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Abstract

Sommerville and Davies classified the spherical triangles that can tile the sphere
in an edge-to-edge fashion. However, if the edge-to-edge restriction is relaxed, there
are other such triangles; here, we continue the classification of right triangles with
this property begun in our earlier papers. We consider six families of triangles
classified as “asymptotically obtuse”, and show that they contain two non-edge-to-
edge tiles, one (with angles of 90◦, 105◦ and 45◦) believed to be previously unknown.
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1 Introduction

A tiling is called monohedral (or homohedral) if all tiles are congruent, and edge-to-edge
(or normal) if two tiles that intersect do so in a single vertex or an entire edge. In 1923,
D.M.Y. Sommerville [8] classified the edge-to-edge monohedral tilings of the sphere with
isosceles triangles, and those with scalene triangles in which the angles meeting at any
one vertex are congruent. H.L. Davies [1] completed the classification of edge-to-edge
monohedral tilings by triangles in 1967 (apparently without knowledge of Sommerville’s
work), allowing any combination of angles at a vertex. Davies’ work omitted many details;
these were filled in recently by Ueno and Agaoka [9].

Non-edge-to-edge tilings were apparently first considered in [2], where a complete
classification of isosceles spherical triangles that tile the sphere was given. In [3], it was
shown that, with one exception, every triangle that tiles the sphere but does not do so
edge-to-edge has at least one combination of angles other than two right angles that add
to 180◦. This paper and its companion papers [4, 5, 6] continue the program of classifying
the triangles that tile the sphere. A more complete description of the program is given in
[4].

An important and still open problem involving monohedral tilings of the sphere is the
question, recorded by Ruziewicz in the “Scottish Book” [7, problem 60] in the late 1930’s or
early 1940’s, of whether such tilings exist with tiles of arbitrarily small diameter. None of
the tiles exhibited in this sequence of papers offers any improvement on the (90◦, 60◦, 36◦)
triangle, with diameter 37.3774 . . .◦, which was already known [8] by the time Ruziewicz
raised the problem.

In [4] we introduced the idea of the vertex signature VT of a triangle T with angles
(α, β, γ), defined to be the set of triples {(a, b, c) : aα + bβ + cγ = 360◦}. Such a vector
with a < 2 will be called reduced; if b > a, c it is a beta source and if c > a, b, a gamma
source.

It was shown in [4] that, for triangles with α = 90◦, β ≥ γ that tile but do not do so
edge-to-edge, the affine hull of this set is always two-dimensional, and we may choose a
basis for it consisting of the vectors {(4, 0, 0), (a, b, c), (a′, b′, c′)} where the second vector
is a reduced β source and the third a reduced γ source. Conversely, any such triple
determined a unique set of angles (not necessarily corresponding to a spherical triangle,
or even all positive.)

It should be noted that this is not always true for triangles that tile edge-to-edge. In
particular, there is a continuous family of tiles with α + β + γ = 360◦, all of which tile
the sphere edge-to-edge with four copies [1]. A typical member of this family has only
one vector, (1, 1, 1), in its vertex signature; however, all three angles of any such triangle
must be obtuse.

For any reduced β source (a, b, c) and for fixed a′, b′, let β(n) and γ(n) be the angles
determined by the vectors {(4, 0, 0), (a, b, c), (a′, b′, n)}. It is easy to see that

lim
n→∞

γ(n) = 0 (1)
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while

lim
n→∞

β(n) =
(360 − 90a)◦

b
(2)

and this is independent of a′ and b′ (and, indeed, of c).
We can thus classify the β sources (a, b, c), and the families of triangles with those β

sources, as asymptotically acute, asymptotically right, or asymptotically obtuse, depending
on the limiting value of β(n). (There is some overlap between these families, as a triangle
may have more than one β source in its vertex signature.) It turns out that this classifica-
tion is useful in characterizing the triangles that tile the sphere; different strategies work
for the three types of β source. The tiles in asymptotically right families were classified
in [4] and [5]. In this paper we classify the tiles in asymptotically obtuse families. We
shall include for completeness the isosceles tiles and edge-to-edge tilings already classified
in [1], [2], and [8]. For some terminology the reader is referred to our previous paper [4].

2 Classification of tiles

Theorem 1 The only right triangles in asymptotically obtuse families that tile the sphere
are the (90◦, 120◦, 90◦), (90◦, 120◦, 60◦), (90◦, 90◦, 90◦), (90◦, 90◦, 45◦), (90◦, 108◦, 54◦), and
(90◦, 105◦, 45◦) triangles.

The first four tiles (Figure 1) are familiar, three being in the list of Sommerville [8]
and all in that of Davies [1]. The first three of these admit only one edge-to-edge tiling,
and the fourth has two. All of them admit various non-edge-to-edge tilings; these will be
considered briefly in the last section.

Figure 1: edge-to-edge tilings

The final two triangles tile only in a non-edge-to-edge fashion, with ten and twelve
copies respectively. The (90◦, 108◦, 54◦) triangle was introduced and described in [3]; it
admits three different tilings. As will be shown below, the (90◦, 105◦, 45◦) triangle admits
(up to reflection) only one tiling. All af these tilings have chiral symmetry groups; this is
common (though not universal) among non-edge-to-edge tilings.

Interestingly, if we extend the edges defining the 45◦ angle of the (90◦, 105◦, 45◦) trian-
gle till they meet again (a construction that also appears in the proof of the next lemma),
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Figure 2: Non-edge-to-edge tilings: (90◦, 108◦, 54◦), and (90◦, 105◦, 45◦)

the complementary (90◦, 75◦, 45◦) triangle also tiles the sphere ([2], §3.vii) . There is no
obvious relation betwen the two tilings, and the observation is probably best considered
as a coincidence.

3 Proof of Theorem 1

The proof of Theorem 1 follows, roughly, the pattern established in [4]; we consider each
possible reduced β source in turn, determine what γ sources could work with each, and
then classify the tiles (if any) that arise. However, for asymptotically obtuse families, the
following lemma makes the process much simpler than was the case there.

Lemma 1 For any right spherical triangle

γ ≤ β < γ + 90◦ (3)

Proof: The first inequality is by definition and is included only for ease of reference. The
second follows by extending the two edges defining the γ angle until they meet again,
forming a triangle with angles (90◦, 180◦ − β, γ), and noting that the angles of this trian-
gle must add to more than 180◦.

Lemma 2 The reduced β sources generating asymptotically obtuse families are (0, 3, 2),
(0, 3, 1), (0, 3, 0), (0, 2, 1), (1, 2, 1) and (1, 2, 0).

Proof: By definition, a < 2 and b > c. If the right hand side of (2) is obtuse, we have
a + b ≤ 3. Finally, (0, 2, 0) is ruled out, as we must have β 6= 180◦; the remaining possi-
bilities are as listed.

If a β source is asymptotically obtuse, it follows from (1) and (2) that (3) is only
satisfied for finitely many triangles in that family. (This contrasts with the situation for
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asymptotically right triangles, for which infinite families must often be considered: see
[4, 5].)

The following lemma will be used throughout the proof.

Lemma 3 For every right triangle T in an asymptotically obtuse family that tiles the
sphere, one of the following holds:

1. T tiles edge-to-edge (and is listed in [1]);

2. T is the (90◦, 108◦, 54◦) triangle (given in [3]);

3. VT contains a reduced vector V ′ = (0, d, e) with both d and e even, and a β source
V1, such that {(4, 0, 0), V1, V

′} is a basis for VT .

Proof: Assume that the triangle tiles the sphere but does not tile edge-to-edge. It was
proved in [3] that the (90◦, 108◦, 54◦) triangle is the only such right triangle that has no
second split vector. Any other right triangle T thus has a vector (p, q, r) ∈ VT that splits.
Either p = 0 or p = 2. In the first case V ′ = (0, q, r); in the latter case 2(p, q, r)−(4, 0, 0) =
(0, 2q, 2r) is in VT and we may take this to be V ′.

Any reduced vector (a, b, c) in the affine hull of (4, 0, 0) and V ′ must be V ′ itself or
of the form 1

4
(4, 0, 0) + 3

4
V ′. In the first case b and c would both be even; in the second

case, they would be divisible by 3 and a would be greater than 0. None of the possible
reduced β sources V1 listed in Lemma 2 meet these criteria; thus the three vectors are
independent and generate VT .

Note that the (90◦, 108◦, 54◦) triangle has VT = {(4, 0, 0), (1, 2, 1), (1, 1, 3), (1, 0, 5)}.
Only one of these vectors, (1, 2, 1), is a β source; we may thus assume that if a triangle T
does not have this β source, it tiles edge-to-edge or has a reduced split vector.

Proposition 1 The only right triangle with V1 = (0, 3, 2) that tiles the sphere is the
(90◦, 90◦, 45◦) triangle.

Proof: From Davies’ list [1] or from corollary 3 of [9] we can establish that the
(90◦, 90◦, 45◦) triangle is the only triangle in this family that tiles normally; and the
(90◦, 108◦, 54◦) triangle is not in the family. Thus, any other tile would, by the preceding
lemma, have to have a reduced vector V = (0, d, e) with d, e even.

If d ≥ 8 we have γ ≤ β ≤ 45◦ and the triangle is not spherical. If d = 6 we clearly
have e < 2 (hence 0), β = 60◦, and γ = 90◦; but this contradicts our assumption that
β ≥ γ. For d = 4 we have again e = 0, and we get the (90◦, 90◦, 45◦) triangle, discussed
above.

When d = 2, γ = 360◦

3e−4
, β = 360(e−2)◦

3e−4
, and β − γ = 360(e−3)◦

3e−4
which satisfies (3) only

for 3 ≤ e < 8. Of the two V consistent with this, (0, 2, 4) gives the (90◦, 90◦, 45◦) triangle
again, and (0, 2, 6) gives the (90◦, 1026

7

◦

, 255
7

◦

) triangle whose area does not divide that of
the sphere.
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If d = 0, we have γ = 360◦

e
and thus β = 360(e−2)◦

3e
. These satisfy (3) only for

5 ≤ e < 20; and the excess α + β + γ − 180◦ divides 720◦ only when e + 4|96. This
gives a solution only for e = 8 or 12. In the first case we obtain the (90◦, 90◦, 45◦)
triangle once more. For e = 12 we get the (90◦, 100◦, 30◦) triangle, which has VT =
{(4, 0, 0), (3, 0, 3), (2, 0, 6), (1, 0, 9), (0, 3, 2), (0, 0, 12)}. This has (0, 3, 2) as its only β source
and no β split; and the γ splits have at least three γ angles.

For there to be as many β angles as γ angles, there must exist a (0, 3, 2) vertex. All
five of the angles at such a vertex have hypotenuse edges; at least one of these five edges
must be unpaired, and in the absence of β splits such an unpaired edge must have its β
end at the (0, 3, 2) vertex (A in Figure 3). The other end is a γ split with at least 3 excess
γ angles (B,in Fig. 3) The γ angle on the unpaired edge must be adjacent to the overhang
at B, so at most two (0, 3, 2) vertices can share a split. (In fact, it may be shown that
no sharing is possible; but we do not need this.) Associating one or two (0, 3, 2) vertices
with at least three additional γ angles gives an overall excess of γ angles in the supposed
tiling.

A

B

Figure 3: Configuration at a (0, 3, 2) vertex

Proposition 2 The only right triangles with V1 = (0, 3, 1) that tile the sphere are the
(90◦, 90◦, 90◦) triangle and the (90◦, 105◦, 45◦) triangle.

Proof: The (90◦, 90◦, 90◦) triangle tiles edge-to-edge; as before, any other tile in this
family must have a reduced vertex vector V = (0, d, e) with d, e both even. For d > 4 we
can never have β ≥ γ. When d = 4 we can only have β ≥ γ for e = 0, when we get the
(90◦, 90◦, 90◦) triangle.

When d = 2, β = 360(e−1)◦

3e−2
and γ = 360◦

3e−2
. This satisfies (3) only for e ≤ 4; when e = 4

the excess does not divide 720◦ and when e = 2 we get the (90◦, 90◦, 90◦) triangle again..

Finally, when d = 0, we get γ = 360◦

e
and β = 120(e−1)◦

e
. The area of such a triangle

divides that of the sphere only when e + 8|192, and (3) is satisfied when 4 ≤ e ≤ 16.
Together, these rule out every triangle except the (90◦, 105◦, 45◦) triangle when e = 8.

Proposition 3 The only right triangles with V1 = (0, 3, 0) that tile the sphere are the
(90◦, 120◦, 60◦) triangle and the (90◦, 120◦, 90◦) triangle.
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Proof: The two triangles given tile edge-to-edge; any other tile would have to have a
reduced vertex vector V = (0, d, e) with d, e both even. We have β = 120◦, so d < 3. For
d = 2, (3) is only satisfied when e = 2, which gives the (90◦, 120◦, 60◦) triangle. For d = 0
we have γ = 360◦

e
, satisfying (3) if 4 ≤ e ≤ 10. For e = 4 and 6 we get the tiles already

mentioned; and when e = 8 or 10 the area does not divide that of the sphere.

Proposition 4 No right triangle with V1 = (1, 2, 0) tiles the sphere.

Proof: We have β = 135◦; this allows all normal tiles to be ruled out. Any tile would thus
have to have a vertex vector (0, d, e) with d, e even, and evidently d < 3. When d = 2 the
inequalities (3) are never satisfied. When d = 0 they are satisfied only for e = 4 or 6, and
in neither case does the area of the triangle divide that of the sphere.

Proposition 5 The only right triangles with V1 = (1, 2, 1) that tile the sphere are the
(90◦, 90◦, 90◦) and (90◦, 108◦, 54◦) triangles.

Proof: The triangles mentioned are known to tile [1, 3]; any other tile would have a vertex
vector (0, d, e) with d and e even. We cannot satisfy (3) for d > 4; and when d = 4 or
d = 2 those inequalities are satisfied only by vectors yielding the (90◦, 90◦, 90◦) triangle.
When d = 0 they are satisfied for 4 ≤ e < 12; but the only e for which the area of the
triangle divides that of the sphere is 4, yielding the (90◦, 90◦, 90◦) triangle once more.

Proposition 6 No right triangle with V1 = (0, 2, 1) tiles the sphere.

Proof: No tile listed in [1] or [3] is in this family, so once more we may assume a vertex
vector with d and e even. It is easily seen that d = 0, and (3) is only satisfied for e = 4;
the area of the resulting (90◦, 135◦, 90◦) triangle does not divide that of the sphere.

4 Classification of tilings

Some tiles yield more than one tiling. Davies [1] classified all normal tilings (and more
details were given by Ueno and Agaoka [9]).

We will briefly examine the non-normal tilings with triangles that also tile edge-to-
edge. We note that when a tiling has a subset such that the symmetry group G of the
subset is a proper subgroup of the symmetry group H of its union, the action of H/G on
that subset of the tiling generally yields a new tiling.

• The (90◦, 90◦, 90◦) and (90◦, 120◦, 90◦) triangles have continuous families of tilings,
derived from those in Figure 1 by rotating one hemisphere relative to the other, and
no other tilings.
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• The (90◦, 120◦, 60◦) triangle tiles the hemisphere in three distinct ways, two of these
with a left-handed and right-handed form. Up to reflection, then, there are nine
distinct continuous families of tilings (with some special cases in common). There
are also two distinct tilings without a great circle in the union of the tile boundaries.

• For the (90◦, 90◦, 45◦) triangle, there are 252 essentially distinct tilings obtained by
subdividing the edge-to-edge tiling with (90◦, 90◦, 90◦) triangles [2]. Each of these
yields three continuous families of tilings, not necessarily distinct. There are also
other tilings, including some with no great circle in the union of the boundaries. We
conjecture that any tiling with this tile can be obtained from any other by repeated
rotation of subsets with symmetric union - a process reminiscent of Rubik’s Cube,
though perhaps impractical to realize mechanically as a puzzle.

It was shown in [3] that the (90◦, 108◦, 54◦) triangle tiles in three essentially different
ways, none edge-to-edge.

Proposition 7 The (90◦, 105◦, 45◦) triangle admits only one tiling (up to reflection).

Proof: For this triangle, VT = {(4, 0, 0), (3, 0, 2), (2, 0, 4), (1, 0, 6), (0, 3, 1), (0, 0, 8)}. The
only β source is (0, 3, 1), which must therefore appear in any tiling; and there are no splits
involving β angles. At a (0, 3, 1) vertex (O in Figure 4a), then, the hypotenuse of the
triangle (1) contributing the γ angle must be paired, to avoid a β split at the other end
(A). Triangle 2 is thus as shown.

O

A
B

C

DE

O

A
B

C

D
1

2

3

4

1
2

3

4

5

6
F

a b

7

Figure 4: Tiling with the (90◦, 105◦, 45◦) triangle

As the vertex A can have neither a right angle nor another γ, the edge AB cannnot
be matched and there is an overhang at B. Triangle 3 is forced; by the same argument
there is an overhang at C and we have triangle 4.

The edge CD cannot be covered as in Figure 4a, as that would require a β split at E.
We thus have triangles 5,6 and 7 as shown in Figure 4b. Repeating this configuration at
A and F gives the entire tiling, as shown in Figure 2.
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