
Information flows, graphs and their guessing numbers

Søren Riis
Queen Mary, University of London

smriis@dcs.qmul.ac.uk

Submitted: Jan 9, 2006; Accepted: May 28, 2007; Published: Jun 7, 2007

Mathematics Subject Classification: 05C20, 68Q17,68R10

Abstract

Valiant’s shift problem asks whether all n cyclic shifts on n bits can be realized if
n(1+ε) input output pairs (ε < 1) are directly connected and there are additionally m
common bits available that can be arbitrary functions of all the inputs. If it could be
shown that this is not realizable with m = O(n

log log n
) common bits then a significant

breakthrough in Boolean circuit complexity would follow. In this paper it is shown
that in certain cases all cyclic shifts are realizable with m = (n−nε)/2 common bits.
Previously, no solution with m < n− o(n) was known, and Valiant had conjectured
that m < n/2 was not achievable. The construction therefore establishes a novel
way of realizing communication in the manner of Network Coding for the shift
problem, but leaves the viability of the common information approach to proving
lower bounds in Circuit Complexity open. The construction uses the graph-theoretic
notion of guessing number.

As a by-product the paper also establish an interesting link between Circuit
Complexity and Network Coding, a new direction of research in multiuser informa-
tion theory.

1 Introduction

The problem of proving superlinear lower bounds on the size of circuits for an explicitly
defined sequence of Boolean functions is still open after more than 30 years of intensive
research in Complexity Theory. The problem is open even if we consider the case where we
look for functions with n input bits and n output bits, and where the depth of the circuit
is in O(log(n)). For a detailed discussion and further survey of this class of problems and
their link to communication complexity and matrix rigidity see [7].

In this paper we relate this fundamental problem in Complexity Theory (more specif-
ically we focus on Valiant’s Shift problem that has been - and is still open, for more than
30 years), to a new type of problem in Graph Theory. Each directed graph has (for each
s ∈ {2, 3, . . .}) associated a number (the guessing number), we will define in this paper.

the electronic journal of combinatorics 14 (2007), #R44 1

The notion of guessing number (that was first introduced by Riis in [10] and [9]) is new.
We link the guessing number to solvability of circuit information flow problems. These
are problems that are closely related to problems in Network Coding. Network Coding is
a new interesting direction of research in multiuser information theory (see for example
[5, 8, 4, 6, 14, 1, 13, 2, 3]).

Maybe the main contribution of this paper is to link central problems in Circuit
Complexity Theory with the area of Network Coding (multiuser information theory) and
Graph Theory (guessing numbers).

In [12] Valiant put forward four related conjectures. It turns out that the two most
“risky” of these are not quite valid. We reduce the two other (and more safe) conjectures
to a pure graph theoretical problem concerning guessing numbers.

In my judgement (and this paper provide some evidence of this) progress in under-
standing and bounding guessing numbers for various natural classes of graphs is needed in
order to solve some of the long-standing open questions in Circuit Complexity problems.

2 A game of cooperation

Consider the following game: assume that n players each has a fair s-sided die (each die
has its sides labelled as 1, 2, . . . s). The players (simultaneously) throws their dice in such
a manner that no player knows the value of their own die. Suppose each player has to
guess the value of their own die. The probability that each of the n players is able to
guess correctly the value of their own die is (1

s
)n.

Assume now that each player knows the values of all dice except the value of their own
die. What is the probability that each of the n players correctly guesses the value of their
own die?

From a superficial perspective it might appear that, since each of the players only has
access to “irrelevant” information, the probability that all n players guess their own die
value correctly remains (1

s
)n. As it happens the question is ill-posed since the probability

actually depends on which “strategy” the players adopt!
If each player, for example, believes (and acts accordingly) that the sum of all dice

values (including their own die) is divisible by s, the probability that all players (simul-
taneously) guess their own dice value correctly is 1

s
.

Thus the players have a collective guessing strategy that ensures that all players are
correct if (and only if) one player is right. Either all players are right (p = 1

s
), or all

players are wrong (p = 1 − 1
s
).

Intuitively it should be quite clear what a guessing strategy for the players is. Player j
(j ∈ {1, 2, 3, . . . , n}) receives die values x1, x2, . . . , xj−1, xj+1, . . . , xn and calculates a value
fj(x1, x2, . . . , xj−1, xj+1, . . . , xn) ∈ {1, 2, . . . , s}. This value represents player j’s guess.
Thus each guessing strategy is given by n functions f1, f2, . . . , fn. The total number of
guessing strategies is snsn−1

. For each of these strategies there is associated a probability
that all players simultaneously guess correctly their own dice values. A strategy that leads
to a probability that is maximal is called an optimal strategy.

the electronic journal of combinatorics 14 (2007), #R44 2

We just showed that an optimal guessing strategy achieves a probability of at least 1
s
,

and since the probability that a given single player guess correctly is 1
s
, this probability

is indeed optimal. The players have actually many different optimal guessing strategies.
One type of optimal strategy generalises naturally the “0 modulo s” strategy we already
considered. This strategy appears if the players agree in advance to fix a group G with s
elements (so each die value is an element in the group G). Furthermore the players agree
that the product of all n dice values is 1 ∈ G (or any other fixed element g ∈ G). Each
player can calculate (also if G is non-commutative) the unique die value that makes the
total product 1. If each player ‘guesses’ according to this strategy, the players guess their
own die value correctly if and only if the product (in the group G) of the dice values is 1.
This happens with probability 1

s
.

Actually, it is not hard to see that the set of optimal guessing strategies consists exactly
of the strategies that can be each defined by a n dimensional latin hypercubes of order s.
A latin hypercube (of order s) is the obvious generalisation of a latin square (of order s)
to higher dimensions. So a 2 dimensional latin hyper cube of order s is an ordinary latin
square of order s, and a 3 dimensional latin hypercube of order s is a latin cube of order
s. In general, we can view an n-dimensional latin hyper cube of order s as a mapping
f : {0, 1, 2, . . . , s− 1}n → {0, 1, 2, . . . , s− 1} that maps A bijectively to A whenever n− 1
of the arguments of f are fixed.

3 Playing the guessing game on a graph

The class of games we considered in the previous section can be viewed as a subclass of
a much wider class of cooperative games.

Graphs in our setting are always directed graphs. Formally a graph G = (V, E) is a
pair of sets with E ⊆ V × V . As usual there is an edge from v ∈ V to w ∈ V if and only
if (v, w) ∈ E.

For each graph G = (V, E) and for each value s ∈ {2, 3, 4, . . . , } we define a cooperative
game. The game denoted by Game(G, s) is played as follows: Each node (vertex) v ∈ V
corresponds to a player, and each of the players independently gets assigned a die value
from a finite set A of s elements. As in the previous game the task of the players (as a
group) is to maximise the probability that they all simultaneously correctly ‘guess’ their
own dice value. The die value of player v ∈ V is available to each player w ∈ V with
(v, w) ∈ E. In other words, player w ∈ V knows the dice value of the players v ∈ V with
(v, w) ∈ E. If (v, v) ∈ E player v knows the value of his/her own die.

A strategy for a player j in a node of in-degree d is given by a function fj that
maps {1, 2, . . . , s}d to {1, 2, . . . , s}. The total number of cooperative strategies is given

by sΣn
j=1

s
dj

where dj denotes the in-degree in node j.
The guessing game in the previous section corresponds to the complete graph on n

nodes.
In the guessing game that corresponds to the complete graph, the players have an

(optimal) strategy that guarantees all players guess correctly their own die value with

the electronic journal of combinatorics 14 (2007), #R44 3

probability 1
s
. This probability is a factor sn−1 better than uncoordinated random guess-

ing, a fact that will show us that the guessing number of the complete graph is n − 1
(since s is raised to the power n − 1).

As an example let us consider the graph on n-vertex that forms one oriented cycle.
In other words, let G = (V, E) where V = {1, 2, . . . , n} and E = {(1, 2), (2, 3), . . . , (j, j +
1), . . . , (n−1, n), (n, 1)}. As in the previous game, it is intuitively clear what is a strategy
in this game. Player j receives the value xj−1 (and player 1 receives the value xn). A guess-
ing strategy is a set of functions f1, f2, . . . , fn that each maps {1, 2, . . . , s} to {1, 2, . . . , s}.
In this game the number of strategies is sns. The players actually have a strategy S̃ that
ensures that they are all able to guess their own dice values (simultaneously) with a higher
probability than pure uncoordinated random guessing. If each player assumes that the
value of their own die is the same as the value they receive, all the players are correct,
if and only if all dice values are identical. This happens with probability (1

s
)n−1. This

is a factor s times better than pure uncoordinated random guessing. The strategy S̃ is
optimal since no cooperative guessing strategy can succeed with higher probability than
(1

s
)n−1 (to see this notice that for any guessing strategy, any subset of n−1 players cannot

do better than uncoordinated random guessing. Thus the best that can be achieved is
that every time n − 1 players guess correctly, all n players guess correctly).

Definition :

A graph G = (V, E) has for s ∈ N guessing number k = k(G, s) if the players in the
guessing game Game(G, s) associated to G and s have a strategy that ensures that
they all guess correctly their own dice values with probability (1

s
)|V |−k.

In other words a graph G has guessing number k if the players have a strategy that
succeeds with probability sk times higher than uncoordinated random guessing.

It turns out that for many graphs the guessing number is independent of s and is
an integer. However, in general it is possible to show that there exist graphs where
k = k(G, s) depends on s, and where the guessing number is not always an integer.

4 Information flow problems and guessing numbers

We will now consider another type of problem that turns out to be very closely related
to the guessing games.

Assume that we are given an acyclic graph N with input nodes i1, i2, ..., in and output
nodes o1, o2, . . . , on as well as an alphabet A. Each input node has indegree 0, and each
output node has outdegree 0. The problem is whether N can be turned into a circuit
that for each array of inputs (x1, x2, ..., xn) ∈ An where xj ∈ A is the input to input node
ij (j = 1, 2, ..., n), output the same array (x1, x2, ..., xn) ∈ An i.e. xj is the output of oj

(j = 1, 2, ..., n).
In other words the problem is whether N can be turned into a circuit that computes

the identity function when input nodes and output nodes are listed with increasing index
from left to right.

the electronic journal of combinatorics 14 (2007), #R44 4

The answer to this problem depends in general not only on N but also on the size of
the underlying alphabet A from which the inputs as well as function values are taken. In
circuit complexity usually A contain only the two “letters” 0 and 1, but the alphabet can
in our setting be any (finite) set given in advance. We say the information flow problem
(N, A) is solvable if N can be turned into a circuit that computes the identity function
over the alphabet A as explained above.

Let GN denote the directed graph that appears by identifying each input node with the
corresponding output node (i.e. by identifying the nodes ij and oj for each j = 1, 2, ..., n).
This conversion of an information network to the graph GN is unique.

The (surprising) link between information flow problems and directed graphs is based
on the following fact:

Theorem(1) :

The information flow problem (N, A) with n input/output nodes has a solution
over alphabet A with |A| = s if and only if the graph GN has guessing number
k(G, s) ≥ n.

Furthermore GN has guessing number k(G, s) ≥ n if and only if k(G, s) = n.

An information problem involves mathematically speaking slightly complicated con-
cepts like set of source nodes, set of receiver nodes as well as set of requirements that
specifies the destination of each input. As pointed out in [10, 9] the main point of the
theorem is that it replace the information flow problem with an equivalent problem that
can be expressed in pure graph theoretic terms (no special input or output nodes).

One important point is that each multiple unicast problem - an important type of
communication networks problem in Network Coding - essentially is equivalent to an
Information flow problem as I just defined it. The conversion from one to the other can
be achieved via the well-known graph to line-graph conversion (see for example [8]).

The theorem can in fact be stated in a stronger form:

Theorem(2) :

The set of solutions of a information flow problem (N, A) with n input/output nodes
are in one-to-one correspondence with the set of guessing strategies (over alphabet
A with |A| = s) that ensure that the players in the guessing game played on GN

have success with probability (at least) (1
s
)|GN |nodes−n (where |GN |nodes denotes the

number of nodes in GN).

Theorem 2 was first stated and proved in [10, 9]. Here I present a proof in a slightly
more compact format.
Proof of theorem 1 and 2: Consider the graph GN = (V, E). The set V of nodes can
be divided into two disjoint sets: the set I of nodes in GN that corresponds to the inner
nodes in N (i.e. nodes that are not input or output nodes in N), and the set J of n
nodes in GN that corresponds to the n input and n output nodes in N . The set I consists
of |GN | − n nodes. The sub-graph of GN restricted to I is an acyclic graph (since N is

the electronic journal of combinatorics 14 (2007), #R44 5

acyclic). Thus as we already noticed for any strategy by the players (it does not matter
which) the nodes in I all guess correctly their own die value with probability (1

s
)|I|. But,

this shows that the probability all players in GN guess correctly their own die value is at
most (1

s
)|I|. Theorem 1 follows because this probability can be achieved if and only if the

players in J (corresponding to the output nodes in N) are able to work out their own die
value with probability 1 (given that all players in I correctly worked out their own die
values).

To prove Theorem 2 consider a guessing strategy (i.e. a set of specific functions
assigned to the nodes in GN).

If we assign the same functions to the information network N (the output nodes
o1, o2, . . . , on get assigned the specific functions assigned to the nodes J in GN).

Conversely, any attempted solution to N can be converted to a guessing strategy
by the same assignment. Thus the space of coding functions for N is in a natural 1-1
correspondence with the space of guessing strategies to the graph GN . Furthermore, a
coding function for N solves the information problem for N if and only if the conditional
probability that the n nodes in J guess correctly their own die values (given that all
“inner” nodes (i.e. all the nodes in I) guess correctly their own die values) is 1. ♣

5 Analysis of a specific class of graphs

One interesting class of graphs that are linked to the conjectures I will put forward
later, consists of (what I will call) Clock-graphs. For each pair of numbers (n, r) with
r ≤ b(n − 1)/2c we define a graph Gclock(n, r). It has vertex set V := {0, 1, 2, . . . , n − 1}
and edge set E := {(v, w) : w − v ∈ {1, 2, . . . , r}, where the difference w − v is calculated
modulo n.

We will show:

Proposition A :

The graph Gclock(n, r) has guessing number r.

Proof: Consider the subgraph of Gclock(n, r) that contains the vertex {0, 1, 2, . . . , n −
r − 1}. This graph is acyclic (because r ≤ b(n − 1)/2c) so the players cannot do better
than pure uncoordinated random guessing. Thus the nodes 0, 1, 2, . . . , n − r − 1 are all
correct with probability (1

s
)n−r. Thus, the players in the graph Gclock(n, r) are all correct

with probability at most (1
s
)n−r. Equality appears if and only if the players have chosen

a strategy that ensures that all n players guess correctly their own die value if and only
if players 0, 1, 2, . . . , n − r − 1 all guess their own dice value.

Using simple linear algebra it is now straight forward for the players to derive their own
dice values from the n−r values xj+xj+1+. . .+xj+r = 0 modulo s for j = 0, 1, . . . , n−r−1
(public information). ♣

A more general class of clock graphs appears if we, for each n and for each subset
S ⊂ {0, 1, 2, . . . , n − 1} with 0 6∈ S and v ∈ S → −v 6∈ S, define a graph Gclock(n, S)
with vertex set V := {0, 1, 2, . . . , n − 1} and edge set E := {(v, w) : w − v ∈ S}. The

the electronic journal of combinatorics 14 (2007), #R44 6

resulting graphs have no self-loops (since 0 6∈ S) and it has no undirected edges (since
(v, w) ∈ E → w − v ∈ S → v − w 6∈ S → (w, v) 6∈ E).

It is an open problem whether the graph Gclock(n, S) in general has guessing number
≤ |S|.

6 A Game with public information

Let me briefly return to the n player game on the complete graph Kn. As we noticed the
players have a guessing strategy so they all guess correctly if the sum of the dice values
are 0 modulo s.

Actually if the players know the sum of the dice values modulo s each player can
deduce the value of their own die. Put in other terms, if each player has access to a
public channel that can broadcast one of w = s possible messages (i.e. the channel has
bandwidth b(G, s) := 1) they can all (provided the message broadcast is the correct one),
deduce the value of their own die.

As another example, consider the graph G = (V, E) with vertex set V := {0, 1, 2, . . . ,
n − 1} and edge set E := {(0, 1), (1, 2), . . . , (j, j + 1), . . . , (n − 2, n − 1), (n − 1, 0)}. We
already notice that its guessing number was 1, i.e. that the players have a strategy that
guarantees they all guess correctly with probability (1

s
)n−1 and that this is the best possible

result they can achieve. Assume that the players know (through a public broadcast) the
values x0 − x1, x1 − x2, . . . , xj − xj+1, . . . , xn−2 − xn−1 where xj denotes the value of die j.
Then each player can deduce their own die value. Player j + 1 knows the value of xj and
xj+1 − xj from which xj+1 can be calculated. Player 0, can calculate x0 − xn−1 and know
the value of xn−1 from which x0 can be derived. Thus if the public channel has bandwidth
b(G, s) := n − 1 (can broadcast sk−1 messages), the players can always derive the value
of their own die.

For an alphabet size s we define the information defect b(G, s) of a graph G as logs(w)
where w denotes the smallest number of public messages m1, m2, . . . , mw that can be
broadcasted to all players, ensuring that each player is always able to deduce the value of
his/her die.

In general, where G = (V, E) can be any graph, the guessing number k(G, s) and the
information defect b(G, s) are related. In general, k(G, s) + b(G, s) ≥ |V | and for many
graphs k(G, s) + b(G, s) = |V |.

Lemma 3 :

For any graph G = (V, E) and any s ∈ {2, 3, 4, . . .} |V | ≤ k(G, s) + b(G, s).

Proof: Let G be a (directed) graph and with information defect b = b(G, s). Then, by
definition, there exists a method by which we, by broadcasting one of sb(G,s) messages
to all nodes, can insure that each node j can derive their own die value xj ∈ A. If
the dice values x1, x2, . . . , x|V | are selected randomly (and independent), each message m
is broadcasted with a certain probability p(m). Since Σmp(m) = 1, there must exist a
message m0 that is broadcasted with probability ≥ (1

s
)b(G,s). This is a factor s|V |−b(G,s)

the electronic journal of combinatorics 14 (2007), #R44 7

better than pure uncoordinated random guessing in the guessing game on G. Thus if the
players in the guessing game all guess their own die value under the assumption that the
public message m0 is broadcasted, they are all correct if this is indeed the case. Thus the
guessing number k(G, s) is ≥ |V | − b(G, s) and b(G, s) + k(G, s) ≥ |V |. ♣

We will now state and prove a theorem related to Theorem 1.

Theorem 4 :

An information flow problem (N, A) with n input nodes, n output nodes and r
internal nodes, has a solution if and only if the graph GN has information defect
b(G, |A|) ≤ r. Furthermore GN has information defect b(G, |A|) ≤ r if and only if
b(G, |A|) = r.

Proof: (only if): Assume first that the flow problem N has a solution. We want to show
that b(G, s) ≤ r. The set of nodes in GN can be divided into two disjoint sets. The set I
of nodes that corresponds to the inner nodes in N and the set J of n nodes in Gn that
corresponds to the n input and n output nodes in N . For each inner node let zj denote
the actual value of player j’s die. Let z̃j denote the value the corresponding node in N
would take according to the solution where all n inputs are given by the actual die values
assigned to the n nodes in J . Assume that all players have access to the values zj − z̃j

for each j ∈ I. This information can be provided by a public channel of bandwidth r.
Each player can now calculate their own die value. To see this consider first a player that
corresponds to an inner node j in GN . This player has access to some inner nodes and
possibly to some input nodes (nodes in J). From these values and the public information,
the player can calculate z̃j. And from zj − z̃j (that is publicly available) the player can
calculate zj.

Consider now a node in j ∈ J . This node j has access to nodes in I, as well as possibly
some nodes in J . For each node i ∈ I that have a value that is available to node j, the
node has access to zi as well as the public information zj − z̃i. From this node j can
calculate z̃i. But then each node j ∈ J can calculate xj.

(if): Assume that we can send r messages through the public channel in such a fash-
ion each node in GN can calculate its own value. But then Gn has information defect
b(GN , s) ≤ r. We already showed that the guessing number b(GN , s) + k(GN , s) ≥ |V | =
n + r. Thus k(GN , s) ≥ n which according to Theorem 1 ensures that the Circuit infor-
mation flow problem N has a solution. Again according to Theorem 1, k(GN , s) = n and
thus b(GN , s) ≥ r. Thus b(GN , s) = r if and only if b(GN , s) ≤ r. ♣

7 Valiant Conjectures

In [12] (based on [11]) Valiant put forward four conjectures. In this section I will present
the conjectures using Valiant’s terminology. Valiant introduces his conjectures as follows:

Let G be a bipartite graph with node set X∪Y where X = {x1, x2, . . . xn} and
Y = {y1, y2, . . . yn} denote input variables and output functions respectively.

the electronic journal of combinatorics 14 (2007), #R44 8

Suppose that edges are defined implicitly by a mapping τ where τ(yi) ⊆
X is the set of input nodes that are adjacent to yi in the graph. Define
m Boolean functions f1(x), f2(x), . . . fm(x) and n further Boolean functions
g1, g2, . . . , gn, where gi has m+|τ(yi)| Boolean arguments, such that with some
abuse of notation, each yi can be an arbitrary function of these m common
bits and the inputs τ(yi) to which it is connected directly in G. Valiant goes
on to say that G realizes a permutation ρ with m common bits if there exists
f1, f2, . . . fm, g1, g2, . . . gn such that for all i, 1 ≤ i ≤ n

xρ(i) = gi(f1(x), . . . fm(x), τ(yi)).

In other words (still quoting Valiant), for the fixed G and given ρ one can find
the appropriate Boolean functions such that yi realises the permutation ρ of
{xi} for all truth assignments of {xi}. Valiant then goes on to conjecture:

Conjecture(1) :

If G has degree ≤ 3 (for sufficiently large n) there is a permutation ρ such that G
does not realize ρ with n/2 common bits.

Conjecture(2) :

If G has O(n1+ε) edges for some ε > 0, for n sufficiently large, there is a permutation
ρ such that G does not realize ρ with n/2 common bits.

Conjecture(1′) :

If G has degree ≤ 3 (for sufficiently large n) there is a cyclic shift ρ such that G
does not realize ρ with n/2 common bits.

Conjecture(2′) :

If G has O(n1+ε) edges for some ε > 0, for n sufficiently large, there is a cyclic shift
ρ such that G does not realize ρ with n/2 common bits.

Conjecture 2′ is in some sense the most important of Valiant’s conjectures. Valiant
showed that if this conjecture have direct consequences and leads to new results in circuit
complexity. These Complexity questions have now been open for more than 30 years.
As it happens, we will show that Conjecture 2′ is false. However, it can be replaced by
a slightly stronger (and presumably correct) conjecture that essentially have the desired
consequences in Circuit Complexity Theory.

8 Expressing Valiant’s conjectures in terms of guess-

ing numbers

Assume that we are given a graph G with vertex set V := {0, 1, 2, . . . , n − 1} and edge
set E ⊆ V × V .

the electronic journal of combinatorics 14 (2007), #R44 9

For each s ∈ {0, 1, 2, . . . , n − 1} we define the graph Gs (G shifted by s) as the graph
with vertex set V and edge set Es := {(i, j+s) : i ∈ V, (i, j) ∈ E} where j+s is calculated
modulo n. This definition depends on both the graph G as well as on the labelling of its
vertex.

For each permutation π ∈ Sn we also define the graph Gπ (G permuted by π) as the
graph with vertex set V and edge set Eπ := {(i, π(j)) : i ∈ V, (i, j)) ∈ E}. Unlike the
shift operation, the permutation operation is independent of the labelling of the underlying
vertex set.

We will now state four conjectures that are equivalent to the four conjectures discussed
in the previous section.

Conjecture 1 :

Let G be a graph with n vertex and assume that all vertex have out-degree (in-
degree) ≤ 3. Then (provided n is sufficiently large) there exists a permutation
π ∈ Sn such that Gπ has information defect b(Gπ, 2) > n/2.

Conjecture 2 :

Let ε > 0. Let G be a graph with n vertex and less than n1+ε edges. Then
(provided n is sufficiently large) there exists a permutation π ∈ Sn such that Gπ

has information defect b(Gπ, 2) > n/2.

Conjecture 1′ :

Let G be a graph with n vertex and assume that all vertex have out-degree (in-
degree) ≤ 3. Then (provided n is sufficiently large) there exists a shift s ∈ {0, 1, 2,
. . . , n} such that Gs has information defect d(Gs, 2) > n/2.

Conjecture 2′ :

Let ε > 0. Let G be a graph with n vertex and less than n1+ε edges. Then
(provided n is sufficiently large) there exists a shift such that Gs has information
defect d(Gs, 2) > n/2.

Sparse graphs might have a relatively high guessing number (i.e. allow a lot of coher-
ence). However, intuitively having a high guessing number is a “sporadic” property and
that in general gets destroyed when the graph is modified through shifts or permutations.

Despite this intuition, there is a limit to how much shifts can insure a drop in guessing
numbers of a sparse graph. In the next section we will show that Conjecture 2′ is actually
false and that it is possible to construct a sparse graph G together with a labelling such
that G as well as all shifts Gs have guessing number > n/2 and information defect < n/2.

As we already pointed out, Conjecture 2′ is in some sense the most important of
Valiant’s conjectures. Had it been correct, this would have had direct consequences for
providing new lower bounds in circuit complexity. None of the other three conjectures are
known to have such strong consequences. Never-the-less, the conjectures are interesting

the electronic journal of combinatorics 14 (2007), #R44 10

in their own right and we will reduce these conjectures to certain questions about guessing
numbers.

The good news (for proving a non-linear, O(log(n))-depth lower bound for the shift
problem) is that a simple modification of Valiant’s Conjecture 2′, does imply such a lower
bound.

This follows (according to Theorem 2.2 in [7]) from [11] where the following proposition
can be extracted:

Proposition C :

For every ε > 0, c and d, there exists K such that if F (the shift function) can be
computed by a circuit of size cn and depth d log(n), then it can be computed by a
graph G of degree at most nε with Kn

log(log(n))
common bits.

9 Counter examples to Valiant’s shift conjecture

We have restated Valiant four conjectures as propositions about the behaviours of the
information defect under shift and permutations.

Consider the graph G in Figure 1. Undirected edges represent bidirectional edges.
Later this graph will be defined as G9,3,1. The graph G(= G0) as well as its 8 shifted
versions G1, G2, . . . , G8 are all isomorphic (disregarding the labelling). Each of the graphs
Gj, j = 0, 1, 2, . . . , 8 has guessing number 6 and has information defect 3.
In terms of Valiant’s notions, the bipartite graph BG associated to G has each shift realised
by 3 common bits (the bipartite BG is the graph containing the 18 nodes {i0, i1, . . . , i8}
and {o1, o2, . . . , o8} with an edge (iv, ow) if and only if (v, w) ∈ G). Valiant’s Conjecture
suggest that at least n/2 bits (i.e. 5) common bits are needed for some shift.

The graph G := G23,5,1 in Figure 2(a) is invariant under shifts (if we disregard the
labelling). The graph in Figure 2(b) is a subgraph of G and it has guessing number 14
and information defect 9. Thus the graph G = G23,5,1 has guessing number ≥ 14 and
information defect ≤ 9. In Valiant’s terminology the bipartite graph BG associated to
graph the graph G = G23,5,1 has each of its 23 shifts realised by 9 (rather than at least 12
as suggested by the conjecture) common bits.

We now generalise these examples. Consider n, d, r ∈ N with k < n/2 and 0 ≤ r ≤
n − 1 we let Gn,d,r denote the graph that has vertex set {0, 1, 2, . . . , n − 1} and edge set
E = En,d,r consisting of all edges (i, j) with i + j ∈ {r, r + 1, r + 2, . . . , r + d − 1} (where
the sum is calculated modulo n).

Lemma 5 :

Let n ∈ N be an odd number and let k < n/2. Then for each r = 0, 1, 2, . . . , n − 1
the graphs Gn,d,r have guessing number k(G, s) ≥ n

2
+ d

2
and information defect

b(G, s) ≤ n
2
− d

2

Proof: Let W = {r, r + 1, . . . , r + d − 1}. Let n0 := n+1
2

and let d0 := d−1
2

. The graph
Gn,d,r contains d “self-loops” since the number of elements i with i+ i ∈ W is k (since n is

the electronic journal of combinatorics 14 (2007), #R44 11

1

2

3

4

56

7

8

0

G=G0

0

1 3

4

5

67

8

2

6

57

8

0 3

4

21

2 3

1 4

5

6

7

8

0 1

2

3

4

5

6

78

0

3 4

2

1

5

6

7

8

0

4

3

2

1

0 8

7

6

5

5

4

3

2

1 0

8

7

6
4 5

6

7

8

0

1

2

3

4G

2G

8G6G

G
5G

3

G
1

G7

Figure 1: G9,3,1 and its 8 shifted versions

odd). Assume first that r = 2v is even. In this case the d vertex v, v + 1, v + 2, . . . , v + d0

as well as n0+v, n0+(v+1), . . . n0+(v+d0−1) have self-loops. The edges (v−i, v+d0+i)
and (v + d0 + i, v − i) for i = 1, 2, . . . , n0 − d0 − 1 form a partitioning of the n − d vertex
that have no self-loop.

Thus Gn,d,r contains a disjoint union of n−d
2

cliques of size 2, as well as d vertex with
self-loop. Thus Gn,d,r has guessing number k(G, s) at least n

2
+ d

2
. The graph Gn,d,r

has information defect b(G, s) ≤ n
2
− d

2
, since we can simply broadcast the messages

xv−i + xv+d0+i for i = 1, 2, . . . , n0 − d0 − 1 through the public channel. ♣
Let n ∈ N be an odd number and let k ∈ N be an odd number. Let G̃n,d denote the

class of graphs Gn,d,r with r = 0, 1, 2, . . . , n − 1.
There are, of course, many “sparse” graphs with guessing number above n/2. The

point of the graphs in G̃n,d considered in the previous lemma is that:

Lemma 6 :

The class G̃n,d is closed under shifts. More specifically, for any shift s, the graph
Gn,d,r shifted by s is identical to Gn,d,r+s (i.e. Gs

n,d,r = Gn,d,r+s).

Proof: Let G ∈ G̃n,d and let s ∈ {0, 1, 2, . . . , n − 1} be a shift. The graph Gs
n,d,r (Gn,d,r

with the heads of all edges shifted by s) is given by Gn,d,s+r i.e. by a graph in G̃n,d. ♣

the electronic journal of combinatorics 14 (2007), #R44 12

12

13

14

15

16

17

18

10

9

8

11

7

6

19

20

521

22 4

30

1 2

12

13

14

15

16

17

18

10

9

8

11

7

6

19

20

521

22 4

30

1 2

(b)(a)

Figure 2: G23,5,1 violating the conjecture

This shows that the information defect of the graphs G ∈ G̃n,d (and any shift s of
those) is at most n

2
− d

2
. For 1 > ε > 0 and for d = nε the graphs in S̃ are (for large

values of n), sparse in the sense assumed in Valiant’s conjectures. More specifically we
have shown:

Proposition 7 :

Let ε ∈ R with 0 < ε < 1 be any fixed real number. Let Gn ∈ G̃n,nε, n = 1, 2, 3, . . .
be any sequence of graphs. Then each graph Gn has (at most) n1+ε edges and
each graph Gn as well as each of its shifts has information defect b(G, s) with
b(G, s) ≤ n

2
− nε

2
. This violates Valiant’s Conjecture 2′ that implies that for each

sparse graph G with ≤ n1+ε edges there always exists a shift s such that Gs has
information defect at least n

2
.

10 Modifying Valiant’s conjectures

Valiant’s conjecture 2 for graphs of in-degree (out-degree) bounded by 3 seems to be
correct (except that we will have to change n

2
with n−3

2
for n odd).

What about Conjecture 1 involving graphs of in-degree (out-degree) bounded by 3
and considering permutations instead of shifts? We will prove that this conjecture follows
from the following statement:

the electronic journal of combinatorics 14 (2007), #R44 13

Statement S :

Let G be a directed graph with n nodes and dn edges (where d ∈ N). Assume that
G is loop-free and has no undirected edges. Then G always has a guessing number
≤ n

2
− n

4d+2
.

There is some evidence that Statement S is valid, and it is tempting to upgrade
statement S to a conjecture. The main evidence for statement S is that the ‘clock’ graphs
Gclock(2k+1, k) (with 2k+1 nodes and out-degree k) have guessing number k. Statement
S is based on the assumption that the highest guessing number of a loopfree graph G
without undirected edges and with ≤ kn edges, is achieved by dividing the n nodes into
b n

2k+1
c disjoint clock graphs of type Gclock(2k + 1, k). This graph G has guessing number

close to kn
2k+1

(equality appears whenever n is divisible by 2k + 1).

In the case where k = 3 we get graphs G with guessing number 3n
7

. This value is
≤ n

2
− 11 for n ≥ 154.

Proposition 8 :

Assume that Statement S is valid. Then the following statements are valid:

Statement S1: Assume that G is a graph with n nodes, with no selfloops and no
unoriented edges. Then G has guessing number strictly less than n/2.

Statement S2: Assume that each node in G has in-degree (out-degree) at most 3
and that G does not contain selfloops or undirected edges and contain at least 154
nodes. Then G has guessing number ≤ n

2
− 11.

Statement S3: Assume that d ∈ N and that G is a graph with n nodes and ≤ dn
edges. Further, assume that G does not contain self-loops or undirected edges. Then
G has guessing number ≤ n

2
− α for n ≥ α(4d + 2).

The statement S2 implies that Valiant’s conjecture 1 is valid for n ≥ 175, while
statement S3 for d = nε implies that Valiant’s conjecture 1′ is valid for n ≥ 4d2(4d + 3)
which is always valid for ε << 1

4
and n ≥ 4.

Proposition 9 is a special case of Proposition 10. Though we could strictly speaking
avoid proving Proposition 9 (since it can be derived from Proposition 10) the proof idea is
somewhat more transparent in the proof of Proposition 9 (since the proof contains fewer
parameters).

Proposition 9 :

Statement S2 implies that each graph G with n ≥ 175 nodes satisfies Valiant’s
conjecture 1.

the electronic journal of combinatorics 14 (2007), #R44 14

Proof: First we show that statement S2 implies that for each graph with n ≥ 175 nodes
and in-degree (out-degree) ≤ 3 there exists a permutation π of n such that the graph Gπ

has guessing number < n/2. Let G be a graph for which each node has in-degree ≤ 3.
Assume that G has n ≥ 175 nodes. The number of edges in G is ≤ 3n. Some of the
edges might form a loop. Two pairs of edges might form an undirected edge. Let π ∈ Sn

be a randomly selected permutation (i.e. assume that each permutation is selected with
the same probability p = 1

n!
). We want to calculate the expected numbers of loops in Gπ

and the expected number of undirected edges in Gπ. The nice thing about calculating
expectation numbers is that we need not worry about dependence and independence
issues. Any edge (a, b) becomes a loop exactly for permutations with π(b) = a. Thus
the expected number of loops produced by a single edge is 1

n
. The expected number of

loops produced by e edges is e
n
. Thus the expected number of loops in the graph Gπ

is exactly e
n

≤ 3n
n

= 3. The expected number of undirected edges can be calculated
as follows: For two edges (a, b) and (c, d) with a, b, c and d distinct they produce an
undirected edge exactly when (a, π(b)) and (c, π(d)) have a = π(d) and c = π(b). The
expectation value of this is 1

n(n−1)
. If b = d or if a = c, a = π(d) and c = π(b) are not

possible if (a, b) 6= (c, d). If a = c and b = d (i.e when we have two loops (a, a) and (c, c)),
they produce an undirected edge exactly when π(a) = c and π(c) = a. The expectation
value for this to happen is 1

n(n−1)
. Thus if the number of all pairs (a, b) and (c, d) of edges

in G with b 6= d and a 6= c, is f , the expected number of undirected edges in Gπ is f

n(n−1)
.

The maximum number of such pairs of edges is bound by (3n)2 = 9n2. Thus the expected
number of undirected edges in Gπ is bound by 9n2

n(n−1)
≤ 9 + 9

n
< 10. And the expected

number of nodes that are involved in a loop or are one of the points in a undirected edge is
≤ 3+2(9+ 1

n
) < 22. Thus there must exist a permutation π such that 21 or less points are

involved with self loops or undirected edges. The graph Gπ restricted to those 21 points
might be a complicated subgraph with a mixture of undirected edges and directed edges.
The highest contribution these points can make to the guessing number is 21 (if each of
the 21 point, against our expectations, contains a self-loop). The guessing number never
decreases when more edges are added so we can - without loss of generality - assume that
the 21 points have self loops (producing a guessing number of 21). Now we restrict the
graph Gπ to the remaining n − 21 nodes. This graph has ≥ 175 − 21 = 154 nodes, it
has in-degree ≤ 3 and has no self loops and no undirected edges. Thus according to our
conjecture, it has guessing number ≤ n−21

2
− 11. From this it is not hard to show that Gπ

has guessing number ≤ n−21
2

− 11 + 21 ≤ n−1
2

< n
2
.

But since Gπ has guessing number k(Gπ, s) < n/2 and since k(Gπ, s) + d(Gπ, s) ≥ n
(Lemma 3), the information defect d(Gπ, s) is at least n − k(Gπ, s) > n

2
thus proving

Valiant’s conjecture 1. ♣

Proposition 10 :

Assume that statement S3 is valid in general. Let G be a directed graph G with
n ≥ 4d2(4d + 3) nodes and ≤ dn edges. Then there exists a permutation π ∈ Sn

such that Gπ has guessing number < n
2
. In particular, Valiant’s Conjecture 1′ is

valid for each n > 5 and ε < 1
4

the electronic journal of combinatorics 14 (2007), #R44 15

Proof: Assume that G = (V, E) is a graph with |V | = n ≥ (4d2)(4d+3) and ≤ dn edges.
We want to show (using statement S3) that there there exists a permutation π of n such
that the graph Gπ have guessing number < n/2. Some of the edges in G might form a
loop. And two pairs of edges in G might form an undirected edge. We want to show that
there exists a permutation π ∈ Sn such that Gπ has very few selfloops and undirected
edges.

Let π ∈ Sn be a randomly selected permutation (i.e. assume that each permutation is
selected with the same probability = 1

n!
). We want to calculate the expected number of

loops in Gπ and the expected number of undirected edges in Gπ. Any edge (a, b) becomes
a loop exactly for permutations with π(b) = a. Thus the expected number of loops
produced by a single edge is 1

n
. The expected number of loops produced by e edges is e

n
.

Thus the expected number of loops in the graph Gπ is exactly e
n
≤ dn

n
= d. The expected

number of undirected edges can be calculated as follows: For two edges (a, b) and (c, d)
with a, b, c and d distinct they produce an undirected edge exactly when (a, π(b)) and
(c, π(d)) have a = π(d) and c = π(b). The expectation value of this is 1

n(n−1)
. If b = d, or

if a = c, a = π(d) and c = π(b) are not possible (when (a, b) 6= (c, d)). If a = c and b = d
(i.e when we have two loops (a, a) and (c, c)), the two edges produce an undirected edge
exactly when π(a) = c and π(c) = a. The expectation value for this to happen is 1

n(n−1)
.

Thus if the number of all pairs (a, b) and (c, d) of edges in G with b 6= d and a 6= c, is f , the
expected number of undirected edges in Gπ is f

n(n−1)
. The maximum number of such pairs

of edges is bound by (dn)2 +2d2

n
+2 d2

n2−n
≤ 3d2 (for n ≥ 3). Thus the expected number of

undirected edges in Gπ is bound by 3d2. The expected number of nodes that are involved
in a loop or in an undirected edge is ≤ 3d2. Thus there must exist a permutation π such
that 3d2+d ≤ 4d2 or less points are involved with selfloops or undirected edges. The graph
Gπ restricted to those 4d2 points might be very complicated with a mixture of undirected
edges and directed edges. The highest contribution these points can make to the guessing
number is 4d2 (if each of the 2d4 point, against our expectations, contains a selfloop). The
guessing number never decreases when more edges are added so we can - without loss of
generality - assume that the 4d2 points have self-loops (producing a guessing number of
4d2). Now we restrict the graph Gπ to the remaining n′ := n− 4d2 nodes. This graph has
≥ dn = d′n′ = dn

n′
n′ edges, has no self loops and has no undirected edges. Thus according

to Statement S3, it has guessing number ≤ n′

2
− α′ for n′ ≥ α′(4d′ + 2).

The graph Gπ has then guessing number < n′

2
− α′ + 4d2 when n ≥ α′(4d′ + 2) + 4d2.

In other words Gπ has guessing number k(G, s) strictly less than n
2
− α′ + 4d2 when

n ≥ α′(4d+2)+4d2. Thus if we let α′ = 4d2, we have k(Gπ, s) < n
2

for n ≥ 4d2(4d+2)+
4d2 = 4d2(4d + 3).

But the information defect d(Gπ, s) ≥ n − k(G, s) and therefore d(Gπ, s) > n/2 for
n ≥ 4d2(4d + 3). ♣

the electronic journal of combinatorics 14 (2007), #R44 16

References

[1] R. Ahlswede, N. Cai, N. Li, and R.W. Yeung. An algebraic approach to network
coding. page 104, 2001.

[2] R. Dougherty, C. Freiling, and K. Zeger. Linearity and solvability in multicast
networks. IEEE Transactions on Information Theory, 50(10):2243–2256, December
2004.

[3] R. Dougherty, C. Freiling, and K. Zeger. Indufficiency of linear coding in network in-
formation flow. IEEE Transactions on Information Theory, 51(8):2745–2759, August
2005.

[4] T. Ho, D. Karger, M. Merard, and Koetter R. Network coding from a network flow
perspective. In Proocedings of the ISIT 2003, Yokohama, Japan, July 2003.

[5] R. Koetter and M. Medard. Beyond routing: An algebraic approach to network
coding. In Proceedings of the 2002 IEEE Infocom, 2002.

[6] C.K. Ngai and R.W. Yeung. Multisource network coding with two sinks. In Interna-
tional Conference on Communications, Circuits and Systems (ICCCAS), June 2004.
Best Paper Award, Communication Theory.

[7] P. Pudlak, V. Rodl, and J. Sgall. Booean circuits, tensor ranks, and communication
complexity. SIAM Journal of Computing, 26(3):605–633, June 1997.

[8] S. Riis. Linear versus non-linear boolean functions in network flow. In 38th Annual
Conference on Information Science and Systems (CISS), Princeton, NJ, March 2004.

[9] S. Riis. Utilizing public information in Network Coding (appendix), pages 851–882. In:
General Theory of information Transfer and Combinatorics, Springer 2006. Editors:
Ahlswede, Baumer, Cai, Aydinian, Blinovsky, Deppe, Mashurian.

[10] S. Riis. Utilizing public information in information networks. In Technical report,
June 2005.

[11] L. Valiant. Graph-theoretic arguments in low-level complexity. In Lecture Notes in
Computer Science, volume 53, pages 162–176. Springer, 1977.

[12] L. Valiant. Why is boolean circuit complexity theory difficult? In M.S. Pattorson,
editor, Springer Lecture Series, pages 84–94, 1992.

[13] R.W. Yeung. Multilevel diversity coding with distortion. IEEE Trans. Inform. The-
ory, 41:412–422, March 1995.

[14] R.W. Yeung and Z. Zhang. Distributed source coding for satellite communications.
IEEE Trans. Inform. Theory, (IT-45):1111–1120, 1999.

the electronic journal of combinatorics 14 (2007), #R44 17

