)
3 case.

g grid k Dynkin graph αk i −(αk|εi)

1 0
2 −1B

(1)
3

0 2 3 2 1

1 0 2 3 2

2 1 0 2 3

2 αk−2

αk−1

αk+1αk
−1

−1

2 −2

ε2 − ε3

3 1

1 0
2 −1A

(2)
5

0 2 3 3 2 1

1 0 2 3 3 2

2 1 0 2 3 3

2 αk−2

αk−1

αk+1αk
−1

−1

2 −1

ε2 − ε3

3 1

1 0
2 −1
3 1D

(1)
4

0 2 4 3 2 1

1 0 2 4 3 2

2 1 0 2 4 3

3 2 1 0 2 4

2
−1

−1

−1

−1

αk−2

αk−1

αk+1

αk+2

αk

2

ε2 − ε3

4 0

Table 6: Data for B
(1)
3 , A

(2)
5 and D

(1)
4 when k = 2
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For g = B
(1)
3 , each row comprises a sequence of 1 0 2 3 2 blocks. Here k = 2 and the

order of the pair 1 0 is irrelevant. As we pass between the six valid positions, we obtain
the values (1, 1,−2, 2,−2) for ∆ϑ and the values (−1,−1, 2,−2, 2) for ∆Σ.

For g = A
(2)
5 , each row comprises a sequence of 1 0 2 3 3 2 blocks. The details of this

case are then as for the g = B
(1)
3 case above.

For g = D
(1)
4 , each row comprises a sequence of 1 0 2 4 3 2 blocks. Here k = 2 and the

order of each pair 1 0 and 4 3 is irrelevant. As we pass over the six nodes, we obtain the
values (1, 1,−2, 1, 1,−2) for ∆ϑ and the values (−1,−1, 2,−1,−1, 2) for ∆Σ.

This completes the verification of the above claim that ∆ϑ = −∆Σ in all cases. To
complete the proof, it remains to directly verify (4.7) where a row has been augmented.

This occurs only if i = 1 and either g = B
(1)
` , D

(1)
` or A

(2)
2`+1, or if i = ` and g = D

(1)
` . In

the former case, ϑik(T
′) takes the values (−1, 1, 0) for k = 0, k = 1 and k ≥ 2 respectively.

Since n10(T
′) = 1, n11(T

′) = −1 and n1k(T
′) = 0 for k ≥ 2, and (α0|ε1) = −1, (α1|ε1) = 1

and (αk|ε1) = 0 for k ≥ 2, it follows that (4.7) holds in this case. The latter case is
similar. �

Lemma 4.1.3 If w ∈ W then Nij(w) = nij(w) for j ∈ I and 1 ≤ i ≤ n.

Proof: Let w = w′sk so that T = T (w) is obtained from T ′ = T (w′) by a k-shift. Let
j ∈ I. Since T and T ′ differ by k-nodes, we have nij(w) = nij(w

′) for j 6= k and 1 ≤ i ≤ n.
For the j = k case, Lemma 4.1.2 shows that:

nik(w) = nik(w
′) − (αk|εi) −

∑̀

m=0

Amknim(w′). (4.8)

Comparing this with (4.5) shows that Nij(w) and nij(w) satisfy identical recurrence re-
lations. Since there exists an expression w = si1si2 · · · sit in terms of the generators of g,
and Nij(1) = nij(1) = 0 for j ∈ I and 1 ≤ i ≤ n, it follows that Nij(w) = nij(w) for all
j ∈ I and 1 ≤ i ≤ n. �

Theorem 4.1.4 Let w ∈ W and Λ ∈ h∗. Then:

w(Λ) − Λ =
n∑

i=1

∑̀

j=0

mj(Λ)nij(w)εi, (4.9)

where mj(Λ) = (Λ |α∨
j ) for j ∈ I.

Proof: This follows immediately from (4.4) after noting that Lemma 4.1.3 shows that
Nij(w) = nij(w) for j ∈ I and 1 ≤ i ≤ n. �

Using the notation of Section 2.6, this result can be written in the form (4.1).
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4.2 Properties of the profiles

We now examine the profiles of the coloured diagrams T (w), for w ∈ W .

Lemma 4.2.1 For w ∈ W and 1 ≤ h ≤ n, let i be such that w(εh) = ±εi. Then the pair
that straddles the vertical axis in the hth row of the grid, is that pair which straddles the
profile of T (w) in the ith row. Moreover, the pair is reversed if and only if w(εh) = −εi.

Proof: First note that that the existence of an i such that w(εh) = ±εi follows from the
specification of the action of W on ε1, ε2, . . . , εn given in Section 3.6. In fact, this action
shows that w(εh) = ±εi + mδ for some m ∈ Z. Then w−1(εi) = ±εh − mδ.

For k ∈ I, let w′ = wsk. For 1 ≤ i ≤ n and j ∈ I, Lemma 4.1.2 shows that there are
Nij(w) nodes coloured j in the ith row of T (w), and Nij(w

′) nodes coloured j in the ith
row of T (w′). Use of (4.3) gives (w(Λj)−Λj | εi) = Nij(w) and (w′(Λj)−Λj | εi) = Nij(w

′),
whereupon:

Nij(w
′) − Nij(w) = (w′(Λj) − w(Λj) | εi) = (w(sk(Λj) − Λj) | εi)

= −δjk(w(αk) | εi) = −δjk(αk |w
−1(εi))

= −δjk(αk | ± εh − mδ) = ∓δjk(αk | εh).

The presence of δjk here confirms that T (w′) and T (w) differ only by k-nodes. This
expression implies that (αk|εh) < 0 if and only if a k-node is adjacent and to the right of
the profile in the ith row of T (w), and (αk|εh) > 0 if and only if a k-node is adjacent and
to the left of the profile in the ith row of T (w). We will compare this with the special
case w = 1, for which w(εk) = εk and

Nhk(w
′) − Nhk(w) = Nhk(sk) − Nhk(1) = −(αk|εh).

The comparison shows that the nodes neighbouring the profile in the hth row of T (1) are
precisely those neighbouring the profile in the ith row of T (w). Moreover, we see that the
pair is reversed if and only if w(εh) = −εi. �

Corollary 4.2.2 If w ∈ W then T (w) is edge-balanced.

Proof: First note that T (1) is edge-balanced. Lemma 4.2.1 shows that the pairs which
straddle the profile of T (w) are a permutation of those which straddle the profile of T (1),
with some of those pairs reversed. It follows that T (w) is edge-balanced. �

Corollary 4.2.3 If g = A
(1)
` and w ∈ W then T (w) is colour-balanced.

Proof: Let w′ ∈ W and k ∈ I. By Corollary 4.2.2, the profile of T (w′) contains a
unique segment which bisects a pair k k−1 and a unique segment which bisects a pair
k+1 k . No other segment of the profile is adjacent to a k-node. Thus, since T (w′sk) is
obtained from T (w′) by a k-shift, only the two rows in which the profile of T (w′) bisects
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these configurations change. For k k−1 the profile shifts one position to the left, and for
k+1 k the profile shifts by one position to the right. Therefore, whether the two k-nodes
in question are to the right of the vertical axis, to the left of the vertical axis, or one is
on each side, the difference between the numbers of k-nodes to the left and right of the
vertical axis in T (w′sk) is precisely the same as that for T (w′).

Thus, after recursively constructing T (w) from the trivial T (1) using an expression
for w in terms of the generators s0, s1, . . . , s`, the resultant T (w) necessarily contains the
same number of k-nodes to the left and right of the vertical axis, for all k ∈ I. �

Corollary 4.2.4 If g = B
(1)
` , D

(1)
` or A

(2)
2`−1, and w ∈ W then T (w) is even-handed.

Proof: Let w′ ∈ W and first consider k ∈ {0, 1}. By Corollary 4.2.2, the profile of
T (w′) contains a unique segment which bisects a pair 1 0 and a unique segment which
bisects 2 1∼0 . No other segment of the profile is adjacent to a 0- or a 1-node. Thus,
since T (w′sk) is obtained from T (w′) by a k-shift, only the two rows in which the profile
of T (w′) bisects these configurations change. In each of these rows, a k-node is either
appended or removed. Thus the difference between the number of k-nodes in T (w′sk) and
T (w′) is either −2, 0, or 2. In particular, the difference is even. Thus, after recursively
constructing T (w) from the trivial T (1) using an expression for w in terms of the gen-
erators s0, s1, . . . , s`, the resultant T (w) necessarily contains an even number of k-nodes.

The argument for g = D
(1)
` and k ∈ {` − 1, `} is similar. �

Although we don’t use this fact, it is interesting to note that for g = D
(1)
` , the number

of reversals in the pairs that straddle the profile of each T (w) is necessarily even. To see
this, note that apart from the first row, each of the rows of T (w) in which the profile
bisects an unreversed pair k k−1 for 2 ≤ k ≤ ` − 1 contains as many complete 1 0

pairs as ` `−1 pairs. The same is true of that row in which the profile bisects the pair
1 0 , either reversed or unreversed. And, again apart from the first row, each of the rows
of T (w) in which the profile bisects a reversed pair k−1 k for 2 ≤ k ≤ ` − 1 contains
one more complete 1 0 pair than ` `−1 pairs. The same is true of that row in which
the profile bisects the pair ` `−1 , either reversed or unreversed. In the case of the first
row of T (w), the number of complete 1 0 pairs is one fewer than that which would be
obtained above. Let the pair 1 0 be bisected by the profile of T (w) such that 1 (resp. 0 )
is to the left. The even-handed requirement then dictates that there are necessarily an
odd (resp. even) number of complete 1 0 pairs in T (w). Then, if the number of reversed
bisected pairs k−1 k for 2 ≤ k ≤ `−1 is even, the comparison above between the number
of complete 1 0 and ` `−1 pairs, shows that there is also an odd (resp. even) number
of complete ` `−1 pairs in T (w). The even-handed requirement then dictates that the

` `−1 pair is bisected by the profile of T (w) such that ` (resp. `−1 ) is to the left. Thus
either both or neither of 0 1 and `−1 ` appear straddling the profile, which together
with the even number of reversed bisected pairs k−1 k for 2 ≤ k ≤ ` − 1, implies that
there are an even number of reversals altogether. Similarly, there are an even number
of reversals altogether if there is an odd number of reversed bisected pairs k−1 k for
2 ≤ k ≤ ` − 1, when exactly one of the reversed bisected pairs 0 1 and `−1 ` appears.
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This fact can be attributed to the influence of the Weyl-Coxeter group W of g on the
profile. In this g = D

(1)
` case, we have g = D` and W may be realised as the group of

signed permutations of ε1, ε2, . . . , ε`, with always an even number of sign changes.

4.3 Setting the depth charges

In this section, we prove that the charges of the nodes in the stretched coloured diagram
TΛ(w) defined in Section 2.6 yields the depth factor dΛ(w). Recall that Nij(w) and Pj(w)
are defined by (4.3), and that dij(w), dij(T ), nij(w), nij(T ) and dj(w) are also defined in
Section 4.1.

We will use the notation:

δ(i, 1 0 ) =

{
1 if in the ith row, the profile of T ′ bisects 1 0 or 0 1 ;
0 otherwise.

δ+(i, 1 0 ) =

{
1 if in the ith row, the profile of T ′ bisects 1 0 ;
0 otherwise.

Similar notation will be used for other pairs of nodes.

Lemma 4.3.1 Let T ′ and T be coloured diagrams with T obtained from T ′ by a k-shift,
where k ∈ I. Let 1 ≤ i ≤ n and set:

ϑ̂ik(T
′) = dik(T ) − dik(T

′)

and

Σ̂ik(T
′) =

∑̀

m=0

Amkdim(T ′).

Then, for g = A
(1)
` ,

ϑ̂ik(T
′) = −Σ̂ik(T

′) + δk0δ
+(i, 0 ` ) + (δk` − δk0)ni0(T

′); (4.10)

for g = C
(1)
` , A

(2)
2` or D

(2)
`+1,

ϑ̂ik(T
′) = −Σ̂ik(T

′) + δk0δ(i, 1 0 ); (4.11)

and for g = B
(1)
` , D

(1)
` or A

(2)
2`+1,

ϑ̂ik(T
′) = −Σ̂ik(T

′) +





1
2
δ(i, 1 0 ) + 1

2
δ(i, 2 1∼0 ) if k = 0;

1
2
δ(i, 1 0 ) + 1

2
δ(i, 2 1∼0 ) − δi1 if k = 1;

1
2
δi1 −

1
2
δ(i, 1 0 ) if k = 2;

0 if k ≥ 3.

(4.12)
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Proof: We first claim that (4.10), (4.11) and (4.12) each hold when the ith row of T ′

is empty. Note that here, the left side of each expression is non-zero only if the vertical
axis is adjacent to a k-node that has non-zero charge. Examination of the depth charged
grids with tied pairs and unordered pairs identified shows that for g = A

(1)
` , we have

ϑ̂n0(T
′) = 1; for g = C

(1)
` , A

(2)
2` or D

(2)
`+1, we have ϑ̂10(T

′) = 1; and for g = B
(1)
` , D

(1)
` or

A
(2)
2`+1, we have ϑ̂10(T

′) = ϑ̂20(T
′) = 1

2
and ϑ̂11(T

′) = −ϑ̂21(T
′) = −1

2
; with ϑ̂ik(T

′) = 0
in all other cases. Each of the final two terms on the right side of (4.10) is 0, whereas
δk0δ

+(i, 0 ` ) is non-zero only if k = 0 and i = n. Thus (4.10) holds here. The final term
on the right side of (4.11) is 0, whereas δk0δ(i, 1 0 ) is non-zero only if k = 0 and i = 1.
Thus (4.11) holds here. The first term on the right side of (4.12) is 0. The remaining
terms give 0 for k ≥ 2. For k ∈ {0, 1}, they are seen to be non-zero only if i ∈ {1, 2},
and moreover are in agreement with the above values for ϑ̂ik(T

′). The above claim is thus
verified.

We now claim that, whatever the length of the ith row of T ′, the values of the two sides
of each of (4.10), (4.11) and (4.12) change by the same amount when the profile is moved
to the next possible position on its right. This claim will be verified below by considering
many cases. Once verified, its iterative application shows that each of (4.10), (4.11) and
(4.12) holds for rows of positive length. Of course, the periodicity of the grids ensures
that the two sides of each of these expressions also change by the same amount when the
profile is moved to the next possible position on its left. Thereupon, we conclude that
(4.10), (4.11) and (4.12) hold in all cases.

This procedure parallels that adopted in the proof of Lemma 4.1.2 and we therefore
use a similar notation whereby we denote the change in Σ̂ik(T

′) by ∆Σ̂, and the change in
ϑ̂ik(T

′) by ∆ϑ̂. This means in particular that if the profile in the ith row has to its right
nj adjacent j-nodes, each of charge dj, then ∆Σ̂ = njAjkdj = dj∆Σ. In addition, if in the

ith row of the original T ′ the profile is not adjacent to any k-nodes then ϑ̂ik(T
′) = 0 since

the ith row of T and T ′ must coincide. On the other hand if it is adjacent to nk k-nodes
each of charge dk in the ith row then ϑ̂ik(T

′) = nkdk or −nkdk according to whether these
are to the right or to the left of the profile, since the ith row of T is necessarily formed by
adding or deleting the nk adjacent k-nodes to T ′. It follows that ∆ϑ̂ may be read off the
k-blocks rather easily as the profile of T ′ advances from left to right by first enumerating
ϑ̂ik(T

′) in accordance with the above rule, and then calculating differences in these values.
We now consider those cases for which k-blocks are defined. If the profile passes over

a j-node which is not in a k-block then ∆ϑ̂ = 0 since before and after the change, the
profile is not adjacent to a k-node. To see that the right sides of (4.10), (4.11) and (4.12)
are similarly unchanged, first note that Ajk = 0 implies that ∆Σ = 0. The claim then
holds for (4.11) since when k = 0, each 1 0 is in a k-block. For (4.10), it holds because
when k = 0, 0 ` is in a k-block; and when k ∈ {0, `}, each 0-node is within a k-block.
For (4.12), it holds because when k ∈ {0, 1, 2}, each 1 0 and each 2 1∼0 is in a k-block.

For each of the k-blocks listed in Tables 2 and 3, we now examine the changes when
the profile passes over a j-node that is in the k-block. For convenience, hereafter, we
consider the charge of the leftmost node of a k-block to be r. The other charges are then
determined. The only changes in charge occur between 0 and `, between 0 and 1, and
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between the unordered pair 1 ∼ 0 and 2. This is the origin of the terms involving these
nodes in (4.10)-(4.12). In particular, if the k-block contains no 0-node, then each of its
charges is r. In such a case there are no variations of the factors appearing in (4.10)-
(4.12) other than θ̂ik(T

′) and Σ̂ik(T
′), as the profile of T ′ advances across the k-block. In

addition we have ∆Σ̂ = r∆Σ and ∆ϑ̂ = r∆ϑ. Since ∆ϑ = −∆Σ, as shown in the proof of
Lemma 4.1.2, we immediately have ∆ϑ̂ = −∆Σ̂, as required. This constancy of r over a
k-block covers all cases other than those associated with the left hand end of the Dynkin
diagram of g where the vertex 0 appears.

For cases 1a and 1b, for example, if k /∈ {0, 1, `}. There are three nodes to pass over,
all of depth charge r. These give the values (r,−2r, r) for ∆ϑ̂ and the values (−r, 2r,−r)
for ∆Σ̂. The above claim thus holds here.

The instances k ∈ {0, `} of Cases 1a and 1b only arise if g = A
(1)
` , and then Case

1b does not arise. For g = A
(1)
` , only (4.10) applies. For k = 1, each of the charges in

the k-block is r, whereupon the previous argument deals with this case. For k = 0, the
charges read (r, r, r+1) from left to right. Then the three nodes give the values (r,−2r, r)
for ∆ϑ̂ and the values (−r, 2r,−r − 1) for ∆Σ̂. Since δ+(i, 0 ` ) increases by (0, 1,−1)
and ni0(T

′) by (0, 1, 0) as the profile passes over the same three nodes, the above claim is
verified here. For k = `, the charges read (r, r+1, r+1) from left to right. Then the three
nodes give the values (r + 1,−2r − 2, r + 1) for ∆ϑ̂ and the values (−r, 2r + 2,−r − 1)
for ∆Σ̂. Since ni0(T

′) changes by (1, 0, 0) as the profile passes over the same three nodes,

the above claim is verified here. This deals with all cases that arise for g = A
(1)
` .

Hereafter, we deal only with g 6= A
(1)
` , for which we anticipate from the statement of

Lemma 4.3.1 that ∆ϑ̂ = −∆Σ̂, except in the case k = 0 for g = C
(1)
` , A

(2)
2` or D

(2)
`+1, and

the cases k = 0, 1 or 2 for g = g = B
(1)
` , D

(1)
` or A

(2)
2`+1. Note that Cases 2a and 5a only

arise for g = D
(2)
`+1, that Cases 3a and 6a only arise for g = C

(1)
` and A

(2)
2` , and that Cases

4a, 7a and 7b only arise for g = B
(1)
` , D

(1)
` or A

(2)
2`+1. All the other Cases 2b, 3b, 4b, 5b,

6b, 7c and 7d involve the right hand end of the Dynkin diagrams so that the charges in
the k-block are all r and they involve no 0-nodes.

For Case 2a, we have k = 1 and the charges read (r, r, r + 1, r + 2, r + 2) left to right.
The five moves give (r,−2r, 2r+2,−2r−4, r+2) for ∆ϑ̂ and (−r, 2r,−2r−2, 2r+4,−r−2)
for ∆Σ̂. Since k = 1 this gives ∆ϑ̂ = −∆Σ̂, as required by (4.11).

For Case 2b, we have k = ` − 1 and the charges in the k-block are all r. The five
moves give (r,−2r, 2r,−2r, r) for ∆ϑ̂ and (−r, 2r,−2r, 2r,−r) for ∆Σ̂.

For Case 3a, we have k = 1 and the charges read (r, r, r + 1
2
, r + 1

2
, r + 1, r + 1)

left to right. The five possible moves give (r,−2r, 2r + 1,−2r − 2, r + 1) for ∆ϑ̂ and
(−r, 2r,−2r − 1, 2r + 2,−r − 1) for ∆Σ̂.

For Case 3b, we have k = ` − 1 and the charges in the k-block are all r. The five
moves give (r,−2r, 2r,−2r, r) for ∆ϑ̂ and (−r, 2r,−2r, 2r,−r) for ∆Σ̂.

For Case 4a, we have k = 2 and the charges read (r, r, r + 1
2
, r + 1

2
, r + 1, r + 1) left to

right. Noting that the order of the pair 1 0 is irrelevant here, the six possible moves give
(r,−2r, r, r +1,−2r− 2, r +1) for ∆ϑ̂ and (−r, 2r,−r− 1

2
,−r− 1

2
, 2r +2,−r− 1) for ∆Σ̂.

Since δ(i, 1 0 ) increases by (0, 0, 1,−1, 0, 0) for the same six moves, the claim holds here
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for (4.12).
For Case 4b, we have k = `− 2 and the charges in the k-block are all r. Again noting

the irrelevance of the unordered pair, the six moves give (r,−2r, r, r,−2r, r) for ∆ϑ̂ and
(−r, 2r,−r,−r, 2r,−r) for ∆Σ̂.

For Case 5a, we have k = 0 and the charges read (r, r + 1, r + 2) left to right. The
three moves give (r + 1,−2r − 2, r + 1) for ∆ϑ̂ and (−r, 2r + 2,−r − 2) for ∆Σ̂. Since
δ(i, 1 0 ) increases by (1, 0,−1) for the same three moves, the claim holds here for (4.11).

For Case 5b, we have k = ` and the charges in the k-block are all r. The three moves
give (r,−2r, r) for ∆ϑ̂ and (−r, 2r, r) for ∆Σ̂.

For Case 6a, we have k = 0 and the charges read (r, r + 1
2
, r + 1

2
, r + 1) left to right.

The three moves give (2r+1,−4r−2, 2r+1) for ∆ϑ̂ and (−2r, 4r+2,−2r) for ∆Σ̂. Since
δ(i, 1 0 ) increases by (1, 0,−1) for the same three moves, the claim holds here for (4.11).

For Case 6b, we have k = ` and the charges in the k-block are all r. The three moves
give (2r,−4r, 2r) for ∆ϑ̂ and (−2r, 4r, 2r) for ∆Σ̂.

For Case 7a, we have k = 1 and the charges read (r, r + 1
2
, r + 1

2
, r + 1) left to right.

The four moves give (r+ 1
2
,−2r−1, 0, r+ 1

2
) or (r+ 1

2
, 0,−2r−1, r+ 1

2
) for ∆ϑ̂, according

to the central nodes being ordered 1 ∼ 0 or 0 ∼ 1, respectively. The four moves also give
(−r, 2r+1, 0,−r−1) and (−r, 0, 2r+1,−r−1) for ∆Σ̂, in the corresponding cases. Since
δ(i, 1 0 ) increases by (0, 1,−1, 0) and 2 1∼0 increases by (1,−1, 1,−1) for the same four
moves, the claim holds here for (4.12).

For Case 7b, we have k = 0. The details of this case read exactly as for Case 7a,
except for the interchange of values of the cases 1 ∼ 0 and 0 ∼ 1.

For Case 7c, we have k = ` and the charges in the k-block are all r. The four moves give
(r,−2r, 0, r) or (r, 0,−2r, r) for ∆ϑ̂ and (−r, 2r, 0,−r) or (−r, 0, 2r,−r) for ∆Σ̂, according
to the central nodes being ordered ` ∼ ` − 1 or ` − 1 ∼ `, respectively.

For Case 7d, we have k = ` − 1. The details of this case read exactly as for Case 7c,
except for the interchange of the cases ` ∼ ` − 1 and ` − 1 ∼ `.

This completes the verification of the claim in the cases for which k-blocks are defined.
The cases for which there are no k-blocks are tabulated in Tables 4, 5, and 6. We tackle
each of them in turn.

For g = A
(1)
1 , each row comprises a sequence of 1r 0r blocks, with r increasing by 1 as

we pass from one block to that on its right. First consider k = 1 = `. As the profile passes
over the two nodes, we obtain the values (−2r, 2r + 1) for ∆ϑ̂ and the values (2r,−2r)
for ∆Σ̂. Since ni0(T

′) increases by (0, 1) as the profile passes over the same two nodes,
both sides of (4.10) change by the same amount, and the claim is verified in this case. For
k = 0, we obtain the values (2r − 1,−2r) for ∆ϑ̂ and the values (−2r, 2r) for ∆Σ̂, as the
profile passes over the two nodes. Then, since ni0(T

′) increases by (0, 1) and δ+(i, 0 ` )
increases by (−1, 1), as the profile passes over the same two nodes, again both sides of
(4.10) change by the same amount, and the claim is verified here.

For g = A
(2)
2 , the single row comprises a sequence of 0r 0r 1r+1/2 blocks, with r increas-

ing by 1 as we pass from one block to that on its right. First consider k = 1 = `. As the
profile passes between the three valid positions, we obtain the values (2r,−2r− 1) for ∆ϑ̂
and the values (−2r, 2r + 1) for ∆Σ̂. For k = 0, we obtain the values (−4r, 4r + 2) for
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∆ϑ̂ and the values (4r,−4r − 2) for ∆Σ̂. Since δ(i, 1 0 ) = 1 in all cases, the claim holds
here for (4.11) and k ∈ {0, 1} as required.

For g = D
(2)
3 , each row comprises a sequence of 0r−1 1r 2r 1r blocks, with r increasing by

2 as we pass from one block to that on its right. With k = 1, as we pass over the four nodes,
we obtain the values (2r − 2,−2r, 2r,−2r) for ∆ϑ̂ and the values (−2r + 2, 2r,−2r, 2r)
for ∆Σ̂.

For g = A
(2)
4 , each row comprises a sequence of 0r−1/2 0r−1/2 1r 2r 1r blocks, with r

increasing by 1 as we pass from one block to that on its right. With k = 1, as we pass
between the five valid positions, we obtain the values (2r − 1,−2r, 2r,−2r) for ∆ϑ̂ and
the values (−2r + 1, 2r,−2r, 2r) for ∆Σ̂.

For g = C
(1)
2 , each row comprises a sequence of 0r−1/2 0r−1/2 1r 2r 2r 1r blocks, with r

increasing by 1 as we pass from one block to that on its right. Here k = 1 and the details
of this case are then as for the g = A

(2)
4 case above.

For g = B
(1)
3 , each row comprises a sequence of 1r−1/2 0r−1/2 2r 3r 2r blocks, with r

increasing by 1 as we pass from one block to that on its right. Here k = 2 and the order
of the pair 1 0 is irrelevant. As we pass between the six valid positions, we obtain the
values (r − 1, r,−2r, 2r,−2r) for ∆ϑ̂ and the values (−r + 1

2
,−r + 1

2
, 2r,−2r, 2r) for ∆Σ̂.

Then, since δ(i, 1 0 ) changes by (1,−1, 0, 0, 0), the claim holds here for (4.12).

For g = A
(2)
5 , each row comprises a sequence of 1r−1/2 0r−1/2 2r 3r 3r 2r blocks, with r

increasing by 1 as we pass from one block to that on its right. Once again k = 2 and the
details of this case are then as for the g = B

(1)
3 case above.

For g = D
(1)
4 , each row comprises a sequence of 1r−1/2 0r−1/2 2r 4r 3r 2r blocks, with r

increasing by 1 as we pass from one block to that on its right. Here k = 2 and the order
of each pair 1 0 and 4 3 is irrelevant. As we pass over the six nodes, we obtain the
values (r − 1, r,−2r, r, r,−2r) for ∆ϑ̂ and the values (−r + 1

2
,−r + 1

2
, 2r,−r,−r, 2r) for

∆Σ̂. Then, since δ(i, 1 0 ) changes by (1,−1, 0, 0, 0, 0), the claim holds here for (4.12).
This completes the verification of the above claim in all cases. To complete the proof,

it remains to directly verify (4.12) where a row has been augmented. This occurs only if

i = 1 and either g = B
(1)
` , D

(1)
` or A

(2)
2`+1, or if i = ` and g = D

(1)
` . In the former case,

ϑ̂ik(T
′) takes the values (− 1

2
, 1

2
, 0) for k = 0, k = 1 and k ≥ 2 respectively Since d10 = 1

2
,

d11 = −1
2

and d1k = 0 for k ≥ 2, and δ(i, 1 0 ) = 1, it follows that (4.12) holds in this
case. In the latter case, both sides of (4.12) are immediately seen to be 0. �

Lemma 4.3.2 If w ∈ W then Pj(w) = dj(w) for each j ∈ I.

Proof: Let w = w′sk so that T = T (w) is obtained from T ′ = T (w′) by a k-shift. Let
j ∈ I. Since T and T ′ differ by k-nodes, we have dij(w) = dij(w

′) for j 6= k and 1 ≤ i ≤ n.
Summing these results over i for 1 ≤ i ≤ n gives dj(w) = dj(w

′) for j ∈ I\{k}. For the
j = k case, we claim that:

dk(w) = dk(w
′) + δk0 −

∑̀

m=0

Amkdm(w′). (4.13)
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Assuming the veracity of this claim, (4.6) shows that dj(w) and Pj(w) satisfy identical
recurrence relations. Since there exists an expression w = si1si2 · · · sit in terms of the
generators of g, and Pj(1) = dj(1) = 0 for j ∈ I, it follows that Pj(w) = dj(w) for all
j ∈ I.

We now establish the above claim using the results of Lemma 4.3.1. In each of the
cases (4.10), (4.11) and (4.12), we perform a sum over i for 1 ≤ i ≤ n. Since ϑ̂ik(T

′) =
dik(T ) − dik(T

′), each left side yields dk(T ) − dk(T
′) under this summation.

For g = C
(1)
` , A

(2)
2` or D

(2)
`+1, the right side of (4.11) yields δk0 −

∑`

m=0 Amkdm(T ′)
under this summation, after noting that, by Lemma 4.2.2, δ(i, 1 0 ) = 1 for precisely one
value of i, and 0 otherwise. The claim (4.13) now follows because dj(T

′) = dj(w
′) and

dj(T ) = dj(w) for j ∈ I.

For g = B
(1)
` , D

(1)
` or A

(2)
2`+1, the claim (4.13) follows from (4.12) and Lemma 4.2.2 in

a similar way.
For g = A

(1)
` , (4.10) and Lemma 4.2.2 similarly yield:

dk(w) = dk(w
′) + δk0 + (δk` − δk0)

n∑

i=1

ni0(w
′) −

∑̀

m=0

Amkdm(w′). (4.14)

Corollary 4.2.3 states that T (w′) is colour-balanced, whereupon
∑n

i=1 ni0(w
′) = 0 in

particular. The claim (4.13) then follows from (4.14). �

Theorem 4.3.3 Let w ∈ W and Λ ∈ h∗. Let dΛ(w) =
∑`

j=0 mj(Λ)dj(w) and let

λΛ(w)i =
∑`

j=0 mj(Λ)nij(w) for 1 ≤ i ≤ n. Then:

w(Λ) − Λ =

n∑

i=1

λΛ(w)iεi + dΛ(w)δ.

Proof: Since Nij(w) = nij(w) by Theorem 4.1.3, and Pj(w) = dj(w) by Lemma 4.3.2,
this follows directly from (4.4). �

On examining the definition of T Λ in Section 2.6, this proves the result (2.8).

4.4 Recursive generation

In this section, we show that if w, w′ ∈ W with w = w′sk, then T (w) differs from T (w′)
as described in Section 2.8.

Lemma 4.4.1 Let w′ ∈ W and w = w′sk for k ∈ I. Then either T (w) � T (w′) or
T (w) ≺ T (w′). Moreover, if `(w) = `(w′) + 1 then d(w) ≥ d(w′), and if d(w) = d(w′)
then T (w) ≺ T (w′). On the other hand, if `(w) = `(w′) − 1 then d(w) ≤ d(w′), and if
d(w) = d(w′) then T (w) � T (w′).
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Proof: Let j ∈ I. Using the definition (4.3) for both w, w′ ∈ W , we obtain:

n∑

i=1

(Nij(w) − Nij(w
′))εi − (Pj(w) − Pj(w

′))δ = w(Λj) − w′(Λj)

= w′(sk(Λj) − Λj) = −δjkw(αk).

Since w′(αk) ∈ ∆re, Theorem 3.3.1 shows that w′(αk) = −mδ + γ with m ∈ Z and
γ ∈ ∆0∪∆1. On the one hand, this gives Pj(w)−Pj(w

′) = −δjkm, so that dj(w)−dj(w
′) =

−δjkm by Lemma 4.3.2, which when summed over j ∈ I gives d(w) − d(w′) = −m. On
the other hand,

∑n
i=1(Nij(w) − Nij(w

′))εi = −δjkγ, which when summed over j ∈ I,
gives

∑n

i=1(λi(w) − λi(w
′))εi = −γ via Theorem 4.1.4. Theorem 3.3.1 shows that γ ∈

{±(εp − εq),±(εp + εq),±2εp,±εq|1 ≤ p, q ≤ n; p < q}, whereby one of the following holds:

• λi(w) − λi(w
′) = ∓(δip − δiq),

• λi(w) − λi(w
′) = ∓(δip + δiq),

• λi(w) − λi(w
′) = ∓2δip,

• λi(w) − λi(w
′) = ∓δip,

where 1 ≤ p, q ≤ n and, in the first two cases, p < q. Since T (w) is obtained from
T (w′) by a k-shift, this shows that either T (w) ≺ T (w′) (the ‘−’ case of ‘∓’ above) or
T (w) � T (w′) (the ‘+’ case of ‘∓’ above)

Now if `(w) > `(w′) then w′(αk) ∈ ∆+
re. Theorem 3.3.1 then shows that w′(αk) =

−mδ + γ with m ≤ 0 and if m = 0 then γ ∈ ∆+
0 . This latter case corresponds to the ‘−’

case of ‘∓’ in the bulleted items above. Then T (w) ≺ T (w′).
Similarly, if `(w) < `(w′) then w′(αk) = −mδ + γ ∈ ∆−

re. with m ≥ 0 and if m = 0
then γ ∈ ∆−

0 . This latter case corresponds to the ‘+’ case of ‘∓’ in the bulleted items
above. Then T (w) � T (w′). �

The depth d(T ) of a coloured diagram T is defined to be the signed sum of the depth
charges in T with, as before, those to the left side of the vertical axis providing a negative
contribution. This may be used to define a total order on the set of coloured diagrams.
Let T and T ′ be coloured diagrams with corresponding generalised partitions λ and λ′.
We first define λ′ > λ if there exists h such that λ′

h > λh and λ′
i = λi for 1 ≤ i < h. We

then define T ′ < T if either d(T ′) < d(T ), or both d(T ′) = d(T ) and λ′ > λ. It is easily
verified that this induces a total order on coloured diagrams.

Lemma 4.4.2 Let w, w′ ∈ W . If T (w) = T (w′) then w = w′.

Proof: Let w = si1si2 · · · sit. Then T (1) < T (si1) < T (si1si2) < · · · < T (w) by Lemma
4.4.1. In particular, if w 6= 1 then T (w) 6= T (1).

Since T (w) = T (w′), the recursive construction process implies that T (wu) = T (w′u)
for all u ∈ W . In particular, if u = w−1, it follows that T (1) = T (w′w−1) and therefore,
by the previous paragraph, that w′w−1 = 1. Then w′ = w as required. �
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4.5 Proving the characterisation

To characterise the set {λ(w)|w ∈ W}, we use the structure of the grids. To this end,
define:

∆ =





−1 if g = B
(1)
` , D

(1)
` , A

(2)
2`−1;

0 if g = D
(2)
`+1;

1 if g = C
(1)
` , A

(2)
2` .

(4.15)

Lemma 4.5.1 Let the generalised partition λ be superposed on the grid for a particular
g.

Let g ∈ {A
(1)
` , C

(1)
` , A

(2)
2` , D

(2)
`+1}. If the unreversed pair k+1 k straddles the profile of

λ in the ith row then:
λi − i ≡ −(k + 1) (mod h̃∨), (4.16)

and if the reversed pair k k+1 straddles the profile of λ in the ith row then:

λi − i ≡ k + ∆ (mod h̃∨) (4.17)

(in the g = A
(1)
` case, we identify 0-nodes with n-nodes).

For g = {B
(1)
` , D

(1)
` , A

(2)
2`−1}, the same statement holds if for k = 1, the pair k+1 k

is interpreted as either 2 1 or 2 0 , and the pair k k+1 is interpreted as either 1 2 or
0 2 ; and if for k = ` − 2 and g = D

(1)
` , the pair k+1 k is interpreted as either `−1 `−2

or ` `−2 , and the pair k k+1 is interpreted as either `−2 `−1 or `−2 ` .
The above statement also holds for associated pairs, whether they are regarded as re-

versed or unreversed.

Proof: These results follow immediately from the structure of the grids given in Section
2.2. �

In what follows, we will use without comment, the extended interpretations of Lemma
4.5.1 that relate to the g = {B

(1)
` , D

(1)
` , A

(2)
2`−1} cases.

Theorem 4.5.2 Let the generalised partition λ be edge-balanced, and if g = A
(1)
` then

additionally
∑n

i=1 λi = 0. Then there exists a unique w ∈ W such that λ = λ(w).

Proof: Let T be the coloured diagram obtained by superposing λ on the appropriate
grid. Where there are unordered pairs, the order of each of those bisected by the profile
of T is chosen so that T is even-handed, with augmented pairs added as appropriate (see
Section 2.3). This defines T uniquely. Below, we seek w ∈ W such that T = T (w). The
even-handed requirement above ensures that we don’t fall foul of Corollary 4.2.4. If we
can find w ∈ W such that T = T (w) then Lemma 4.4.2 shows w is unique. It would then
follow that λ = λ(w) for unique w.

If λ is the zero partition then w = 1 uniquely. So assume hereafter that λ is not zero.
In the first part of this proof, we will construct a coloured diagram T ′ by emulating the
action of sk on T for a suitable k. We let λ′ be the generalised partition corresponding to
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T ′. In each case, it will be verified that T ′ < T , where for the purpose of this proof, we
define T ′ < T if the list of the absolute values of the parts of λ′ written in non-increasing
order lexicographically precedes the corresponding list for λ.

Let p = max{|λi|}
n
i=1, so that p is the largest absolute part in λ. We now examine the

set of node-pairs that are bisected by the profile of λ in rows of length ±p. We define the
set E+

U to comprise all r with 1 ≤ r ≤ n such that the unreversed pair r r−1 is bisected
by the profile in a row of length +p, and the set E−

R to comprise all r with 1 ≤ r ≤ n such
that the reversed pair r−1 r is bisected by the profile in a row of length −p. Similarly,
we define the set E+

R to comprise all r with 0 ≤ r ≤ n − 1 such that the reversed pair
r r+1 is bisected by the profile in a row of length +p, and the set E−

U to comprise all r
with 0 ≤ r ≤ n − 1 such that the unreversed pair r+1 r is bisected by the profile in a
row of length −p.

In the case of g = A
(1)
` , we use the above definitions after identifying an n-node with

a 0-node. Note that at least one of the above four sets is non-empty, and if g = A
(1)
` then

E±
R = ∅.

If g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1, and ` ∈ E−

R ∪ E+
U then take k = `. If g = C

(1)
` ,

A
(2)
2` or D

(2)
`+1, and 0 ∈ E−

U ∪ E+
R then take k = 0. In each of these cases, we form T ′ from

T by a single k-shift. We then immediately see that T ′ < T as required.
Otherwise, if g 6= A

(1)
` , we select k such that 1 ≤ k ≤ `−1 for which either k ∈ E−

R ∪E+
U

but k + 1 /∈ E−
R ∪ E+

U , or k ∈ E−
U ∪ E+

R but k − 1 /∈ E−
U ∪ E+

R . Such k exists because one

of the four sets is non-empty, ` /∈ E−
R ∪ E+

U , 0 /∈ E−
U ∪ E+

R . For the g = A
(1)
` case, we

select k such that 1 ≤ k ≤ n for which either k ∈ E+
U but k + 1 /∈ E+

U , or k ∈ E−
U but

k − 1 /∈ E−
U . Such k exists because either E−

U or E+
U is non empty and

∑n
i=1 λi = 0 implies

that E−
U 6= {1, 2, . . . , n} 6= E+

U .
We now obtain T ′ by performing a k-shift on T . To see that T ′ < T , let j be the

row in which the profile bisects the identified pair. Then |λj| = p and |λ′
j| = p − 1.

Since λ is edge-balanced, there exists h with h 6= j such that the profile in the hth row
is adjacent to a k-node. The choice of p implies that |λh| ≤ p. If |λh| ≤ p − 2 then
|λ′

h| ≤ p− 1, whereupon we immediately have T ′ < T as required. It remains to consider
|λh| ∈ {p, p − 1}.

To proceed, we consider separately the alternative ways of originally selecting k. For
k ∈ E−

R ∪E+
U and k +1 /∈ E−

R ∪E+
U , the profile bisects the pairs k k−1 and k+1 k in rows

j and h respectively, with either pair reversed or unreversed. We claim that if λh ≥ 0
then the reversed pair k k+1 is bisected by the profile in the hth row, and if λh ≤ 0 then
the unreversed pair k+1 k is bisected by the profile in the hth row. For |λh| = p, this
claim follows immediately because k + 1 /∈ E−

R ∪ E+
U . For λh = p − 1, if the unreversed

pair k+1 k is bisected by the profile in the hth row then (4.16) gives h ≡ p+k (mod h̃∨).
For λh = −(p − 1), if the reversed pair k k+1 is bisected by the profile in the hth
row then (4.17) gives h ≡ −p − k − ∆ + 1 (mod h̃∨). Now if k ∈ E+

U then (4.16) gives
j ≡ p+k (mod h̃∨), and if k ∈ E−

R then (4.17) gives j ≡ −p−k−∆+1 (mod h̃∨). Comparing
these results for j and h shows that either j ≡ h (mod h̃∨) or j + h + ∆− 1 ≡ 0 (mod h̃∨).
However, since 1 ≤ j, h ≤ n with j 6= k, and using the values of h̃∨ given in (2.4), we see
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that neither of these can hold. Thus the above claim is established. We now immediately
see that |λ′

h| = |λh| − 1, implying T ′ < T as required.
For k ∈ E−

U ∪E+
R and k− 1 /∈ E−

U ∪E+
R , the profile bisects the pairs k+1 k and k k−1

in rows j and h respectively, with either pair reversed or unreversed. The proof then
proceeds in a similar manner to the previous case.

Having obtained T (1) = T ′ from T as above, we iterate this process to produce T (2),
T (3) etc.. If the corresponding partitions are denoted λ(1) = λ, λ(2), λ(3), etc., then
λ(1) > λ(2) > λ(3) > · · · . The nature of the ordering, together with the fact that it is
bounded below by the trivial partition, implies that the process must halt after a finite
number of steps, say N , having produced the trivial coloured diagram T (N) = T (1).

The above iteration produces a value k at each step. Moreover, if there exists w ′

such that T ′ = T (w′) then comparison of the above construction with that of Section 2.4
ensures that T = T (w′sk). Thus, if the sequence of ks produced by the above iteration is
k1, k2, . . . , kN , then T = T (w) where w = skN

skN−1
· · · s2s1. �

5 Coloured diagrams for coset representatives

5.1 Minimal coset representatives

With Ws defined by (2.9), a mirror image of [7, Prop. 1.10(c)] proves:

Lemma 5.1.1 For each w ∈ W , there exists a unique u ∈ Ws and a unique v ∈ W such
that w = vu. Moreover, `(w) = `(v) + `(u).

This result implies that Ws is a set of right coset representatives of W with respect to W .
It also implies that if u ∈ Ws, then u is the unique element of smallest length in the coset
Wu.

The following result is a minor extension of [13, Lemma 4.3].

Lemma 5.1.2 Let w′ ∈ Ws and w = w′sk. If `(w) = `(w′) − 1 then w ∈ Ws. If
`(w) = `(w′) + 1 then w ∈ Ws if and only if w′(αk) /∈ ∆+

0 . Moreover, if w /∈ Ws then
there exists j ∈ I such that w′(αk) = αj and w = sjw

′.

Proof: First consider `(w) = `(w′) − 1. For all i ∈ I, we have `(siw
′) > `(w′) > `(w′sk).

Since `(siw
′sk) = `(siw

′) ± 1, it follows that `(siw
′sk) > `(w′sk). Thus, by definition,

w′sk ∈ Ws.
Now consider `(w) = `(w′) + 1 and let β = w′(αk). Note then that β ∈ ∆+

re. Assume
that w ∈ Ws, and let v ∈ W . By Lemma 5.1.1, `(vw) = `(v) + `(w) and `(vw′) =
`(v) + `(w′). Therefore, `(vw′sk) = `(vw′) + 1. It follows that vw′(αk) ∈ ∆+

re so that
v(β) ∈ ∆+

re. Now if β ∈ ∆+
0 , then on setting v = sβ ∈ W , we obtain v(β) ∈ ∆−

0 , so that
v(β) /∈ ∆+

re. Therefore, necessarily β /∈ ∆+
0 .

Now assume that w /∈ Ws. By Lemma 5.1.1, there exists u ∈ Ws and v ∈ W such
that w = vu with `(w) = `(v) + `(u), from which follows `(w′) − `(v) = `(u) − 1. Now
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w′sk = w = vu implies that v−1w′ = usk. Since v−1 ∈ W and `(v−1) = `(v), we
obtain `(w′) + `(v) = `(u) ± 1. Together with the above expression, this implies that
`(v) ∈ {0, 1}, and thus since v 6= 1, we have v = sj for some j ∈ I. We also obtain
u = sjw

′sk with `(u) = `(w′). Then `(sjw
′) > `(w′) = `(sjw

′sk), which implies that
sj(β) = sjw

′(αk) ∈ ∆−
re. Since β ∈ ∆+

re and αj is the only root which changes sign under
the action of sj, it follows that β = αj ∈ ∆+

0 as required. Also w′sαk
w′−1 = sw′(αk) = sαj

,
which gives w′sk = sjw

′. The lemma then follows. �

Lemma 5.1.3 Let w′ ∈ Ws, w = w′sk and `(w) = `(w′) + 1. Set µ = w(ρ) − ρ and
ν = w′(ρ)− ρ. If w /∈ Ws then µ− ν ∈ ∆−

0 . If w ∈ Ws then µ− ν = −mδ + γ with m > 0
and γ ∈ ∆+

0 ∪ ∆+
1 .

Proof: µ − ν = w(ρ) − w′(ρ) = w′(sk(ρ) − ρ) = −w′(αk).
In the case that w /∈ Ws, Lemma 5.1.2 implies that w′(αk) ∈ ∆+

0 whereupon µ−ν ∈ ∆−
0

as required. (Lemma 5.1.2 also implies that µ − ν = −αj for some j ∈ I.)
Now consider w ∈ Ws. Since `(w) = `(w′) + 1, we have w′(αk) ∈ ∆+

re. Lemma 5.1.2
implies that w′(αk) /∈ ∆+

0 , whereupon Theorem 3.3.1 implies that w′(αk) = mδ − γ with
m > 0 and γ ∈ ∆0 ∪ ∆1. Writing w′−1(γ) = mδ − αk and noting that m > 0, Theorem
3.3.1 shows that w′−1(γ) ∈ ∆+

re. Since γ ∈ ∆0 ∪ ∆1, we have γ =
∑`

i=1 riαi for ri ∈ Z

with either all ri non-negative, or all ri non-positive. But the definition (2.9) implies that
`(siw

′) > `(w′) for i ∈ I, whereupon `(w′−1) > `(w′) and therefore w′−1(αi) ∈ ∆+
re. If

follows that the ri are all non-negative and therefore γ ∈ ∆+
0 ∪ ∆+

1 . �

Corollary 5.1.4 Let t ≥ 0, w′ ∈ W
(t)
s , k ∈ I, and set w = w′sk. Then:

n∑

i=1

(λ(w)i − λ(w′)i)εi ∈

{
∆+

0 ∪ ∆+
1 if w ∈ W

(t+1)
s ;

∆−
0 ∪ ∆−

1 if w /∈ W
(t+1)
s .

(5.1)

Proof: Let µ = w(ρ) − ρ, ν = w′(ρ) − ρ and µ − ν = −mδ + γ for some m ∈ Z and
γ ∈ h∗

0. Then (4.2) gives:

n∑

i=1

(λ(w)i − λ(w′)i)εi = µ − ν = γ.

For w ∈ W
(t+1)
s , Lemma 5.1.3 shows that γ ∈ ∆+

0 ∪ ∆+
1 .

Now consider w /∈ W
(t+1)
s . If `(w) = `(w′) + 1 then Lemma 5.1.3 shows that γ ∈ ∆−

0 .

On the other hand, if `(w) = `(w′) − 1 then Lemma 5.1.2 shows that w ∈ W
(t−1)
s .

Interchanging the roles of w and w′ in the preceding paragraph then shows that −γ =
ν − µ ∈ ∆+

0 ∪ ∆+
1 , and thus γ ∈ ∆−

0 ∪ ∆−
1 . The corollary then follows. �

Corollary 5.1.5 Let t ≥ 0, w′ ∈ W
(t)
s , k ∈ I, and set w = w′sk. Then w ∈ W

(t+1)
s if and

only if T (w) � T (w′). Moreover, we obtain the full set W
(t+1)
s by selecting all w′sk with

w′ ∈ W
(t)
s and k ∈ I, for which T (w′sk) � T (w′).
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Proof: Set γ =
∑n

i=1(λ(w)i − λ(w′)i)εi. If w ∈ W
(t+1)
s then γ ∈ ∆+

0 ∪ ∆+
1 by Corollary

5.1.4. Theorem 3.3.1 then shows that either γ = εi − εj with i < j, γ = εi + εj, γ = εi or
γ = 2εi, where 1 ≤ i, j ≤ n in each case. This shows that T (w) � T (w′). On the other

hand, if w /∈ W
(t+1)
s then a similar line of reasoning shows that T (w) ≺ T (w′).

The second part follows because if w ∈ W
(t+1)
s then there exists k and w′ with `(w′) = t,

such that w = w′sk. Lemma 5.1.2 then implies that w′ ∈ W
(t)
s . �

This result enables Ws to be constructed recursively by length as described in Section 2.9.

5.2 The shape of things to come

Lemma 5.2.1 If w ∈ W and λ ∈ P + then w ∈ Ws if and only if w(λ + ρ) − ρ ∈ P
+
.

Proof: Let w ∈ W , λ ∈ P + and for i ∈ I set mi = (w(λ + ρ) − ρ|α∨
i ) so that

w(λ + ρ) − ρ =
∑

i∈I miΛi. Note that mi ∈ Z. We now calculate:

mi = (w(λ + ρ) − ρ|α∨
i )

= (w(λ + ρ)|α∨
i ) − 1

= (2/(αi|αi))(λ + ρ|w−1(αi)) − 1

= (2/(αi|αi))
∑

j∈I

rj(λ + ρ|αj) − 1

where the rj ∈ Z are defined by w−1(αi) =
∑

j∈I rjαj. Since λ ∈ P +, we have 2(λ +
ρ|αj)/(αj|αj) ≥ 1 for all j ∈ I.

If w ∈ Ws, the definition (2.9) implies that `(w−1si) > `(w−1) whereupon w−1(αi) ∈
∆+

re. Thus rj ∈ Z≥0 for each j ∈ I and rk > 0 for at least one k ∈ I. Thereupon, mi > −1.

Since mi ∈ Z, it now follows that mi ≥ 0 for all i ∈ I so that w(λ + ρ) − ρ ∈ P
+
.

On the other hand, if w /∈ Ws, the definition (2.9) implies that there exists at least
one i ∈ I such that `(w−1si) < `(w−1) whereupon w−1(αi) ∈ ∆−

re. Then rj ∈ Z≤0 for
each j ∈ I and rk < 0 for at least one k ∈ I. It now follows that mi < −1 and therefore

w(λ + ρ) − ρ /∈ P
+
. �

Corollary 5.2.2 Let w ∈ W and λ = λ(w). Then w ∈ Ws if and only if

λ(w)1 ≥ λ(w)2 ≥ · · · ≥ λ(w)n,

and

•
∑n

i=1 λ(w)i = 0 if g = A
(1)
` ;

• λ(w)` ≥ 0 if g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1;

• λ(w)`−1 ≥ |λ`| if g = D
(1)
` .
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Proof: Applying Lemma 5.2.1 to the left side of (4.2) shows that w ∈ Ws if and only if∑n

i=1 λ(w)iεi ∈ P
+
. The required result then follows from Lemma 3.7.2, after noting that

each λ(w)i ∈ Z. �

This result implies that if w ∈ Ws then λ(w) is a genuine partition in the cases for

which g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1. For the g = D

(1)
` case, it also implies that

(λ(w)1, λ(w)2, . . . , λ(w)`−1, |λ(w)`|) is a genuine partition, and for the g = A
(1)
` case, it

implies that λ(w) = (µ; ν) for two genuine partitions µ and ν with |µ| = |ν|.

5.3 Core characterisation

In this section, we prove the characterisation of {λ(w)|w ∈ Ws} stated in Section 2.10.
The following result, which is obtained by repeated application of [10, Lemma 2.7.13],

will be pivotal in the proofs below.

Lemma 5.3.1 Let λ = (λ1, λ2, . . . , λ`) be a partition, η = (` − 1, ` − 2, . . . , 0) and let
m > 0.

Let {rj}
`
j=1 be non-negative integers such that if we define βj = λj + ηj − rjm then

{βj}
`
j=1 are non-negative and distinct. If ζ = (ζ1, ζ2, . . . , ζ`) is the partition defined by

ζj = βπ(j) − ηj where π ∈ S` is such that βπ(1) > βπ(2) > · · · > βπ(`), then ζ may be
obtained from λ by removing certain rim m-hooks.

Conversely, if ζ is obtained from λ by removing certain rim m-hooks, then there exist
{rj}

`
j=1 and π ∈ S` such that ζπ(j) + ηπ(j) = λj + ηj − rjm for 1 ≤ j ≤ `.

We will also make use of the following result which may be found in [19, p3]. Here, and
below, ζ ′ denotes the conjugate of the partition ζ.

Lemma 5.3.2 Let ζ be a partition and let q ≥ ζ1, p ≥ ζ ′
1. Then the p + q numbers

ζi + p − i (1 ≤ i ≤ p), p − 1 + j − ζ ′
j (1 ≤ j ≤ q)

are a permutation of {0, 1, 2, . . . , p + q − 1}.

Theorem 5.3.3 For w ∈ Ws, let λ(w) = (λ1, λ2, . . . , λ`). If g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1

or D
(2)
`+1, then λ(w) is a partition whose h̃∨-core ζ satisfies:

ζ ∈ A if g = B
(1)
` , A

(2)
2`−1;

ζ ∈ C if g = C
(1)
` , A

(2)
2` ;

ζ ∈ E if g = D
(2)
`+1,

(5.2)

with l(ζ) ≤ `. If g = D
(1)
` then (λ1, λ2, . . . , λ`−1, |λ`|) is a partition whose h̃∨-core ζ

satisfies ζ ∈ A and l(ζ) < `.

On the other hand, if g = B
(1)
` , C

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1, and λ = (λ1, . . . , λ`) is

a partition whose h̃∨-core ζ satisfies (5.2) then there exists a unique w ∈ W such that

λ = λ(w): moreover w ∈ Ws. If g = D
(1)
` , and λ = (λ1, λ2, . . . , λ`−1, λ`) is a generalised

partition for which (λ1, λ2, . . . , λ`−1, |λ`|) is a partition whose h̃∨-core ζ satisfies ζ ∈ A
and l(ζ) < `, then there exists a unique w ∈ W such that λ = λ(w): moreover w ∈ Ws.
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Proof: For g = B
(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`−1 or D

(2)
`+1, let w ∈ Ws, λ(w) = (λ1, λ2, . . . , λ`)

and λ̂ = (λ1, λ2, . . . , |λ`|). Corollary 5.2.2 shows that λ̂ is a genuine partition in each case,

and if g 6= D
(1)
` then λ̂ = λ(w).

Corollary 4.2.2 states that λ is edge-balanced. Therefore, using the extended interpre-
tations described in Lemma 4.5.1, each pair k+1 k for which 0 ≤ k < `, straddles the
profile of λ, either reversed or unreversed. If the pair k+1 k straddles the profile in row
i then in the unreversed case, (4.16) shows that λi − i ≡ −(k + 1) (mod h̃∨), and in the
reversed case, (4.17) shows that λi − i ≡ k + ∆ (mod h̃∨).

It is only in the case for which g = D
(1)
` that we can have λ̂ 6= λ. Here, however, the

symmetry of the `th row of the D
(1)
` grid about the vertical axis then guarantees that λ̂

is edge-balanced.
Now let S = {k1 > k2 > · · · > kt} be such that k ∈ S if and only if the reversed

pair k k+1 straddles the profile of λ̂ and k and k + 1 are not associated values. Thus

k1 < ` − 1 when g = D
(1)
` and kt > 0 when ∆ = −1 (i.e. when g = {B

(1)
` , D

(1)
` , A

(2)
2`−1})

Let S = {0, 1, . . . , l − 1}\S with S = {k′
1 > k′

2 > · · · > k′
`−t}. Then if k ∈ S, either the

unreversed pair k+1 k straddles the profile, or k and k + 1 are associated values.
We will now apply Lemma 5.3.1 to remove h̃∨-rim hooks from the partition λ̂. So define

βi = (λ̂i + ηi) mod h̃∨ for 1 ≤ i ≤ `, where ηi = ` − i. Now, for 1 ≤ i ≤ `, let k be such
that the pair k+1 k , either reversed, unreversed or associated, is bisected by the edge in
the ith row of λ̂. If k ∈ S, it is unreversed or associated, so that βi = (λ̂i +`− i) mod h̃∨ =
` − (k + 1). If k ∈ S, it is reversed, so that βi = (λ̂i + ` − i) mod h̃∨ = ` + ∆ + k. Note
that 0 ≤ βi < h̃∨ for 1 ≤ i ≤ ` and that the values β1, β2, . . . , β` are distinct. Thus on
defining ζi = βπ(i) − ηi, with π ∈ S` such that βπ(1) > βπ(2) > · · · > βπ(`), we obtain:

ζi − i =

{
ki + ∆ + ` − (` − i) − i = ki + ∆ if 1 ≤ i ≤ t;

` − (k′
`+1−i + 1) − (` − i) − i = −1 − k′

`+1−i if t < i ≤ `.
(5.3)

Lemma 5.3.1 shows that the partition ζ can be obtained from λ̂ by the removal of rim
h̃∨-hooks. The partition ζ has Frobenius rank t because ζt − t = ∆ + kt ≥ 0 (noting that
kt > 0 whenever ∆ = −1) and ζt+1− (t+1) = −1−k′

`−t < 0. To determine the Frobenius
representation of ζ, we now apply Lemma 5.3.2 with p = ` and q = ` + ∆. Note that if
j ≥ ` then l − 1 + i − ζ ′

i = j implies that ζ ′
i − i < 0. Since we require only those ζ ′

i for
which ζ ′

i − i ≥ 0, we consider just the numbers 0, 1, . . . , ` − 1 in Lemma 5.3.2, and find
that:

{` − 1 + i − ζ ′
i|1 ≤ i ≤ t} = {0, 1, . . . , ` − 1}\{` − 1 − k′|k′ ∈ S}

= {` − 1 − k|k ∈ S}.

This implies that ζ ′
i − i = ki for 1 ≤ i ≤ t. Therefore the partition ζ has Frobenius

representation: (
k1 + ∆ k2 + ∆ k3 + ∆ · · · kt + ∆

k1 k2 k3 · · · kt

)
. (5.4)

From this, its membership of the required set is immediate.
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Furthermore, because ζ1 + ζ ′
1 + 1 = 2k1 + ∆ + 1 < h̃∨ (noting that k1 < ` − 1 when

g = D
(1)
` ), it follows that ζ is a h̃∨-core, thereby proving the first part of the Theorem.

For the second part, assume that λ̂ is a partition for which the h̃∨-core ζ lies in
the particular specified set. So, in Frobenius notation, ζ takes the form (5.4), with

0 ≤ t ≤ ` and ` > k1 > k2 > · · · > kt ≥ 0, and additionally k1 < ` − 1 if g = D
(1)
` ,

and kt > 0 if ∆ = −1. Let S = {k1, k2, . . . , kt} and let S = {0, 1, . . . , l − 1}\S with
S = {k′

1 > k′
2 > · · · > k′

`−t}. For 1 ≤ i ≤ `, we then obtain ζi using (5.3). Lemma 5.3.1

states that there exist integers {ri}
`
i=1 and π ∈ S` for which λ̂i + ηi = ζπ(i) + ηπ(i) + rih̃

∨

for 1 ≤ i ≤ `. Thereupon, λ̂i − i ≡ ζπ(i) − π(i) (mod h̃∨) for 1 ≤ i ≤ `, whereby on using
(5.3),

λ̂i − i ≡

{
kπ(i) + ∆ if π(i) ≤ t;

−1 − k′
`+1−π(i) if π(i) > t,

where the congruences are taken modulo h̃∨. Lemma 4.5.1 then shows that the profile of
λ̂ bisects the unreversed or associated pairs k+1 k when k ∈ S and bisects the reversed
pairs k k+1 when k ∈ S. It follows that λ̂ is edge-balanced. Theorem 4.5.2 then implies
that λ̂ = λ(w) for a unique w ∈ W . Corollary 5.2.2 shows that w ∈ Ws. In the case in

which g = D
(1)
` and λ̂` > 0, the symmetry of the `th row of the grid about the vertical axis

implies that the generalised partition λ = (λ̂1, λ̂2, . . . , λ̂`−1,−λ̂`) is also edge-balanced. So
in this case also, Theorem 4.5.2 implies that λ = λ(w) for a unique w ∈ W , and Corollary
5.2.2 shows that w ∈ Ws. �

Theorem 5.3.4 Let g = A
(1)
n−1.

For w ∈ Ws, let the partitions µ and ν be such that (µ; ν) = λ(w). If ζ is the n-core
of µ, then ζ ′ is the n-core of ν. In addition, |µ| = |ν|.

Conversely, let ζ ∈ F and let partitions µ and ν be such that |µ| = |ν|, `(µ)+`(ν) ≤ n,
ζ is the n-core of µ, and ζ ′ is the n-core of ν. Then there exists a unique w ∈ W such
that λ(w) = (µ; ν): moreover w ∈ Ws.

Proof: Let p = `(µ), q = `(ν) and λ = (µ; ν) (= λ(w)). Then µi = λi for 1 ≤ i ≤ p,
νi = −λn+1−i for 1 ≤ i ≤ q and λi = 0 for p < i ≤ n − q. Since

∑n
i=0 λi = 0 by Corollary

5.2.2, it follows immediately that |µ| = |ν|.
Let 0 ≤ k < n. If the pair k+1 k is bisected by the profile in the ith row of λ, then

(4.16) shows that λi − i ≡ −(k + 1) (modn). Here and below, we identify n n−1 with
0 n−1 .

Let S+ = {k+
1 > k+

2 > · · · > k+
p } be such that if k ∈ S+ then the pair k+1 k is

bisected by the profile of λ in one of the uppermost p rows. Similarly, let S− = {k−
1 <

k−
2 < · · · < k−

q } be such that if k ∈ S− then the pair k+1 k is bisected by the profile of
λ in one of the lowermost q rows. Note that λk+1 = 0 for p ≤ k < n − q. Thus, for these
values of k, the pair k+1 k is bisected by the profile in the (k + 1)th row. Corollary
4.2.2 shows that λ is edge-balanced, whereupon these values do not occur in S+ or S−.
Moreover, we also have S+ ∩ S− = ∅ and S+ ∪ S− = {0, . . . , p − 1} ∪ {n − q, . . . , n − 1}.
Set t = #{k|k ∈ S+, k ≥ p}. Note that then #{k|k ∈ S−, k < n − q} = t.
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We will now apply Lemma 5.3.1 to remove n-rim hooks from the partition µ =
(µ1, . . . , µp). For 1 ≤ i ≤ p, let k ∈ S+ be such that the pair k+1 k is bisected by the pro-
file in the ith row of λ, and set βi = (µi+p−i) mod n = (λi−i+p) mod n = (p−k−1) mod n.
Thereupon,

βi =

{
p − (k + 1) if k < p;

n + p − (k + 1) if k ≥ p.

Note that the values β1, β2, . . . , βp are distinct. With π ∈ Sp such that βπ(1) > βπ(2) >
· · · > βπ(p), and ζi = βπ(i) − p + i for 1 ≤ i ≤ p, we obtain:

ζi − i =

{
n − (k+

t+1−i + 1) if 1 ≤ i ≤ t;
−(k+

p+t+1−i + 1) if t < i ≤ p.
(5.5)

Since ζt−t ≥ 0 and ζt+1−(t+1) < 0, the partition ζ has Frobenius rank t. Now note that
(5.5) implies that {ζi + p− i|1 ≤ i ≤ p} = {n + p− 1− k+

K|1 ≤ K ≤ t} ∪ {p− 1− k+
K |t <

K ≤ p}. Lemma 5.3.2 now gives {p − 1 + j − ζ ′
i|1 ≤ j ≤ q} = {n + p − 1 − k−

K |t < K ≤
q} ∪ {p − 1 − k−

K |1 ≤ K ≤ t}. This yields:

ζ ′
j − j =

{
k−

t+1−j if 1 ≤ j ≤ t;
k−

q+t+1−j − n if t < j ≤ q.
(5.6)

In particular, we have found that ζ has Frobenius representation:

(
n − 1 − k+

t n − 1 − k+
t−1 · · · n − 1 − k+

2 n − 1 − k+
1

k−
t k−

t−1 · · · k−
2 k−

1

)
. (5.7)

Since k+
t ≥ n − q and k−

t ≤ p − 1, we have ζ1 + ζ ′
1 − 1 = n − k+

t + k−
t ≤ q + p − 1 < n,

which implies that ζ is an n-core. By Lemma 5.3.1, it is obtained from µ by removing
n-rim hooks, and is therefore the n-core of µ.

We now apply a similar procedure to the partition ν. For 1 ≤ i ≤ q, let k ∈ S− be
such that the pair k+1 k is bisected by the profile in the (n− 1− i)th row of λ, and set
βi = (νi + q − i) modn = (−λn+1−i − i + q) modn = (q + k) modn. Thereupon,

βi =

{
q + k if k < n − q;

q + k − n if k ≥ n − q.

Note that the values β1, β2, . . . , βq are distinct. With σ ∈ Sq such that βσ(1) > βσ(2) >

· · · > βσ(q), and ζi = βσ(i)−q+ i for 1 ≤ i ≤ q, we obtain ζ i− i = k−
t+1−i for 1 ≤ i ≤ t, and

ζi−i = k−
q+t+1−i−n for t < i ≤ q. Lemma 5.3.1 shows that the partition ζ = (ζ1, ζ2, . . . , ζq)

is obtained by removing n-rim hooks from ν. On comparing the above values of ζ i − i
with the values of ζ ′

i − i given by (5.6), we see that ζ = ζ ′. The first part of the theorem
then follows.

For the second part, let µ, ν and ζ be as stated, and let p = `(µ) and q = `(ν), so
that p + q ≤ n. Then if we set λi = µi for 1 ≤ i ≤ p, λi = −νn+1−i for n − q < i ≤ n and
λi = 0 for p < i ≤ n − q, we have λ = (µ; ν). Note that

∑n
i=0 λi = 0.
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The Frobenius representation of ζ takes the form (5.7) where 0 ≤ t ≤ min{p, q},
k+

t < k+
t−1 < · · · < k+

1 ≤ n − 1, and k−
t > k−

t−1 > · · · > k−
1 ≥ 0. Since ζ is obtained

from µ by removing rim hooks, we have k−
t < p. Similarly, k+

t ≥ n − q. Therefore,
k+

t − k−
t > n − q − p ≥ 0 so that k+

t > k−
t .

Now define S+ = {k+
1 > k+

2 > · · · > k+
p } and S− = {k−

1 < k−
2 < · · · < k−

q } such that
S+ ∩ S− = ∅, k−

t+1 ≥ n − q and k+
t+1 < p. This specifies S+ and S− uniquely, with neither

set containing any element k with p ≤ k < n − q. The reasoning in the first part of the
proof then shows that ζi satisfies (5.5) for 1 ≤ i ≤ p, and ζ ′

i satisfies (5.6) for 1 ≤ i ≤ q.
Lemma 5.3.1 states that there exist integers {ri}

p
i=1 and π ∈ Sp for which µi + ηi =

ζπ(i) + ηπ(i) + rin for 1 ≤ i ≤ p, where ηi = p− i. Thereupon, µi − i ≡ ζπ(i) − π(i) (modn)
for 1 ≤ i ≤ p, whereby on using (5.5),

λi − i = µi − i ≡

{
−(k+

t+1−π(i) + 1) if π(i) ≤ t;

−(k+
p+t+1−π(i) + 1) if π(i) > t,

where the congruences are taken modulo n. Therefore, using (4.16), the profile in the
uppermost p rows of λ bisects precisely those k+1 k for which k ∈ S+.

Similarly, Lemma 5.3.1 states that there exist integers {r′i}
q
i=1 and σ ∈ Sq for which

νi + ηi = ζ ′
σ(i) + ησ(i) + r′in for 1 ≤ i ≤ q, where ηi = q − i. Thereupon, νi − i ≡

ζ ′
σ(i) − σ(i) (modn) for 1 ≤ i ≤ q, whereby on using (5.6),

λn+1−i − (n + 1 − i) = −(n + 1) − (νi − i) ≡

{
−(k−

t+1−σ(i) + 1) if σ(i) ≤ t;

−(k+
q+t+1−σ(i) + 1) if σ(i) > t,

where the congruences are taken modulo n. Therefore, using (4.16), the profile in the
lowermost q rows of λ bisects precisely those k+1 k for which k ∈ S−. Since λk+1 = 0
for p ≤ k < n − q, the profile in the (k + 1)th row of λ bisects k+1 k , and so λ is
edge-balanced. Theorem 4.5.2 now applies to show that there exists a unique w ∈ W
such that λ(w) = λ = (µ; ν). Since

∑n

i=0 λi = 0, Corollary 5.2.2 then shows that w ∈ Ws.
�

In the following corollary, we summarise the above results using the sets P+(g) defined
in Section 2.10.

Corollary 5.3.5 If g = B
(1)
` , C

(1)
` , D

(1)
` , A

(2)
2` , A

(2)
2`−1, or D

(2)
`+1, then there is a bijection

between Ws and the set P+(g) of generalised partitions. The bijection is such that if
λ ∈ P+(g) is the bijective image of w ∈ Ws then:

w(ρ) − ρ =
∑̀

i=1

λiεi. (5.8)

If g = A
(1)
n−1, then there is a bijection between Ws and the set P+(g) of pairs (µ; ν) of

partitions. This bijection is such that if (µ; ν) ∈ P+(g) is the bijective image of w ∈ Ws

then:

w(ρ) − ρ =

`(µ)∑

i=1

µiεi −

`(ν)∑

i=1

νiεn+1−i. (5.9)
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Proof: The stated bijections follow immediately from Theorems 5.3.3 and 5.3.4. The
expressions for w(ρ) − ρ immediately follow from (4.2). �
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