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Abstract

We consider the two-player game defined as follows. Let (G,L) be a graph G with
a list assignment L on its vertices. The two players, Alice and Bob, play alternately
on G, Alice having the first move. Alice’s goal is to provide an L-colouring of G

and Bob’s goal is to prevent her from doing so. A move consists in choosing an
uncoloured vertex v and assigning it a colour from the set L(v). Adjacent vertices
of the same colour must not occur. This game will be called game list colouring .
The game choice number of G, denoted by chg(G), is defined as the least k such
that Alice has a winning strategy for any k-list assignment of G.

We characterize the class of graphs with chg(G) ≤ 2 and determine the game
choice number for some classes of graphs.

∗Research supported in part by the Hungarian Scientific Research Fund, grant OTKA T-049613.
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1 Introduction and notation

All graphs considered in this paper are simple, i.e., finite, undirected, loopless and without
multiple edges. The notation (H ≤ G) H ⊆ G means that H is (an induced) subgraph of
G. We say that G contains H whenever G contains (an induced) subgraph isomorphic to
H. The set of neighbours of a vertex v ∈ V (G) is denoted by NG(v), or briefly by N(v).
The degree of v is the number |N(v)| and is denoted by d(v). The symbol ∆(G) denotes
the maximum degree of G. The vertex-disjoint union of two graphs G and H is denoted
by G ∪ H. By Pn, Cn, Sn we denote the path, the cycle, the star with n vertices. For
undefined concepts we refer the reader to [5, 10].

Let N denote the set of positive integers and 2N denote the power set of N . Let
G = (V, E) be a graph. A function f : V → N is a colouring of G if f(v) 6= f(u)
whenever vu ∈ E. A list assignment L for G is a function L : V → 2N . If |L(v)| = k for
every v ∈ V then L is a k-list-assignment for G. A graph G with a given list assignment
L will be denoted by (G, L).

A function f : V → N is an L-colouring of G if f is a colouring of G with the
additional requirement that f(v) ∈ L(v) for all v ∈ V (G). If G admits an L-colouring,
then G is said to be L-colourable.

The graph G is k-choosable if it is L-colourable for every k-list assignment. The choice

number or the choosability of G, denoted by ch(G) is the smallest natural number k such
that G is k-choosable.

The idea of considering L-colouring and k-choosability has been introduced indepen-
dently by Vizing [18] and Erdős, Rubin and Taylor [6]. In both papers the choosability
version of Brooks’ theorem [3] was proved. The choosability version of Gallai’s theorem
[8] was proved independently by Thomassen [16] and by Kostochka et al. [14]. In [2]
some extensions of these two basic theorems have been proved. A characterization of
2-choosable graphs is given in [6].

We consider the two-player game defined as follows. The two players are Alice and
Bob and they play alternately with Alice having the first move. Given a graph G and a
set C of colours, the players take turns colouring vertices of G (one vertex per move) with
colours from C. If after |V (G)| moves the graph is coloured then Alice wins, otherwise Bob
wins; i.e., Bob wins whenever an impasse is reached before the whole graph is coloured.

The game chromatic number of G, denoted by χg(G), is defined as the least cardinality
of C for which Alice has a winning strategy. The number χg(G) is well-defined since we
have χ(G) ≤ χg(G) ≤ |V (G)|.

The game chromatic number of a graph was first introduced by Bodlaender in [1] where
its computational complexity was studied. Bodlaender also showed that χg(T ) ≤ 5 holds
for all trees T , and exhibited trees with χg(T ) ≥ 4. In [7] Bodlaender’s upper bound was
improved to χg(T ) ≤ 4. Kierstead and Trotter proved in [12] that χg(G) ≤ 33 for every
planar graph G and that the maximum game chromatic number of an outerplanar graph
is between 6 and 8. The currently known best upper bounds are 18 for planar graphs [11]
and 7 for outerplanar graphs [9].

The edge-colouring version of this game was considered by Cai and Zhu [4]. Nešetřil
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and Sopena [15] introduced an oriented version of this game and developed some tech-
niques for bounding the oriented game chromatic number. The conjecture of Nešetřil and
Sopena was proved by Kierstead and Tuza in [13]. Further references on graph colouring
games and L-colourings can be found e.g. in [17].

In this paper we are interested in another version of this game. We combine concepts
of game and list colourings in the following way. Let (G, L) be a graph G with a list
assignment L. Again the two players are Alice and Bob and they play alternately with
Alice having the first move. Alice’s goal is to provide an L-colouring of G and Bob’s goal
is to prevent her from doing so. A move consists in choosing an uncoloured vertex v and
assigning it a colour from the set L(v). This game will be called game list colouring .

We say that (G, L) is game list colourable if Alice has a winning strategy. The game

choice number of G, denoted by chg(G), is defined as the least k such that Alice has a
winning strategy for any k-list assignment of G. It is clear that this number is well-defined.

In Section 2 we present some basic properties of the game choice number and we
investigate the relations between the game choice number, the game chromatic number
and the choice number. In Section 3 we characterize the graphs whose game choice number
is equal to two.

2 Preliminary results

From the definitions we immediately have the following relations:

χ(G) ≤ χg(G) ≤chg(G) ≤ ∆(G) + 1,
χ(G) ≤ch(G) ≤chg(G) ≤ ∆(G) + 1.

The following result provides a sufficient condition for a graph with a list assignment
L to be L-colourable.

Theorem 1 [18, 6]. Let G be a connected graph with a list assignment L satisfying the

following conditions:

(a) |L(v)| ≥ d(v) for every v ∈ V (G),
(b) There is v0 ∈ V (G) such that |L(v0)| ≥ d(v0) + 1.

Then G is L-colourable.

Observation 1 Let (G, L) be a graph with |L(v)| ≥ d(v) + 1 for every v ∈ V (G). It is

clear that (G, L) is game list colourable, i.e., there is a winning strategy for Alice.

A natural question arises: Can Theorem 1 be extended to the game list colouring? In
general the answer is NO. To explain this, we need some notation.

Let (G, L) be a graph with |L(v)| ≥ d(v) for every v ∈ V (G) and let

X(G,L) = {v ∈ V (G) : |L(v)| = d(v)},
Y(G,L) = V − X(G,L) = {v ∈ V (G) : |L(v)| ≥ d(v) + 1}.
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Proposition 1 For any natural number n there is a graph (G, L) with |Y(G,L)|−|X(G,L)| >
n such that (G, L) is not game list colourable.

Proof. Let (H, L1) be a graph of even order, such that |L1(v)| ≥ d(v)+1 for all v ∈ V (H).
Let (P4, L2) be the path with the list assignment L2(v) = {1, 2} for all v ∈ V (P4). It is
easy to see that Bob has a winning strategy on the graph G = P4 ∪ H. Indeed, he can
force Alice to be the first one who colours a vertex of the P4 component; and then he
can make P4 uncolourable, by assigning the opposite colour at distance 2 from the firstly
coloured one. If |V (H)| = n + 4, then Proposition 1 follows.

Let d(G,L) = min{d(v) : v ∈ X(G,L)}.

Lemma 1 Let (G, L) be a graph with |L(v)| ≥ d(v) for every v ∈ V (G) and let |X(G,L)| ≤
⌈

d
2

⌉

, where d = d(G,L). Then Alice has a winning strategy.

Proof. Alice colours vertices of the set X(G,L) one by one until it gets completely coloured.
It is possible because if v is a vertex of X(G,L) which is coloured by Alice in the k-th move,
then in the set N(v) there are at most k − 1 vertices coloured by Alice and at most k − 1

vertices coloured by Bob. Since 2k − 2 ≤ 2
⌈

d
2

⌉

− 2 < d(v) = |L(v)|, Alice can choose a

colour in L(v) for the vertex v. Thus, the vertices of X(G,L) can be coloured from their
lists. It is obvious (see Observation 1) that the vertices of Y(G,L) have a list colouring at
any move of the game.

For complete bipartite graphs we have χg(Kn,n) = 3 (n ≥ 2). From the next theorem
it follows that for almost all complete bipartite graphs the game choice number is greater
than the game chromatic number.

We will use the following notation. If Alice colours a vertex v with colour c at move
k, then it will be denoted by Ak := [f(v) = c]. Similarly, Bob’s k-th move will be denoted
by Bk.

Theorem 2 Let n =
(

k

b k+1

2
c

)(

k

d k+1

2
e

)

, k ≥ 2. Then chg(Kn,n) ≥ k + 2.

Proof. Let us denote the vertex classes of Kn,n by X = {x1, . . . , xn}, Y = {y1, . . . , yn}.
We split the 2k-element colour set {1, 2, . . . , 2k} into two disjoint k-sets C1 = {1, 2, . . . , k}
and C2 = {k + 1, k + 2, . . . , 2k} and, as lists for the vertices, we take the (k + 1)-subsets
that are split equally or almost equally between C1 and C2. If k + 1 is even, equal split
is possible, each of the selected (k + 1)-subsets will contain k+1

2
elements of C1 and k+1

2

elements of C2. If k + 1 is odd, each of the selected (k + 1)-subsets will contain k
2

+ 1
elements of C1 and k

2
elements of C2. Assign each of these (k + 1)-subsets of colours to

one vertex of the set X and to one vertex of the set Y .
To prove the theorem it is enough to find a winning strategy for Bob. We construct it

as follows. By symmetry, assume that Alice colours in the first move a vertex of X with
a colour from its list, say A1 := [f(x1) = c] and c ∈ Ci (i = 1 or i = 2). During the first
part of the game (at most k moves of Bob), Bob will play on the set X (because Alice
started to colour a vertex of X). Bob’s goal is to achieve a situation where at least d k+1

2
e
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colours of C1 and bk+1
2
c colours of C2 appear in X. If he can do so, then in the remaining

part of the game the attempted choice by Alice must fail in the set Y because the entire
list of some vertex yj ∈ Y is excluded by the partial colouring constructed on X.

If k is odd then Bob in the first move chooses an uncoloured vertex xj and assigns a
colour from L(xj) which is not in Ci. If k is even then Bob chooses for xj a colour from Ci.
Having done so, an even number of non-used colours remain in both C1 and C2. Then,
if in any one later step Alice colours a vertex of Y with a colour c ∈ Ci (i = 1 or i = 2)
then Bob colours a vertex of X which can be coloured with a new colour of the same Ci.
Otherwise, if Alice colours a vertex of X then Bob again chooses an uncoloured vertex of X
and assigns any new colour different than previously used by Alice and himself. The large
number of vertices implies that Bob can follow this rule until more than half of C1 and
not less than half of C2 appear in X. Thus (Kn,n, L) is not (k + 1)-game-list-colourable.

Let G be the r-partite graph Kt1,t2,...,tr such that t1 = t2 = ... = tr = 2. In [6] it
has been shown that the choice number of G is equal to r. It is easy to see that for this
graph we have χg(G) = chg(G) = ∆(G) + 1 = 2r − 1, because Bob can repeat the colour
assigned by Alice in each step, colouring the unique vertex nonadjacent to the latest choice
of Alice. From the next theorem it follows that if one of the independent sets contains at
least three vertices then chg(Kt1,t2,...,tr) ≤ ∆(Kt1,t2,...,tr).

Theorem 3 Let r ≥ 3, 1 ≤ i < r, t1 = t2 = ... = ti = 3, ti+1 = ... = tr = 2. Then

chg(Kt1,t2,...,tr) ≤ ∆(Kt1,t2,...,tr).

Proof. Let (G, L) be the r-partite graph that satisfies the assumptions of the theorem,
with a t-list-assignment where t = ∆(Kt1,t2,...,tr). Let V1, V2, ..., Vr be its independent sets
and let V1 = {v1, v2, v3}. We shall describe a winning strategy for Alice.

If there is a colour c such that c ∈ L(v1) ∩ L(v2) ∩ L(v3) then A1 := [f(v1) = c]. In
the second move Alice colours v2 or v3 with the colour c. Let C be the set of coloured
vertices after Bob’s second move. The subgraph G − C with the list assignment L′ such
that L′(v) = L(v)\

⋃

u∈N(v)∩C f(u) for v ∈ V (G−C) satisfies the assumptions of Lemma 1
and then Alice wins.

Suppose that L(v1)∩ L(v2) ∩ L(v3) = Ø. Then each colour of L(v1) ∪ L(v2)∪ L(v3) is
in at most two of the lists L(v1), L(v2), L(v3). Therefore Alice can choose a vertex vi such
that |L(vi) ∩ L(vj)| ≤

t
2

for i 6= j. Assume that vi = v1. Let V ′ ⊆ V \ V1 be the set of
vertices such that the subgraph induced by V ′ is the (r−1)-partite graph K2,2,...,2. For any
colour c let us denote the vertex set N(c) = {v ∈ V ′ : c ∈ L(v)}. In the first move Alice
colours the vertex v1 with the colour c0 such that |N(c0)| = min{|N(c)| : c ∈ L(v1)}.
Suppose that |N(c0)| ≤ r − 1. Let v be the vertex coloured by Bob in the first move
and B1 := [f(v) = c]. Then the graph (G − v1) − v with the list assignment L′ such
that L′(w) = L(w) \

⋃

u∈N(w)∩C f(u) for w ∈ V ((G − v1) − v) satisfies the assumptions of
Lemma 1. Hence Alice has a winning strategy.

Assume that |N(c0)| > r − 1. Let us denote |N(c0)| = r + d. We consider two cases:
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Case 1. In the first move Bob colours v2 or v3.
Assume that Bob colours v2. If c0 ∈ L(v3) then Alice puts A2 := [f(v3) = c0]. Let C

be the set of coloured vertices after Bob’s second move. The subgraph G − C with the
list assignment L′ such that L′(v) = L(v) \

⋃

u∈N(v)∩C f(u) satisfies the assumptions of
Lemma 1.

Suppose that c0 /∈ L(v3). If there is c ∈ L(v3) such that |N(c) ∩ N(c0)| ≤ r − 1 then
again by Lemma 1 Alice wins. We may assume that |N(c)∩N(c0)| ≥ r for c ∈ L(V3). We
show that in this case

∑

v∈N(c0) |L(v)| > |N(c0)|t which contradicts the assumption that
each vertex has been assigned to a list of length t. By the choice of c0, |N(c)| ≥ r + d
holds for all c ∈ L(v1). Then for any c ∈ L(v1) we have
∑

v∈N(c0) |L(v)| ≥ |N(c)∩N(c0)| ≥ |N(c)|−|V ′\N(c0)| ≥ r+d−2(r−1)+r+d ≥ 2(d+1)
and
∑

v∈N(c0) |L(v) ∩
⋃

u∈V1
L(u)| ≥

∑

c∈L(v1)∪L(v3) |N(c) ∩ N(c0)| ≥
∑

c∈L(v3) |N(c) ∩ N(c0)| +
∑

c∈L(v1)\L(v3) |N(c) ∩ N(c0)| ≥

rt + |L(v1) \ L(v3)|2(d + 1) ≥ rt + 2 t
2
(d + 1) > t(r + d) = |N(c0)|t,

a contradiction.

Case 2. In the first move Bob colours a vertex of V − V1.
If c0 ∈ L(v2) or c0 ∈ L(v3) then by Lemma 1 Alice has a winning strategy. Assume

that Bob colours the vertex v′ and B1 := [f(v′) = c′]. If c′ /∈ L(v2) or c′ /∈ L(v3) then
similarly as in Case 1 we can show that there is a colour c ∈ L(v2) (or c ∈ L(v3)) such
that |N(c) ∩ N(c0)| < r − 1. Then assume that c′ ∈ L(v2) and c′ ∈ L(v3) and, for all
c ∈ (L(v2) ∪ L(v3)) \ {c

′}, |N(c) ∩ N(c0)| > r − 1 holds. Then we have
∑

v∈N(c0) |(L(v) ∩
⋃

u∈V1
L(u)) \ {c′}| ≥

∑

v∈N(c0) |L(v) ∩
⋃

u∈V1
L(u)| − |N(c0)| ≥

∑

c∈L(v1)∪L(v3) |N(c) ∩ N(c0)| − |N(c0)| ≥
∑

c∈L(v3) |N(c) ∩ N(c0)| +
∑

c∈L(v1)\L(v3) |N(c) ∩ N(c0)| − |N(c0)| ≥

rt + |L(v1) \ L(v3)|2(d + 1) − |N(c′)| = t(r + d) + t − (r + d).

Recall that r + d = |N(c0)|. Since |N(c0)| ≤ 2(r − 1) < t, we have
∑

v∈N(c0) |L(v) ∩
⋃

u∈V1
L(u)| ≥

∑

v∈N(c0) |(L(v) ∩
⋃

u∈V1
L(u)) \ {c′}| > t(r + d) =

|N(c0)|t, a contradiction.

3 A characterization of graphs with game choice

number two

In this section we shall characterize the graphs for which Alice has a winning strategy in
the game list colouring for any 2-list assignment.

The following proposition trivially holds.

Proposition 2 If chg(G) = 2 then C2k+1 6⊆ G.
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Let us denote by H1 and H2 the 5-vertex graphs exhibited in Figures 1 and 3, respectively.

Lemma 2 If chg(G) = 2 then G does not contain any graph of the set {H1, P5, K2,3, H2}
as an induced subgraph.

Proof. Suppose that G contains an induced subgraph H isomorphic to H1. Let us denote
the vertices of H as in Figure 1. Let L be the 2-list-assignment such that L(v) = {1, 2}
for v ∈ V (H) and L(u) = {3, 4} for u ∈ V (G)−V (H). We will give a winning strategy for
Bob. If in the first move Alice colours a vertex v of H then Bob colours the vertex w of H
such that NH(v) ∩ NH(w) 6= Ø using another colour than Alice did. Thus a third colour
is necessary to colour the common neighbour of v and w. If in the first move Alice colours
a vertex v of G − H then Bob chooses the vertex x1 of H and he puts B1 := [f(x1) = 1].
After the second move of Alice, Bob colours a vertex w ∈ V (H) with NH(w)∩NH(u) = Ø
(u is a vertex coloured by Alice or Bob) using a colour different from the colour of u. Such
w can be chosen, no matter which vertex has been coloured by Alice (e.g., if Alice has
coloured x5, then Bob can consider u = x1 and w = x2). Then a third colour is necessary
to colour the common uncoloured neighbour of w and u.

u u u

u

u

@
@

@
@

�
�

�
�

x3 x4 x5

x1

x2

Figure 1. The graph H1

Suppose that G contains an induced subgraph P isomorphic to P5. Let V (P ) =
{x1, x2, x3, x4, x5} and E(P ) = {x1x2, x2x3, x3x4, x4x5}. Let L be the 2-list-assignment
such that L(v) = {1, 2} for all v ∈ V (P ) and L(u) = {3, 4} for all u ∈ V (G) − V (P ).
If Alice colours xi with colour j ∈ {1, 2}, the next move of Bob is to colour xi−2 or xi+2

with 3 − j. Otherwise, if Alice colours a vertex of G − P , Bob puts colour 1 on x3, and
then the colour 2 on x1 or x5 in his next move.

Suppose that G contains an induced subgraph K isomorphic to K2,3. Let us denote
the vertices of K as in Figure 2. Let L be the 2-list-assignment such that L(v) = {4, 5}
for v ∈ V (G) − V (K) and as given in Figure 2 for the vertices of K. Suppose that in
the first move Alice colours a vertex v of K. Then Bob chooses the vertex w such that
NH(v) ∩ NH(w) 6= Ø. It is easy to see that Bob can colour w from its list such that the
common neighbour of v and w cannot be coloured. Now, suppose that in the first move
Alice colours a vertex v of G−K. Then Bob’s move is B1 := [f(x1) = 1]. This leaves the
path x3x2x4 with the reduced lists {3}, {3, 4}, {4}, which is not list-colourable, no matter
how Alice and Bob play afterward.
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x3 x4 x5

x1 x2

{1,3}

{1,2}

{1,4} {2,4}

{3,4}

Figure 2. The 2-list-assignment of K2,3
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x1 x2

x3

x5

x4

{1,2} {1,2}

{1,2}

{1,3}

{1,3}

Figure 3. The 2-list-assignment of H2

Suppose that G contains an induced subgraph H isomorphic to H2. Let us denote
the vertices of H and its 2-list-assignment L as in Figure 3 and let L(v) = {3, 4} for
v ∈ V (G) − V (H). Assume that in the first move Alice colours a vertex of H. We may
assume that Alice colours neither x1 nor x3, otherwise Bob can make a move after which
the vertex x2 cannot be coloured. Suppose that Alice chooses the vertex x2. If she puts
A1 := [f(x2) = 1] then Bob answers B1 := [f(x4) = 3]. After such moves the vertex x5

cannot be coloured from its list. If A1 := [f(x2) = 2] then B1 := [f(x4) = 1]. Thus the
vertex x3 cannot be coloured. Similarly we can show that in the first move Alice cannot
choose to colour the vertex x4. If in the first move Alice colours x5 with colour 1 then
Bob colours the vertex x1 with 2. If Alice puts A1 := [f(x5) = 3] then Bob’s move is
B1 := [f(x3) = 1]. Hence a third colour is necessary to colour the vertex x4. If in the
first move Alice colours a vertex of G − H then Bob’s move is B1 := [f(x1) = 1]. If in
the second move Alice does not colour the vertex x2 or x3 then the second Bob’s move
is B2 := [f(x3) = 2]. Hence the vertex x2 cannot be coloured, but if the second move of
Alice is A2 := [f(x2) = 2] then Bob chooses B2 := [f(x4) = 1]. If A2 := [f(x3) = 1] then
Bob chooses B2 := [f(x5) = 3]. In both cases after Bob’s second move there is a vertex
in V (H), which cannot be coloured.

The next corollary is an immediate consequence of Lemma 2.

Corollary 1 If chg(G) = 2 then each component of G is isomorphic to P4 or C4, or Sk

for some k ≥ 1.
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Let in the process of the game list colouring the graph G be partially coloured. We
introduce the following notation. Let C be the set of coloured vertices and U be the
set of uncoloured vertices. For any vertex v we will denote NC(v) = N(v) ∩ C and
NU(v) = N(v) ∩ U . We will say that the vertex x is safe if x is uncoloured and |L(x) −
⋃

u∈NC(x) f(u)| > |NU(x)|.
The definition immediately yields the following

Proposition 3 Suppose that in the process of the game list colouring a graph G is par-

tially coloured. If all uncoloured vertices of G are safe then Alice wins.

Now we will consider a game list colouring but with the first move of Bob. The rest
principles of the game are the same: Two players Alice and Bob play alternately but
Bob has the first move. Alice’s goal is to provide a proper list colouring of the graph
and Bob’s goal is to prevent her from doing so. We shall refer to this version as B-game

list colouring . The original version, i.e. Alice moving first, will sometimes be called the
A-game.

If Alice has a winning strategy on H in the B-game then in some situations she can
use it for finding a winning strategy on a larger graph G, which contains H such that
|V (G) \ V (H)| is odd. Let k be an integer and G be a graph such that G = G1 ∪ G2 and
|V (G1)| is odd. If Alice has a winning strategy in the A-game on G1 with k colours and
she also has a winning strategy with k colours in the B-game on G2 then she can obtain a
winning strategy on G in the following way: First Alice marks the vertex of G1 according
to her winning strategy on G1. After that she plays on Gi (i = 1 or i = 2) if and only if
Bob has played on Gi in his previous move. In each move she follows her winning strategy
in the A-game or B-game, according as i = 1 or i = 2.

Lemma 3 Alice has a winning strategy in the B-game list colouring on P4.

Proof. Let V (P4) = {x1, x2, x3, x4} and E(P4) = {x1x2, x2x3, x3x4}. Bob has the first
move.

Suppose that Bob’s move is B1 := [f(x1) = a]. Alice chooses vertex x3. If L(x2) 6=
L(x3) then Alice colours the vertex x3 with the colour from L(x3) which is not in L(x2).
After this move all vertices of P4 are safe; then by Proposition 3 Alice wins. Now assume
that L(x2) = L(x3). If a ∈ L(x3) then A1 := [f(x3) = a]. Otherwise Alice can colour x3

with any colour of L(x3) and after her move all vertices of P4 are safe.
If Bob’s move is B1 := [f(x2) = a] then Alice colours x3 using another colour than

Bob did. Then all vertices of P4 are safe. The lemma follows.

Since chg(P4) = 3, we also have

Corollary 2 If chg(G) = 2 and P4 ≤ G then |V (G) − V (P4)| is odd.

Lemma 4 Let (C4, L) be the 4-cycle with the 2-list-assignment L as in Figure 4 or Fig-

ure 5. Then Alice has a winning strategy on (C4, L) in the A-game and Bob has a winning

strategy on (C4, L) in the B-game.
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Proof. First let us consider A-game, Alice has the first move and A1 := [f(x2) = a]. If
Bob colours the vertex x1 or x4 then after his move all vertices of the graph are safe. If
Bob colours the vertex x3 using the colour b or c then Alice colours x1 with d, thus after
her move the vertex x4 can be coloured with a.

Now assume that Bob starts. It is easy to see that Bob can win, as in the first move
he can colour the vertex x1 using colour a and then the rest is uncolourable.
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Figure 4. Figure 5.

Corollary 3 If chg(G) = 2 then G does not contain two vertex-disjoint C4s.

Let G be a graph with a subgraph isomorphic to C4 and with a 2-list-assignment L.
From Lemma 4 it follows that there are 2-list-assignments of C4 such that in a winning
strategy of Alice, she must start choosing a vertex of C4. But there are also 2-list-
assignments such that Alice wins if and only if in the process of the game list colouring
Bob first colours a vertex of C4.

Lemma 5 Let L be a 2-list-assignment of C4, other than the lists in Figure 4 and Fig-

ure 5. Then Alice has a winning strategy in the B-game list colouring on (C4, L).

Proof. Let V (C4) = {x1, x2, x3, x4}, E(C4) = {x1x2, x2x3, x3x4, x4x1}. Without loss of
generality assume that Bob chooses x1 and puts B1 := [f(x1) = a]. If a ∈ L(x3) then
Alice colours A1 := [f(x3) = a]. Hence all vertices are safe and Alice wins. Then assume
that a /∈ L(x3) and L(x3) = {b, c}. If neither A2 := [f(x3) = b] nor A2 := [f(x3) = c]
leaves both x2 and x4 colourable (i.e., if Alice cannot win by colouring x3), then their
lists must be L(x2) = {a, b} and L(x4) = {a, c}, or vice versa. Thus, the list assignment
is isomorphic to the one in Figure 4 or 5, depending on whether the second element in
L(x1) is a new colour or one of b and c.

Corollary 4 If chg(G) = 2 and C4 ≤ G then |V (G) − V (C4)| is odd.

Since Alice has a winning strategy on any star forest in both the A-game and B-game
list colourings, we obtain the main result of this section.

Theorem 4 Let G be a graph with at least one edge. Then chg(G) = 2 if and only if G
is a star forest or G = kP4 ∪ tC4 ∪ H, where k ≥ 0, t ∈ {0, 1} and H is a star forest of

odd order.
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