
Constructing Hypohamiltonian Snarks with Cyclic
Connectivity 5 and 6
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Abstract

A graph is hypohamiltonian if it is not hamiltonian but every vertex-deleted
subgraph is. In this paper we study hypohamiltonian snarks – cubic hypohamilto-
nian graphs with chromatic index 4. We describe a method, based on superposition
of snarks, which produces new hypohamiltonian snarks from old ones. By choos-
ing suitable ingredients we can achieve that the resulting graphs are cyclically 5-
connected or 6-connected. Previously, only three sporadic hypohamiltonian snarks
with cyclic connectivity 5 had been found, while the flower snarks of Isaacs were the
only known family of cyclically 6-connected hypohamiltonian snarks. Our method
produces hypohamiltonian snarks with cyclic connectivity 5 and 6 for all but finitely
many even orders.

1 Introduction

Deciding whether a graph is hamiltonian, that is to say, whether it contains a cycle
through all the vertices, is a notoriously known difficult problem which remains NP-
complete problem even in the class of cubic graphs [6]. As with other hard problems in
mathematics, it is useful to focus on objects that are critical with respect to the property
that defies characterisation. Much attention has been therefore paid to non-hamiltonian
graphs which are in some sense close to being hamiltonian. A significant place among such
graphs is held by two families – graphs where any two non-adjacent vertices are connected
by a hamiltonian path (known as maximally non-hamiltonian graphs) and those where the
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removal of every vertex results in a hamiltonian graph (called hypohamiltonian graphs).
The latter family is the main object this paper.

There exists a variety of known constructions which produce infinite families of hy-
pohamiltonian graphs. One particularly elegant is due Thomassen [15] which sometimes
produces graphs that are not only hypohamiltonian but also maximally non-hamiltonian.
That hypohamiltonian graphs constitute a relatively rich family was proved by Collier
and Schmeichel [3] who bounded the number of hypohamiltonian graphs of order n from
below by a certain exponential function.

Among hypohamiltonian graphs, cubic graphs have a special place, since they have the
smallest number of edges on a given number of vertices. Indeed, removing any vertex from
a hypohamiltonian graph leads to a graph with a hamiltonian cycle, and this graph must
be 2-connected. Therefore every hypohamiltonian graph is 3-connected; in particular, its
minimum vertex valency is at least 3.

Since hamiltonian cubic graphs are 3-edge-colourable, it is natural to search for hy-
pohamiltonian cubic graphs among cubic graphs with chromatic index 4. Non-trivial
examples of such graphs are commonly known as snarks. It has been generally accepted
that the term ‘non-trivial’ requires a snark to have girth at least 5 and to be cyclically
4-connected (see [5] for example). Recall that a cubic graph G is cyclically k-connected

if no set of fewer than k edges separates two cycles. The largest integer k for which G is
cyclically k-connected is the cyclic connectivity of G. (There are three exceptional graphs
in which no two cycles can be separated, namely K3,3, K4, and the graph consisting of
two vertices joined by three parallel edges. For these, the cyclic connectivity is defined to
be their cycle rank |E(G)| − |V (G)| + 1; see [11] for more information.)

The smallest hypohamiltonian snark is the Petersen graph. In 1983, Fiorini [4] proved
that the well known Isaacs flower snarks Ik of order 4k are hypohamiltonian for each odd
k ≥ 5. In fact, as early as in 1977, a larger class of hypohamiltonian graphs was found
by Gutt [7], but only later it was noticed that it includes the Isaacs snarks. Fiorini [4]
also established a sufficient condition for a dot-product of two hypohamiltonian snarks
to be hypohamiltonian. By using this condition, Steffen [14] proved that there exist
hypohamiltonian snarks of each even order greater than 90.

Steffen[13] also proved that each hypohamiltonian cubic graph with chromatic index 4
is bicritical. This means that the graph itself is not 3-edge-colourable but the removal of
any two distinct vertices results in a 3-edge-colourable graph. Furthermore, Nedela and
Škoviera [12] showed that each bicritical cubic graph is cyclically 4-edge-connected and
has girth at least 5. Therefore each hypohamiltonian cubic graph with chromatic index

4 has girth at least 5 and cyclic connectivity at least 4, and thus is a snark in the usual
sense. Since the removal of a single vertex from a cubic graph with no 3-edge-colouring
cannot give rise to a 3-edge-colourable graph, hypohamiltonian snarks lie on the border
between cubic graphs which are 3-edge colourable and those which are not.

On the other hand, Jaeger and Swart [9] conjectured that each snark has cyclic connec-
tivity at most 6. If this conjecture is true, the cyclic connectivity of a hypohamiltonian
snark can take one of only three possible values – 4, 5, and 6. Thomassen went even
further to conjecture that there exists a constant k (possibly k = 8) such that every
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cyclically k-connected cubic graph is hamiltonian. The value k = 8 is certainly best pos-
sible because the well known Coxeter graph of order 28 is hypohamiltonian and has cyclic
connectivity 7 [2].

The situation with known hypohamiltonian snarks regarding their cyclic connectivity
can be summarised as follows. The snarks constructed by Steffen in [14] have cyclic con-
nectivity 4. There are three sporadic hypohamiltonian snarks with cyclic connectivity 5
– the Petersen graph, the Isaacs flower snark I5 and the double-star snark (see [4]). The
flower snarks Ik, where k ≥ 7 is odd, have cyclic connectivity 6 ([4]).

In the present paper we develop a method, based on superposition [10], which produces
hypohamiltonian snarks from smaller ones. By employing suitable ingredients we show
that for each sufficiently large even integer there exist hypohamiltonian snarks with cyclic
connectivity 5 and 6. A slight modification of the method can also provide snarks with
cyclic connectivity 4.

2 Preliminaries

It is often convenient to compose cubic graphs from smaller building blocks that con-
tain ‘dangling’ edges. Such structures are called multipoles. Formally, a multipole is a
pair M = (V (M), E(M)) of disjoint finite sets, the vertex-set V (M) and the edge-set

E(M). Every edge e ∈ E(M) has two ends and every end of e can, but need not, be
incident with a vertex. An end of an edge that is not incident with a vertex is called
a semiedge. Semiedges are usually grouped into non-empty pairwise disjoint connectors.
Each connector is endowed with a linear order of its semiedges.

The reason for the existence of semiedges is that a pair of distinct semiedges x and
y can be identified to produce a new proper edge x ∗ y. The ends of x ∗ y are the other
end of the edge supporting x and the other end of the edge supporting y. This operation
is called junction. The junction of two connectors S1 and S2 of size n identifies the i-th
semiedge of S1 with the i-th semiedge of S2 for each 1 ≤ i ≤ n, decreasing the total
number of semiedges by 2n.

A multipole whose semiedges are split into two connectors of equal size is called a
dipole. The connectors of a dipole are referred to as the input, In(M), and the output,
Out(M). The common size of the input and the output connector is the width of M . Let
M and N be dipoles with the same width n. The serial junction M ◦N of M and N is a
dipole which arises by the junction of Out(M) with In(N). The n-th power Mn of M is
the serial junction of n copies of M , that is M ◦ M ◦ · · · ◦ M (n times). Another useful
operation is the closure M of a dipole M which arises from M by the junction of In(M)
with Out(M).

For illustration consider the dipole Y of width 3 with In(Y ) = (e1, e2, e3) and Out(Y ) =
(f1, f2, f3) displayed in Fig. 1. The closure of the serial junction of an odd number of copies
of Y , that is Y k where k ≥ 5 is odd, is in fact the Isaacs flower snark Ik introduced in [8];
see Fig. 5 left.

As another example consider the flower snark I5 with its unique 5-cycle removed to
obtain a multipole M of order 15 having a single connector of size 5. Order the semiedges
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Figure 1: Dipole Y

consistently with a cyclic orientation of the removed cycle. Let M ′ be a copy of M but with
semiedges reordered: the new ordering will be derived from the same cyclic orientation by
taking every second semiedge in the order. The cubic graph resulting from the junction
of M and M ′ is the double-star snark constructed by Isaacs in [8], see Fig. 7 left.

A Tait colouring of a multipole is a proper 3-edge-colouring which uses non-zero el-
ements of the group Z2 × Z2 as colours. The fact that any two adjacent edges receive
distinct colours is easily seen to be equivalent to the condition that the colours meeting
at any vertex sum to zero in Z2 × Z2. This in turn means that a Tait colouring is in fact
a nowhere-zero Z2 × Z2-flow on the multipole.

We say that a dipole M is proper if for every Tait colouring of M the sum of colours
on the input semiedges is different from zero. A straightforward flow argument (or equiv-
alently, the well-known Parity Lemma [8]) implies that the same must be true for the
output semiedges.

Proper dipoles are a substantial ingredient of an important construction of snarks
called superposition [10]. Let G be a cubic graph. Let U1, U2, . . . , Ul be multipoles,
with three connectors each, called supervertices, and let X1, X2 . . . , Xk be dipoles, called
superedges. Take a function f : V (G) ∪ E(G) → {U1, U2, . . . , Ul, X1, X2 . . . , Xk}, called
the substitution function, which associates with each vertex of G one of the multipoles
Ui and with each edge of G one of the dipoles Xj in such a way that the connectors
which correspond to an incidence between a vertex and an edge in G have the same size.
We make an additional agreement that if f(v) is not specified, then it is meant to be the
multipole consisting of a single vertex and three dangling edges having three connectors of
one semiedge each. Similarly, if f(e) is not specified, it is meant to be the dipole consisting
of a single isolated edge having one semiedge in each connector. We now construct a new
cubic graph G̃ as follows. For each vertex v of G we take a copy ṽ of f(v) (isomorphic to
some Ui), for each edge e we take a copy ẽ of f(e) (isomorphic to some Xj), and perform
all junctions of pairs of connectors corresponding to the incidences in G. The resulting
graph G̃ is called a superposition of G. In the rest of the paper, the symbols G̃, ṽ and ẽ will
refer to a superposition of G, the supervertex substituting a vertex v and the superedge
substituting and edge e of G, respectively.

If all superedges used in a superposition of a snark are proper dipoles, the resulting
graph is again a snark. This fact was proved by Kochol in [10, Theorem 4] and will be
used in our construction.
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3 Main result

Let G be a cubic graph and let C be a collection of disjoint cycles in G. A C-superposition
of G is a graph G̃ created by a substitution function which sends each edge in C to a dipole
of width three and each vertex in C to a copy of the multipole V with three connectors
(et, em, eb), (x), and (ft, fm, fb) shown in Fig. 2. (For easier reference, the subscripts of
semiedges refer to ‘top’, ‘middle’ and ‘bottom’.)

x

et

em

eb

ft

fm

fb

Figure 2: Multipole V

The purpose of this section is to present a sufficient condition under which a C-super-
position G̃ of a hypohamiltonian snark G is again a hypohamiltonian snark. Such a
condition must guarantee the existence of a hypohamiltonian cycle for each vertex of the
larger graph (that is, a cycle containing all but that one vertex). Therefore a number of
paths through superedges employed in the superposition has to be specified.

Let E be a dipole of width three and let In(E) = (et, em, eb) and Out(E) = (ft, fm, fb).
Let us enumerate the vertices of E as 1, 2, . . . , n in such a way that the vertex incident
with em will have label 1, and the vertex incident with fm will have label 2 (see Fig. 3).
We introduce the following notation for paths through E corresponding to different ways
of traversal of E (see Fig. 4):

ft

1 2

et

em

eb

fm

fb

Figure 3: Dipole E

• Type O: One path through E, denoted by x(E, O)y, covering all the vertices of E

and ending with dangling edges x and y, where x, y ∈ {et, em, eb, ft, fm, fb}.

• Type A: Two disjoint paths eα(E, A)1eβ and fγ(E, A)2fδ through E which together
cover all the vertices of E, the former ending with eα and eβ, the latter one ending
with fγ and fδ, where α, β, γ, δ ∈ {t, m, b}.

• Type B: Two disjoint paths eα(E, B)1fβ and κγ(E, B)2κδ through E which together
cover all the vertices of E, the former ending with eα and fβ, the latter ending with
κγ and κδ, where α, β, γ, δ ∈ {t, m, b} and κ ∈ {e, f}.
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• Type Z: Two disjoint paths eα(E − i, Z)1fβ and eγ(E− i, Z)2fδ through E covering
all the vertices of E except for the vertex labelled i, the former ending with eα and
fβ, the latter ending with eγ and fδ, where α, β, γ, δ ∈ {t, m, b}.

Type O
fm

ft

fmem

ft(E, O)fmem(E, O)fm

Type A

fm em

eb

em

et ft

fm

fb

em(E, A)1eb and ft(E, A)2fmet(E, A)1em and fm(E, A)2fb

Type B
fm

fb

em

eb

etet

fb

ft

et(E, B)1fb and em(E, B)2ebel(E, B)1fb and ft(E, B)2fm

Type Z
em

fb

fmem

et

fm

ft

eb

em(E − v, Z)1fm and eb(E − v, Z)2ftet(E − v, Z)1fm and el(E − v, Z)2fb

v v

Figure 4: Paths through E

Transitions through supervertices are unambiguous, since each supervertex contains
only one vertex. Thus we can denote the path which enters a supervertex U with a
dangling edge x and leaves it with a dangling edge y simply by xUy.

A dipole E of width three will be called feasible if it has all the following paths and
pairs of paths:

(1) x(E, O)y for any (x, y) ∈ {(em, fm), (eb, fm), (em, fb), (eb, fb), (et, ft), (fm, fb), (em, eb)};

(2) eα(E, A)1eβ and fγ(E, A)2fδ for any (α, β, γ, δ) ∈ {(m, b, m, t), (m, t, m, b)};

(3) eα(E, B)1fβ and κγ(E, B)2κδ for any (α, β, γ, δ, κ) ∈ {(t, b, m, t, f), (m, t, m, b, f), (t, m,

m, b, e)};
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(4a) eα(E − 1, Z)1fβ and eγ(E − 1, Z)2fδ such that {β, δ} = {b, m}, for suitable α and γ;

(4b) em(E − 2, Z)1fβ and eb(E − 2, Z)2fδ such that {β, δ} = {t, b}, for suitable β and δ;

and for every i ∈ V (E) − {1, 2},

(4c) eα(E − i, Z)1fβ and eγ(E − i, Z)2fδ such that both {α, γ} and {β, δ} contain m, for
suitable α, β, γ, and δ.

Accordingly, a C-superposition will be called feasible if all the dipoles replacing the edges
of C are feasible.

Our main result is the following theorem.

Theorem 3.1 Let G be a hypohamiltonian snark and let G̃ be a feasible C-superposition

of G with respect to a set C of disjoint cycles in G. Then G̃ is a hypohamiltonian snark.

We prove the theorem in the next section, but now we show that feasible dipoles indeed
exist. To see this, take the Isaacs snark Ik, k odd, remove two vertices u and v shown
in Fig. 5 and group the semiedges formerly incident with u into the input connector and
those formerly incident with v into the output connector. Let Jk be the resulting dipole
with In(Jk) and Out(Jk) as indicated in Fig. 5. Fig. 6 displays the dipole J7 together with
a numbering of its vertices.

Another feasible dipole can be created from the double-star snark by removing two
vertices u and v and grouping the resulting semiedges into connectors as shown in Fig. 7.
We denote it by D.

 . . . . . .

v

u

fm

fb

Ik Jk

K = Y k−2

et

em

eb

ft

Figure 5: Constructing Jk from Ik

Proposition 3.2 The dipoles J7+4i, i ≥ 0, and the dipole D are feasible.

Proof. Tables 1-8 show that the dipoles J7 and D have all the required paths and
therefore are feasible. To prove that J7+4i is feasible for each i ≥ 0 we employ induction
on i. As the base step has already been done above, we proceed to the induction step.
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Figure 6: Dipole J7 with a vertex labelling
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2

7

et

em

eb

ft

fm

fb

u

v

Figure 7: Constructing D from the double-star

Assume that J7+4i is feasible for some i ≥ 0. In order to show that J7+4(i+1) has all the
required paths to be feasible we extend the paths guaranteed in J7+4i to paths in J7+4(i+1).

To construct paths or pairs of paths which cover all the vertices of J7+4(i+1) (Types
O, A, and B) we proceed as follows. Since the vertices u and v removed from I7+4i to
create J7+4i belong to two neighbouring copies of Y , the dipole J7+4i contains a dipole
isomorphic to Y 7+4i−2 which we denote by K7+4i (see Fig. 5). It is easy to see that Y does
not contain a collection of paths covering all its vertices and at the same time containing
all the dangling edges. Therefore, in the dipole K7+4i ⊆ J7+4i there exists a copy Y ′ of
Y whose output connector has at most two semiedges covered by the paths. Replace Y ′

in J7+4i with Y ′ ◦ Y 4 to obtain J7+4(i+1). Now extend the paths through Y ′ to paths
through Y ′ ◦ Y 4 by using paths in Y 4 indicated in Fig. 8 in such a way that the covered
semiedges in Out(Y ′) and in In(Y 4) match. It is easy to see that such an extension is
always possible.

To finish the proof we construct paths which leave an arbitrary single vertex v of
J7+4(i+1) not covered, that is, eα(J7+4(i+1) − v, Z)1fβ and eγ(J7+4(i+1) − v, Z)2fδ. If v is not
contained in K7+4(i+1), we can proceed as in the previous case. If v is in K7+4(i+1), we
observe that K7+4(i+1) contains at least nine subsequent copies of Y . Therefore J7+4(i+1)−v

contains a copy Y ′′ of Y −v connected to a copy of Y 4 in at least one of two possible ways,
either Y ′′ ◦ Y 4 or Y 4 ◦ Y ′′. It is easy to see that Y − v, too, does not contain a collection
of paths covering all its vertices and at the same time containing all the dangling edges.
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Figure 8: Paths in Y 4

By replacing this copy of Y 4 with three parallel edges we obtain J7+4i − v which, by the
induction hypothesis, contains paths eα(J7+4i − v, Z)1fβ and eγ(J7+4i − v, Z)2fδ covering
all the vertices but v. Since the original Y 4 in J7+4(i+1) is connected to Y −v, at most two
of the three parallel edges are covered by these paths. Therefore it is possible to extend
these paths to the required paths in J7+4(i+1) − v by using paths in Y 4 shown in Fig. 8. �

One can easily check that the smallest cyclically 5-connected snark and the smallest
cyclically 6-connected snark which can be composed from the dipoles described in Propo-
sition 3.2 are of order 140 and 166 respectively. With a little bit more care the following
result can be obtained.

Corollary 3.3

(a) There exists a hypohamiltonian snark with cyclic connectivity 5 and order n for each

even n ≥ 140.
(b) There exists a hypohamiltonian snark with cyclic connectivity 6 and order n for each

even n ≥ 166.

Proof. Let G be the Petersen graph and let C be any 5-cycle in G. Substitute the edges
of C by i copies of J7, (4 − i) copies of D and one copy of J7+4j , 0 ≤ i ≤ 4, j ≥ 0. These
graphs cover five of the eight even residue classes modulo 16. For the remaining three
even residue classes, let G = I5 and let C be its unique 5-cycle. Replace i edges of C by
a copy of J7, (4 − i) edges by a copy of D and the last edge by J7+4j , i = 2, 3, 4, j ≥ 0.
Altogether this yields cyclically 5-connected hypohamiltonian snarks of any even order
greater than 138. This proves (a).

To construct snarks with cyclic connectivity 6, let us start again with G the Petersen
graph, but take C to be a 6-cycle in G. Substitute the edges of C by i copies of J7, (5− i)
copies of D and one copy of J7+4j , 0 ≤ i ≤ 5, j ≥ 0. The graphs now cover six of the
eight even residue classed modulo 16. For the remaining two even residue classes take
G = I5 and C a 6-cycle intersecting the unique 5-edge-cut in I5. Replace i edges of C by
J7, (5− i) edges by a copy of D and the last edge by J7+4j , i = 3, 4, j ≥ 0. The resulting
graphs are cyclically 6-connected hypohamiltonian snarks of any even order greater than
164. This proves (b). �
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Call a snark irreducible if the removal of every edge-cut different from the three edges
incident with a vertex yields a 3-edge-colourable graph. It was shown in [12] that a snark
is irreducible if and only if it is bicritical, that is, if the removal of any two distinct vertices
produces a 3-edge-colourable graph. It is not difficult to see that every hypohamiltonian
snark is bicritical and hence irreducible (see [13]). Thus the following result is true.

Corollary 3.4

(a) There exists an irreducible snark of cyclic connectivity 5 and order n for each even

n ≥ 140.
(b) There exists an irreducible snark of cyclic connectivity 6 and order n for each even

n ≥ 166.

4 Proof

In this section we prove Theorem 3.1. Let G be a hypohamiltonian snark and let C be a
collection of disjoint cycles in G. We want to show that every feasible C-superposition G̃

of G is a hypohamiltonian snark. Since any feasible dipole is proper, the result of Kochol
[10] implies that G̃ is a snark, and hence a non-hamiltonian graph. It remains to prove
that every vertex-deleted subgraph of G̃ is hamiltonian.

Without loss of generality we may assume that C consists of a single cycle C =
(w0f0w1f1 . . . fk−1wk−1), for otherwise we can repeat the whole procedure with other cy-
cles of C. Recall that this superposition substitutes each vertex wi with a copy Vi of the
multipole V exhibited in Fig. 2, and each edge fj with a copy Ej of a feasible dipole. In
order to show that for each vertex v of G̃ the subgraph G̃ − v contains a hamiltonian
cycle we proceed as follows. We find a suitable vertex v ′ in G, take a hamiltonian cy-
cle in G − v′, say, H = (v0e0v1e1 . . . en−1vn−1), and expand it into a hamiltonian cycle
H̃ = (P0Q0P1Q1 . . . Pn−1Qn−1) of G̃ − v by replacing each vertex vi in H with a path Pi

intersecting the corresponding supervertex Vi, and by replacing each edge ej in H with a
path Qj intersecting the corresponding superedge Ej. Each of the paths Pi and Qj will
be referred to as a vertex-section and an edge-section of H̃, respectively. Note, however,
that the required hypohamiltonian cycle H̃ must traverse all the vertices of G̃ but one,
including the vertices in superedges corresponding to edges outside H. Therefore certain
vertex-sections of H̃ have to make ‘detours’ into such superedges.

Let S denote the subgraph of G̃ corresponding to G − C. From the way how G̃

was constructed from G it is clear that the vertices and edges of H contained in G − C

can be substituted by their identical copies. Thus the corresponding vertex-sections and
edge-sections of H̃ are either a single vertex or a single edge. In other words, we set
H̃ ∩ S = H ∩ (G − C).

We now describe the remaining vertex-sections and edge-sections of H̃. In fact, each
edge-section Qi can easily be derived from the vertex-sections Pi and Pi+1 (indices taken
modulo n): it is either a single edge or a path of Type O with a suitable initial and terminal
semiedge guaranteed by feasibility. Thus we only need to describe vertex-sections. Our
description will depend on the position of the vertex v avoided by H̃ and will split in a
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number of cases and subcases according to the type of a multipole containing the vertex v.
It may happen, however, that a vertex-section displayed in a certain direction will actually
have to be traversed in the opposite direction. Throughout the rest of the proof, the copy
of a vertex u of in Ej will be denoted by uj.

E1

E0

Ek−3

Ek−2

Ek−1

wk−2

w0

wk−1

v

w2

w1

...

...

C

w2

f1

w1

f0

w0

fk−1

v

wk−2

wk−1

fk−2

Figure 9: Case I: v ∈ S

Case I: v ∈ S. In this case, every superedge Ej of G̃ which substitutes an edge in C ∩H

will be traversed by a path of Type O. A superedge Ej corresponding to an edge in C−H

will be traversed by a path which ends in the neighbouring supervertex Vj+1 (indices taken

modulo k), its traversal through Ej being also of Type O (see Fig. 9 and Scheme i ).
We now give an exact description of all vertex-sections Pi of H̃. There will always be

two cases, each case can have two or more subcases, and so on. For the case analysis a
nested numeration will be employed. The cases on the same level will always be mutually
excluding.

To get the definition of Pi, proceed as follows. Start on the topmost level. Then, on
the current level, choose either the branch with one of conditions following the if word or,
if there is no such condition, choose the else branch, and move to the next level. Once the
then word is reached, the definition of Pi is completed; a boxed number after it denotes
the corresponding traversal scheme which is shown in the figure with the same number.

Vertex-sections Pi.

1. if vi ∈ S then Pi = vi

2. if vi 6∈ S(vi = wj)
2.1 if e′j ∈ H

2.1.1 if vi+1 = wj+1 or vi−1 = wj+1 then Pi = xVjem ∗ fm(Ej−1, O)fb ∗ ebVjfb i

2.1.2 if vi+1 = wj−1 or vi−1 = wj−1 then Pi = xVjem ii

2.2 if e′j 6∈ H then Pi = emVjfm iii

Used path types: O.

the electronic journal of combinatorics 14 (2007), #R18 11



Case II: v = Vj. We proceed similarly as in the previous case, but since the vertex in Vj

is missing, the vertices of Ej−1 will be covered by a ‘detour’ ending in Vi−1 (cf. Scheme iv ).

Vertex-sections Pi.

1. if vi ∈ S then Pi = vi

2. if vi 6∈ S(vi = wj)
2.1 if e′j ∈ H

2.1.1 if vi+1 = wj+1 or vi−1 = wj+1 then Pi = xVjem ∗ fm(Ej−1, O)fb ∗ ebVjfb i
2.1.2 if vi+1 = wj−1 or vi−1 = wj−1

2.1.2.1 if wj+1 = v then Pi = xVjfm ∗ em(Ej+1, O)eb ∗ fbVjfb iv

2.1.2.2 if wj+1 6= v then Pi = xVjem ii

2.2 if e′j 6∈ H then Pi = emVjfm iii

Used path types: O.

Case III: v ∈ Ea. Since Ea is feasible, there exists a pair of paths eα(E − v, Z)1fβ and
eγ(E − v, Z)2fδ. Let L = {α, γ} and R = {β, δ}. Vertices in Ea will be covered by paths
eα(E − v, Z)1fβ and eγ(E − v, Z)2fδ. The remaining portions of H̃ will be constructed in
dependence on L and R.

(a) v 6= 1a and v 6= 2a.

1. if vi ∈ S then Pi = vi

2. if vi 6∈ S (we have vi = wj)
2.1. if e′j ∈ H

2.1.1 if vi+1 = wj+1 or vi−1 = wj+1

2.1.1.1 if vi = wa+1

2.1.1.1.1 if L = {m, b} then Pi = xVa+1em ∗ fm(Ea − v, Z)1ez ∗ fzVaez ∗ fz(Ea−1, O)fy∗
∗eyVafy ∗ ey(Ea − v, Z)2fw ∗ ewVa+1fw,
where {y, z} = {m, b} and w ∈ {t, b} v

2.1.1.1.2 if L = {t, m} then Pi = xVa+1em ∗ fm(Ea − v, Z)1ez ∗ fzVaez ∗ fz(Ea−1, A)2fy∗
∗eyVafy ∗ ey(Ea − v, Z)2fw ∗ ewVa+1fw,

where {y, z} = {m, t} and w ∈ {t, b} vi

2.1.1.2 if vi = wa+3 and R = {t, m} then Pi = xVa+3em ∗ fm(Ea+2, A)2fb ∗ ebVa+3fb vii

2.1.1.3 else Pi = xVjem ∗ fm(Ej−1, O)fb ∗ ebVjfb i
2.1.2 if vi+1 = wj−1 or vi−1 = wj−1

2.1.2.1 if vi = wa−1 and L = {t, m} then Pi = xVa−1fm ∗ em(Ea−1, A)1eb ∗ fbVa−1eb viii

2.1.2.2 if vi = wa+2 and R = {t, m} then Pi = xVa+2fm ∗ em(Ea+2, A)1et ∗ ftVa+2et ix

2.1.2.3 else Pi = xVjem ii
2.2 if e′j 6∈ H

2.2.1 if vi = wa+2 and e′a+2 6∈ H then Pi = ebVa+2fb ∗ eb(Ea+2, B)2em ∗ fmVa+2em∗
∗fm(Ea+1, B)2fm ∗ etVa+2ft x

2.2.2 else Pi = emVjfm iii

Used path types: O, A, B, Z.
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(b) v = 1a
1. if vi ∈ S then Pi = vi

2. if vi 6∈ S (vi = wj)
2.1 if e′j ∈ H

2.1.1 if vi+1 = wj+1 or vi−1 = wj+1

2.1.1.1 if vi = wa+1 then Pi = xVa+1fm x

2.1.1.2 if vi 6= wa+1 then Pi = xVjem ∗ fm(Ej−1, O)fb ∗ ebVjfb i
2.1.2 if vi+1 = wj−1 or vi−1 = wj−1

2.1.2.1 if vi = wa+1 then Pi = xVa−1em ∗ fm(Ea−2, B)2fb ∗ eb(Ea−1 − 1, Z)2fb ∗ ebVafb∗
∗eb(Ea, O)em ∗ fmVaem ∗ fm(Ea−1 − 1, Z)1et ∗ ftVa−1et ∗ ft(Ea−2, O)em xi

2.1.2.2 else Pi = xVjem ii

2.2 if e′j 6∈ H then Pi = emVjfm iii

Used path types: O, B, Z.

(c) v = 2a

1. if vi ∈ S then Pi = vi

2. if vi 6∈ S (vi = wj)
2.1. if e′j ∈ H

2.1.1 if vi+1 = wj+1 or vi−1 = wj+1

2.1.1.1 if vi = wa+1 then Pi = xVa+1fm ∗ em(Ea+1, B)2eb ∗ fbVa+1eb∗
fb(Ea − 2, Z)2em ∗ fmVaem ∗ fm(Ea−1, O)fb ∗ ebVafb ∗ eb(Ea − 2, Z)1ft∗
∗etVa+1ft ∗ et(Ea+1, B)1fm xii

2.1.1.2 else Pi = xVjem ∗ fm(Ej−1, O)fb ∗ ebVjfb i

2.1.2 if vi+1 = wj−1 or vi−1 = wj−1 then Pi = xVjem ii

2.2 if e′j 6∈ H then Pi = emVjfm iii

Used path types: O, B, Z.

It is a routine matter to verify that the case analysis is complete, and that in each case
the required hypohamiltonian cycle has been constructed. The proof is finished. �
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H

H̃

(a)

fm(Ej−1, O)fb

fm

fb

em

eb
fb

x

VjEj−1

(b) Scheme i

Vj

em

x

(c) Scheme ii

Vj

em fm

(d) Scheme iii

em(Ej, O)eb

Ej

(v)fm

ebfbeb

Vj Vj+1

em

(e) Scheme iv

Va

Va−1
Ea−1 Ea

Va+1

fb

fm

eb

fm

fb
fw

eb
ew

fw

fm

(v)

em(Ea − v, Z)1fm

eb(Ea − v, Z)2fw

em
em

fm(Ea−1, O)1fb

em

(f) Scheme v

fw
Va−1

Ea−1
Va Ea

Va+1

fw

fm

ew

fm

etft

fm

fbfb

fm

eb

viii
vi

fm

ft

(v)

em
em

em

fm(Ea−1, A)2ft

em

et(Ea − v, Z)2fw

em(Ea − v, Z)1fm

eb

em(Ea−1, A)1eb

em

(g) Schemes vi and viii
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ix
vii

Va+2

Ea+2
Va+3

fb

fm

fb eb

ft

fm

fb

em em

et

em(Ea+1, A)1et

fm(Ea+1, A)2fb

(h) Schemes vii and ix

Ea+2
Ea+1

Va+2

fmfm
fm

fbfb

ft
ft

em
em

eb

et

eb

et et

et(Ea+1, B)1fb

em(Ea+1, B)2ft

et(Ea+2, B)1fm

em(Ea+2, B)2eb

(i) Scheme x

fm

fb

et

em

eb

ft

fb

eb

et

el

fm

eb

fm

eb

em

fb

em(Ea−2, B)1et

fm(Ea−2, B)2fb

em(Ea, O)eb
et(Ea−1 − v, Z)1fm

eb(Ea−1 − v, Z)2fb

Ea−1

Ea−2 Ea

Va−1 Va

elb

em

ft
v

(j) Scheme xi

em(Ea+1, B)2eb

fm

fb

em

eb

fm

fb

ft

fb

eb

em

eb

ft

fb

et

em

eb

fm fm

fm(Ea−1, O)1fb

em(Ea − v, Z)1ft

eb(Ea − v, Z)2fb
et(Ea+1, B)1fm

Ea+1

Va+1

Ea
Va

Ea−1
et

v

(k) Scheme xii
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Tables

Superedge E = J7

Table 1: x(E, O)y

x y x(E, O)y

em fm 1 4 23 21 15 13 7 8 10 6 3 5 9 11 12 14 18 16 17 19 20 22 26 24 25 2
eb fm 26 22 18 14 10 6 3 5 9 8 7 13 12 11 17 16 15 21 20 19 25 24 23 4 1 2
em fb 1 2 25 19 17 11 9 8 10 6 3 5 4 23 24 26 22 20 21 15 16 18 14 12 13 7
eb fb 26 22 18 14 10 6 3 5 4 1 2 25 24 23 21 20 19 17 16 15 13 12 11 9 8 7
et ft 6 10 8 7 13 12 14 18 16 15 21 20 22 26 24 23 4 1 2 25 19 17 11 9 5 3
fm fb 2 1 4 23 21 20 19 25 24 26 22 18 14 12 13 15 16 17 11 9 5 3 6 10 8 7
em eb 1 2 25 19 17 16 18 22 20 21 15 13 7 8 9 11 12 14 10 6 3 5 4 23 24 26

Table 2: eα(E, A)1eβ and fγ(E, A)2fδ

α β γ δ eα(E, A)1eβ fγ(E, A)2fδ

m b m t 1 4 5 9 8 7 13 12 11 17 16 15 21
23 24 26

2 25 19 20 22 18 14 10 6 3

m t m b 1 4 23 21 15 13 12 11 9 5 3 6 2 25 24 26 22 20 19 17 16 18 14
10 8 7

Table 3: eα(E, B)1fβ and κγ(E, B)2κδ

α β γ δ κ eα(E, B)1fβ κγ(E, B)2κδ

t b m t r 6 10 8 7 2 1 4 23 21 20 19 25 24 26 22
18 14 12 13 15 16 17 11 9 5 3

m t m b r 1 4 5 9 8 10 6 3 2 25 19 20 21 23 24 26 22 18 14
12 11 17 16 15 13 7

t m m b l 6 3 5 9 11 12 13 7 8 10 14 18 22
20 21 15 16 17 19 25 2

1 4 23 24 26
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Table 4: eα(E − i, Z)1fβ and eγ(E − i, Z)2fδ

i eα(E − i, Z)1fβ eγ(E − i, Z)2fδ

1 6 3 5 4 23 21 15 16 17 19 20 22 18 14
10 8 9 11 12 13 7

26 24 25 2

2 1 4 5 9 8 7 26 22 20 21 23 24 25 19 17 11 12 13 15
16 18 14 10 6 3

3 1 2 6 10 14 18 16 15 13 12 11 17 19 25 24
26 22 20 21 23 4 5 9 8 7

4 1 2 26 22 20 21 23 24 25 19 17 11 12 13 15
16 18 14 10 6 3 5 9 8 7

5 1 4 23 21 15 16 18 22 20 19 17 11 9 8
7 13 12 14 10 6 3

26 24 25 2

6 1 4 23 21 15 16 17 19 20 22 18 14 10 8
7 13 12 11 9 5 3

26 24 25 2

7 1 4 5 3 6 10 8 9 11 17 16 15 13 12 14 18 22 26
24 23 21 20 19 25 2

8 1 4 23 24 25 2 26 22 18 16 15 21 20 19 17 11 9 5 3 6
10 14 12 13 7

9 1 2 6 10 8 7 13 15 16 17 11 12 14 18 22 26
24 25 19 20 21 23 4 5 3

10 1 2 6 3 5 4 23 21 20 19 25 24 26 22 18 14
12 13 15 16 17 11 9 8 7

11 1 4 23 24 25 2 26 22 18 16 17 19 20 21 15 13 12 14 10
6 3 5 9 8 7

12 1 2 6 10 14 18 16 15 13 7 8 9 11 17 19 25
24 26 22 20 21 23 4 5 3

13 1 4 23 21 15 16 17 19 20 22 18 14 12
11 9 5 3 6 10 8 7

26 24 25 2

14 1 4 23 24 25 2 26 22 18 16 17 19 20 21 15 13 12 11 9
5 3 6 10 8 7

15 1 2 6 3 5 4 23 21 20 22 26 24 25 19 17 16
18 14 10 8 9 11 12 13 7

16 1 4 23 21 15 13 12 11 17 19 20 22 18
14 10 6 3 5 9 8 7

26 24 25 2

17 1 2 6 10 14 12 11 9 8 7 13 15 16 18 22 26
24 25 19 20 21 23 4 5 3

18 1 4 5 3 6 10 14 12 13 7 8 9 11 17 16 15 21 23
24 26 22 20 19 25 2

19 1 4 23 24 25 2 26 22 20 21 15 13 12 11 17 16 18 14 10
6 3 5 9 8 7
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Table 4

i eα(E − i, Z)1fβ eγ(E − i, Z)2fδ

20 1 2 6 3 5 4 23 21 15 16 17 19 25 24 26 22
18 14 10 8 9 11 12 13 7

21 1 4 23 24 25 2 26 22 20 19 17 11 12 13 15 16 18 14 10
6 3 5 9 8 7

22 1 4 23 21 20 19 17 11 12 13 15 16 18
14 10 6 3 5 9 8 7

26 24 25 2

23 1 4 5 3 6 10 14 12 13 7 8 9 11 17 19 20 21 15
16 18 22 26 24 25 2

24 1 4 23 21 15 13 12 11 17 16 18 14 10 6
3 5 9 8 7

26 22 20 19 25 2

25 1 2 6 10 14 12 13 7 8 9 11 17 19 20 21 15
16 18 22 26 24 23 4 5 3

26 1 2 6 3 5 4 23 24 25 19 17 16 15 21 20 22
18 14 10 8 9 11 12 13 7

Superedge E = D

Table 5: x(E, O)y

x y x(E, O)y

em fm 1 8 7 13 14 12 18 19 17 24 25 23 3 4 5 6 21 20 22 10 9 11 27 26 28 16 15 2
eb fm 24 17 13 7 3 4 5 6 21 11 9 8 1 12 14 15 16 28 10 22 20 19 18 23 25 26 27 2
em fb 1 12 14 13 7 8 9 11 27 2 15 16 6 21 20 22 10 28 26 25 24 17 19 18 23 3 4 5
eb fb 24 17 19 18 12 1 8 7 13 14 15 2 27 11 9 10 22 20 21 6 16 28 26 25 23 3 4 5
et ft 4 5 6 16 28 26 25 24 17 13 7 3 23 18 19 20 21 11 27 2 15 14 12 1 8 9 10 22
fm fb 2 27 26 28 10 22 20 19 17 24 25 23 18 12 1 8 9 11 21 6 16 15 14 13 7 3 4 5
em eb 1 8 9 11 21 6 5 4 3 7 13 14 12 18 23 25 26 27 2 15 16 28 10 22 20 19 17 24

Table 6: eα(E, A)1eβ and fγ(E, A)2fδ

α β γ δ eα(E, A)1eβ fγ(E, A)2fδ

m b m t 1 8 7 3 4 5 6 21 20 19 17 13 14 12
18 23 25 24

2 15 16 28 26 27 11 9 10 22

m t m b 1 8 7 13 14 12 18 19 17 24 25 23
3 4

2 15 16 28 26 27 11 9 10 22 20 21
6 5
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Table 7: eα(E, B)1fβ and κγ(E, B)2κδ

α β γ δ κ eα(E, B)1fβ κγ(E, B)2κδ

t b m t r 4 3 7 8 1 12 14 13 17 24 25 23
18 19 20 21 6 5

2 15 16 28 26 27 11 9 10 22

m t m b r 1 12 14 13 17 24 25 23 18 19 20
22

2 15 16 6 21 11 27 26 28 10 9 8
7 3 4 5

t m m b l 4 5 6 21 20 22 10 28 16 15 2 1 8 9 11 27 26 25 23 3 7 13 14
12 18 19 17 24

Table 8: eα(E − i, Z)1fβ and eγ(E − i, Z)2fδ

i eα(E − i, Z)1fβ eγ(E − i, Z)2fδ

1 4 3 23 18 12 14 15 16 28 10 22 20 19
17 13 7 8 9 11 21 6 5

24 25 26 27 2

2 1 8 9 11 27 26 28 10 22 24 25 23 18 12 14 15 16 6 21 20 19 17
13 7 3 4 5

3 1 12 14 15 2 4 5 6 16 28 26 27 11 21 20 19 18 23 25
24 17 13 7 8 9 10 22

4 1 8 9 10 22 20 21 11 27 26 28 16 6 5 24 25 23 3 7 13 17 19 18 12 14 15 2
5 1 8 9 10 28 26 27 11 21 6 16 15 2 4 3 7 13 14 12 18 23 25 24 17 19 20 22
6 1 12 14 15 16 28 10 22 20 21 11 9 8 7

13 17 19 18 23 3 4 5
24 25 26 27 2

7 1 8 9 10 28 16 15 2 24 25 26 27 11 21 6 5 4 3 23 18 12 14
13 17 19 20 22

8 1 12 14 13 7 3 4 5 6 21 20 22 24 17 19 18 23 25 26 27 11 9 10 28 16
15 2

9 1 8 7 3 4 5 24 25 23 18 12 14 13 17 19 20 22 10 28
26 27 11 21 6 16 15 2

10 1 8 9 11 21 6 5 4 3 7 13 17 19 20 22 24 25 23 18 12 14 15 16 28 26 27 2
11 1 12 14 15 16 28 10 9 8 7 13 17 19 18

23 3 4 5 6 21 20 22
24 25 26 27 2

12 1 8 9 10 28 16 6 5 4 3 7 13 14 15 2 24 17 19 18 23 25 26 27 11 21 20 22
13 1 8 7 3 4 5 6 21 11 9 10 28 16 15 14 12

18 23 25 26 27 2
24 17 19 20 22

14 1 12 18 19 17 13 7 8 9 11 27 26 28 10
22 20 21 6 16 15 2

24 25 23 3 4 5

15 1 12 14 13 7 8 9 10 22 20 21 11 27 2 4 3 23 18 19 17 24 25 26 28 16 6 5
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Table 8

16 1 8 9 10 28 26 27 11 21 6 5 4 3 7 13 17
19 20 22

24 25 23 18 12 14 15 2

17 1 12 14 13 7 8 9 10 28 16 15 2 24 25 26 27 11 21 6 5 4 3 23 18 19 20
22

18 1 12 14 15 16 6 21 11 9 8 7 13 17 19 20
22 10 28 26 27 2

24 25 23 3 4 5

19 1 8 7 3 4 5 6 21 20 22 24 17 13 14 12 18 23 25 26 27 11 9 10
28 16 15 2

20 1 8 7 13 17 19 18 12 14 15 16 28 26 27
2

24 25 23 3 4 5 6 21 11 9 10 22

21 1 8 7 13 17 19 20 22 24 25 26 27 11 9 10 28 16 6 5 4 3 23 18
12 14 15 2

22 1 8 7 13 17 19 20 21 6 16 15 14 12 18
23 3 4 5

24 25 26 28 10 9 11 27 2

23 1 8 9 11 27 2 24 25 26 28 10 22 20 21 6 16 15 14 12
18 19 17 13 7 3 4 5

24 1 8 9 11 21 6 5 4 3 7 13 17 19 20 22 10 28 16 15 14 12
18 23 25 26 27 2

25 1 12 14 13 7 8 9 11 27 26 28 10 22 20
21 6 16 15 2

24 17 19 18 23 3 4 5

26 1 8 7 13 17 19 18 12 14 15 16 28 10 9
11 27 2

24 25 23 3 4 5 6 21 20 22

27 1 8 7 13 17 19 20 21 11 9 10 22 24 25 26 28 16 6 5 4 3 23 18 12 14 15 2
28 1 8 7 13 17 19 20 22 10 9 11 21 6 16 15

14 12 18 23 3 4 5
24 25 26 27 2
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