
Reversal Distance for Strings with Duplicates:
Linear Time Approximation using Hitting Set

Petr Kolman∗

Charles University in Prague
Faculty of Mathematics and Physics
Department of Applied Mathematics

kolman@kam.mff.cuni.cz

Tomasz Waleń†

Warsaw University
Faculty of Mathematics, Informatics and Mechanics

walen@mimuw.edu.pl

Submitted: Nov 14, 2006; Accepted: Mar 30, 2007; Published: Jul 19, 2007

Mathematics Subject Classification: 68W25, 68R15, 92D20

Abstract

In the last decade there has been an ongoing interest in string comparison prob-
lems; to a large extend the interest was stimulated by genome rearrangement prob-
lems in computational biology but related problems appear in many other areas of
computer science. Particular attention has been given to the problem of sorting by

reversals (SBR): given two strings, A and B, find the minimum number of reversals
that transform the string A into the string B (a reversal ρ(i, j), i < j, trans-
forms a string A = a1 . . . an into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an).
Closely related is the minimum common string partition problem (MCSP): given two
strings, A and B, find a minimum size partition of A into substrings P1, . . . , Pl (i.e.,
A = P1 . . . Pl) and a partition of B into substrings Q1, . . . , Ql such that (Q1, . . . , Ql)
is a permutation of (P1, . . . , Pl).

Primarily the SBR problem has been studied for strings in which every symbol
appears exactly once (that is, for permutations) and only recently attention has
been given to the general case where duplicates of the symbols are allowed. In this
paper we consider the problem k-SBR, a version of SBR in which each symbol is
allowed to appear up to k times in each string, for some k ≥ 1. The main result
of the paper is a Θ(k)-approximation algorithm for k-SBR running in time O(n);
compared to the previously known algorithm for k-SBR, this is an improvement by

∗Supported by project 1M0021620808 (ITI) of Ministry of Education of the Czech Republic.
†Supported by the Polish Scientific Research Committee (KBN) under grant GR-1946.

the electronic journal of combinatorics 14 (2007), #R50 1



a factor of Θ(k) in the approximation ratio, and by a factor of Θ(k) in the running
time. We approach the k-SBR by finding an approximation for the k-MCSP first
and then turning it into a solution for k-SBR. Crucial ingredients of our algorithm
are the suffix tree data structure and a linear time algorithm for a special case of a
disjoint set union problem.

Key words. Approximation algorithms, String comparison, Sorting by reversals, Min-
imum common string partition, Suffix trees.

1 Introduction

In the last decade there has been an ongoing interest in string comparison problems. To
a large extent the interest was stimulated by genome rearrangement problems in compu-
tational biology but related problems appear in many other areas of computer science, in
data compression or text processing to name a few. One of the important problems is to
measure the similarity of two strings. Particular attention has been given to the problem
of sorting by reversals (SBR): given two strings, A and B, find the reversal distance of
A and B, which is the minimum number of reversals that transform the string A into
the string B. A reversal ρ(i, j), 1 ≤ i < j ≤ n, is an operation that transforms a string
A = a1 . . . an, into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an (that is, the reversal
ρ(i, j) reverses the order of symbols in the substring ai . . . aj of A). In the case of signed
strings, each symbol is given a sign + or −, and the reversal operation also flips the sign
of each symbol in the reversed substring.

Primarily the problem has been studied for strings in which every symbol appears
exactly once (that is, for permutations); even in this setting the problem is NP-hard
for unsigned permutations [2] and, surprisingly, the problem is in P for signed permuta-
tions [10]. Only recently attention has been given also to the general case where duplicates
of the symbols are allowed. We denote by k-SBR the version of SBR in which each sym-
bol is allowed to appear up to k times in each string, for some k ≥ 1. Christie and
Irving [4] prove that unsigned SBR is NP-hard for binary strings and Chen et al. [3]
show that 2-SBR is NP-hard. The best approximation ratio for the general signed SBR

is O(log n log∗ n) (following from the work of Cormode and Muthukrishnan [6]); there
are O(1)-approximation algorithms for signed 2-SBR and 3-SBR [3, 5, 9]. Kolman [11]
describes a greedy-like O(k2)-approximation algorithm for k-SBR running in O(kn) time.
Most of the above mentioned algorithms exploit the close relationship between the min-
imum common string partition problem (see below for definition) and the problem of
sorting by reversals: they find an approximation for the static problem MCSP and turn
it into a solution for SBR; this is also the approach that we take in this paper. For an
overview of other related results and for more details about the relation between MCSP

and SBR, we refer to the paper [11].
The main results of this paper are Θ(k)-approximation algorithms for k-MCSP and

k-SBR running in time O(n); compared to the previously known algorithms for k-MCSP

the electronic journal of combinatorics 14 (2007), #R50 2



and k-SBR, this is an improvement by a factor of Θ(k) in the approximation ratio, and
by a factor of Θ(k) in the running time.

On a high level, the algorithm works as follows: given the strings A and B, the
algorithm turns them into an instance of the minimum hitting set problem and, exploiting
special properties of the instance, it computes an approximation of the minimum hitting
set which is in turn transformed into an approximate solution for k-MCSP; a solution for k-
SBR is obtained from a solution of the relevant k-MCSP problem by the standard technique
mentioned above. Crucial ingredients of the algorithm are a linear time procedure for
construction of a suffix tree [7] and a linear time algorithm for a special case of a disjoint
set union problem [8].

1.1 Notation

We stick to the notation used in the previous paper on k-SBR [11]. For a (signed or
unsigned) string P = a1 . . . an, we denote by −P the result of reversal ρ(1, n) of P (e.g.,
for P = +a + b − d, we have −P = +d − b − a; for P = abd, we have −P = dba). We
say that two (signed or unsigned) strings A = a1a2 . . . an and B = b1b2 . . . bn are identical,
A = B, if ai = bi for each i ∈ 1, . . . , n (in the case of signed strings, ai = bi involves also
the equality of the signs), and they are congruent, A ∼= B, if A = B or A = −B (note
that for the sake of notational simplicity we overload the sign ∼= so that it has a slightly
different meaning for signed and unsigned strings).

Throughout the paper we assume that the symbols are represented by integers from
the set Σ = {1, 2, . . . , n}. We also assume that each symbol appears the same number of
times in A and B (for the signed version, we count together the occurrences of a symbol
with positive and negative signs). Clearly, this is a necessary and sufficient condition for
A and B to have a finite reversal distance. We call such strings related.

The length of a string A is denoted by |A|. A duo is a string of length two. A partition
of a string A is a sequence P = (P1, P2, . . . , Pm) of strings whose concatenation is equal
to A, that is, P1P2 . . . Pm = A. The strings Pi are called the blocks of P and their number
is the size of the partition. Given a partition P = (P1, P2, . . . , Pm), if l =

∑i
j=1 |Pj| for

some i ∈ {1, 2, . . . , m− 1}, we say that the pair l, l + 1 is a break of the partition P and
alal+1 is a broken duo of the partition P.

To cut a duo aiai+1 of a block P = aj . . . ak of a partition of A, for some j ≤ i < k,
means to replace the block P in the partition by two blocks P1 = aj . . . ai and P2 =
ai+1 . . . ak. For a string C = c1, . . . , cn, we denote by duos(C) the set of duos of the string
C, that is, duos(C) = {cici+1 | 1 ≤ i ≤ n− 1}.

For two strings A and B, we say that S is a common substring with respect to the
relation = if S is a substring of A and a substring of B; we say that S is a common
substring with respect to the relation ∼=, if S is a substring of A and there exists a substring
R of B such that S ∼= R, or S is a substring of B and there exists a substring R of A such
that S ∼= R. When not necessary, we will often avoid specifying the relation and will talk
only about a common substring.

SBR is closely related to the minimum common string partition problem. Given a

the electronic journal of combinatorics 14 (2007), #R50 3



partition P = (P1, . . . , Pm) of a string A and a partition Q = (Q1, . . . , Qm) of a string
B, we say that the pair π = (P,Q) is a common partition of A and B with respect to
the relation Rel ∈ {=,∼=}, if there exists a permutation σ on 1, . . . , m such that for each
i ∈ 1, . . . , m, (Pi, Qσ(i)) ∈ Rel. The minimum common string partition problem (MCSP)
is to find a common partition of A, B with the minimum size. The restricted version
of MCSP, where each letter occurs at most k times in each input string, is denoted by
k-MCSP. Similarly as for SBR, there is a signed and an unsigned variant of the problem.
In unsigned MCSP, the input consists of two unsigned strings, and the relation = is used;
in signed MCSP, the input consists of two signed strings and the relation ∼= is used. For
unsigned strings, we define yet another variant of the problem, reversed MCSP (RMCSP),
in which the (unsigned) strings are compared by the relation ∼=. Chen et al. [3] observed
that for any two related signed strings A and B, the sizes of the optimal solutions of
MCSP and SBR differ only by a constant multiplicative factor. An analogous observation
applies for related unsigned strings and the problems reversed MCSP and SBR; we refer
to the paper [11] for further details.

The rest of the paper is organized as follows. Section 2 is devoted to a simple algorithm
for unsigned k–MCSP that is based on the Hitting Set problem. In Section 3 we describe
how to modify the algorithm to get an O(k) approximation for unsigned k-MCSP. In
Section 4 we deal with the running time of the algorithm and we show how to implement
the algorithm in linear time, using the suffix tree data structure. Finally, Section 5
describes how to modify the algorithm so that it works also for the signed and reversed
variants of MCSP and thus, for signed and unsigned SBR.

2 Common partition via hitting set

In Minimum Hitting Set Problem, we are given a set U and a collection S of subsets of
U , that is, S = {S1, . . . , Sk} such that Si ⊆ U for i = 1, . . . , k. The task is to find a
minimum hitting set for S which is a smallest set H ⊆ U such that H ∩ Si 6= ∅ for each
i ∈ 1, . . . , k. Minimum Hitting Set problem is equivalent to Minimum Set Cover [1].

We are going to use an algorithm for Minimum Hitting Set Problem as a procedure
for k–MCSP. The idea behind the algorithm is simple. Given the strings A and B and
a string X such that the number of occurrences of X in A is larger (or smaller, resp.)
than the number of occurrences of X in B, we know that even in the minimum common
partition of A and B at least one duo in (an occurrence of) X in A (or in B, resp.) must
be broken. The algorithm aims at “hitting” (that is, cutting) all substrings of A and B

that have a different number of occurrences. This motivates the following definition.
For two strings A and X, let #substr(A, X) be the number of all occurrences of the

substring X in the string A. For a partition P = (P1, P2, . . . , Pm) and a string X, we
denote by #blocks(P, X) the number of blocks Pi = X in P.

the electronic journal of combinatorics 14 (2007), #R50 4



Algorithm HS

input: strings A, B

construct an instance (U,S) of the Hitting Set problem:
U← duos(A) ∪ duos(B)
T ←{X ∈ Σ∗ | #substr(A, X) 6= #substr(B, X)}
S ←{duos(X) | X ∈ T}

solve (approximately) the Minimum Hitting Set problem:
Φ← a hitting set for (U,S)

transform the hitting set into a common partition:
A,B← for each duo xy ∈ Φ, cut all occurrences of xy in the strings A, B

output: (A,B)

Lemma 1. The partition (A,B) computed by the algorithm HS is a common partition of
the strings A and B.

Proof. The proof is by contradiction. Suppose that there exists a block X ∈ A such that
#blocks(A, X) 6= #blocks(B, X); if there are several such blocks, take as X the longest
one. Since the block X is not cut by any duo from Φ we have duos(X) ∩ Φ = ∅, and
since Φ is a correct answer for the Hitting Set problem, it holds that duos(X) 6∈ S. We
conclude that #substr(A, X) = #substr(B, X). We aim to get a contradiction by inferring
an equality for #blocks(A, X) and #blocks(B, X).

Exploiting the fact that X is not cut by any duo from Φ, it is possible to calculate
the numbers #blocks(A, X) and #blocks(B, X) by the following formula (by X v Y we
denote that X is a substring of Y and by X < Y that X is a proper substring of Y ):

#blocks(A, X) = #substr(A, X)−
∑

Y vA,X<Y

#substr(Y, X) ·#blocks(A, Y )

#blocks(B, X) = #substr(B, X)−
∑

Y vB,X<Y

#substr(Y, X) ·#blocks(B, Y )

By our choice, X is the longest block with #blocks(A, X) 6= #blocks(B, X) (informally,
a “wrong” block); therefore for all strings Y satisfying X < Y we have #blocks(A, Y ) =
#blocks(B, Y ). We conclude that #blocks(A, X) = #blocks(B, X), which is a contradic-
tion.

Lemma 2. If an exact procedure for a minimum hitting set is available, then the algorithm
HS finds a 2k-approximation of the unsigned minimum common partition.

Proof. Consider any common partition A′,B′ of A and B. Then, every duo in a minimum
hitting set for the instance (U,S) must appear as a broken duo in A′ or B′. That is,
(half of) the size of the minimum hitting set is a lower bound on the size of the minimum
common partition. Observing that the algorithm cuts at most k duos for each duo in the
set Φ, the claim follows.

the electronic journal of combinatorics 14 (2007), #R50 5



Observe that by replacing the optimal procedure for Minimum Hitting Set by an α-
approximation procedure, the algorithm HS finds a 2kα-approximation of the minimum
common partition.

Unfortunately, Minimum Hitting Set problem is hard to approximate; to achieve a
good approximation ratio, we need to investigate special properties of the instance (U,S).
This is the subject of the next section.

3 O(k)-Approximation ratio for unsigned k–MCSP

Let (Ao,Bo) denote a minimum common partition of strings A and B (if there are several
minimum common partitions, we choose any of them); we say that the breaks in Ao and
Bo are the optimal breaks. There are 2|Ao| − 2 optimal breaks. We say that a substring
X = ai . . . aj (resp., X = bi . . . bj) goes over an optimal break if there exists an optimal
break l, l + 1 in Ao (resp., in Bo) such that i ≤ l < j.

Recall the definition of the set T = {X ∈ Σ∗ | #substr(A, X) 6= #substr(B, X)};
informally, T is the set of all wrong substrings. Note that in the instance of the Hitting
Set problem, most of the substrings in T are redundant. To be more specific, if X, Y ∈ T

and X is a proper substring of Y , then we can remove Y from the set T and a hitting
set for {duos(X) | X ∈ T \ {Y }} will still be a hitting set for S. Using this observation
it is possible to substantially reduce the size of the set S. In particular, the relation v
induces a partial order on the set T ; let Tmin ⊆ T be the set of all minimal elements of T ,
with respect to the relation v. Then Tmin satisfies the desired property

(P) if X, Y ∈ T , and X is a proper substring of Y , then Y 6∈ Tmin,

and, at the same time, a hitting set for the set S ′ = {duos(X) | X ∈ Tmin} is a hitting
set for S.

Lemma 3. If X ∈ Tmin then there exists an occurrence of X in A or in B that goes over
an optimal break.

Proof. Consider a string X ∈ Tmin and suppose that no occurrence of X in A and B

goes over an optimal break. Then every occurrence of X in A or B is a substring of
some block in the minimum common partition (Ao,Bo). Since Ao and Bo consists of the
same multiset of blocks and no occurrence of X goes over an optimal break, we have
#substr(A, X) = #substr(B, X). This implies X 6∈ T , which is a contradiction.

Using the lemma, we assign to each string in Tmin an optimal break. In particular, for
X ∈ Tmin, let f(X) denote the optimal break that an occurrence of X in A or in B goes
over; if there is more than one such optimal break, let f(X) denote the leftmost optimal
break that an occurrence of X goes over (the choice “leftmost” is not important for the
proof, we only need f(X) to be unambiguously defined).
Example: For A = abaab and B = ababa, the minimum common partition is (aba, ab),
(ab, aba), ba ∈ Tmin and f(ba) = “the break 2, 3 in the partition of B”.

the electronic journal of combinatorics 14 (2007), #R50 6



Lemma 4. If X = x1, . . . , xl and Y are two strings from the set Tmin such that f(X) =
f(Y ), then duos(Y ) ∩ {x1x2, xl−1xl} 6= ∅.

Proof. Since X and Y go over the same optimal break, their overlap has size at least two.
Moreover, since X is not a proper substring of Y and vice versa (by property (P) and the
assumptions of the lemma), the claim follows (cf. Figure 1).

X

Y

x1x2 xl

optimal break

Figure 1: Illustration of Lemma 4

The consequence of Lemma 4 is the following. Let A be a partition of A and B be
a partition of B and let X = x1 . . . xl be a common substring of A and B such that
X ∈ Tmin. Then, by cutting all occurrences of x1x2 and xl−1xl in A and B we “hit” (that
is, we cut) also (a duo in) each string from Tmin that goes over the optimal break f(X).
Thus, if we choose for each optimal cut one string from Tmin that goes over it (if there is
any such string for the cut; if there is no such string, we ignore this cut) and put together
the first and the last duos of each such string, then we get a hitting set for Tmin of size at
most twice the size of the minimum hitting set. Of course, we do not know the optimal
breaks so we have to construct the hitting set in a different way. Moreover, for the sake
of efficiency, we do not work directly with the set Tmin but with a set T ′ ⊆ T such that
Tmin ⊆ T ′ and T ′ can be constructed in linear time; the details will follow in the next
section.

Algorithm Fast HS

input: strings A, B

compute a set T ′ ⊆ T such that Tmin ⊆ T ′ and T ′ is of size O(n)
Φ←∅
A← (A), B← (B)
for each X ∈ T ′ in order of increasing length do

if duos(X) ∩ Φ = ∅ then
add the first and last duo of X to Φ
cut all occurrences of the first and last duo of X in the partitions A,B

output: (A,B)

Lemma 5. If a string X passes the test duos(X) ∩ Φ = ∅ in the above algorithm, then
X ∈ Tmin.

the electronic journal of combinatorics 14 (2007), #R50 7



Proof. Suppose, for a contradiction, that X passed the test yet X 6∈ Tmin. Let Φ′ denote
the set Φ just before processing the string X. The assumptions X ∈ T and X 6∈ Tmin

imply that there exists a string X ′ ∈ Tmin such that X ′ is a proper substring of X.
Since |X ′| < |X|, the string X ′ has been processed before the string X and therefore
duos(X ′)∩Φ′ 6= ∅. Moreover, since duos(X ′) ⊆ duos(X), it holds that duos(X)∩Φ′ 6= ∅,
and therefore X cannot pass the test, which is a contradiction.

Theorem 1. The algorithm Fast HS computes a 4k-approximation of the minimum
common partition of A and B.

Proof. If X1, X2 are two different strings for which the set Φ was increased then, by
Lemma 4, f(X1) 6= f(X2). Thus, the set Φ was increased at most |Ao| + |Bo| − 2 times
and therefore the final set Φ contains at most 2 · (|Ao|+ |Bo| − 2) duos.

Since we are dealing with an instance of k-MCSP, each duo from the set Φ introduces
at most k cuts. It follows that

|A| ≤ k · 2 · (|Ao|+ |Bo| − 2) + 1 ≤ 4k · |Ao| .

Remark: The approximation ratio applies even if we measure the size of a common
partition not by the number of blocks but by the number of breaks.

Lower bound. Let A = ba{ab}k−1 and B = {ab}k. Then the set Φ consists of two
duos {aa, ab} and the partition computed by the algorithm Fast HS has size k +1 while
the minimum common partition has size three. Thus, the approximation ratio of the
algorithm Fast HS is Ω(k).

4 Linear running time

We are going to describe how to implement the algorithm in linear time. The linear
implementation heavily uses the suffix tree data structure and the fact that a suffix tree
of a string of length m can be constructed in time O(m) for constant size alphabets [12]
and even for integer alphabets [7].

We start with the construction of the set T ′. Let $ and # be two characters that do
not appear in A. We compute the suffix tree τ of the string C = A$B#. Recall that
each leaf of the tree τ corresponds to a suffix of C. We mark by A each leaf of τ that
corresponds to a suffix starting in the substring A of C, and we mark by B each leaf of
τ that corresponds to a suffix starting in the substring B of C. For each node v of τ we
compute the number numA(v) of leaves in the subtree of v marked by A and the number
numB(v) of leaves in the subtree of v marked by B; this requires time O(n), for strings
A, B of length n. For a node v of τ , let s(v) denote the concatenation of the labels of the
edges between the root and the node v and, for v 6=root, let s′(v) denote the concatenation
of s(parent(v)) with the first character of the label of the edge (parent(v), v). If s′(v)

the electronic journal of combinatorics 14 (2007), #R50 8



does not contain the characters $ and # we say that v is a proper node. Observe that
for each proper node v, numA(v) = #substr(A, s′(v)) and numB(v) = #substr(B, s′(v)).
Thus, if numA(v) 6= numB(v) we know that s′(v) ∈ T . Once we have the suffix tree τ

and the values numA(v) and numB(v) for all vertices, we easily compute a set

T ′ = {s′(v) | v is a proper node and numA(v) 6= numB(v)}

by traversing the tree τ in, say, breadth first search order. The set T ′ can be computed
in O(n) running time. It is also easy to observe that, the size of T ′ is bounded by O(n)
(since the suffix tree consist of O(n) nodes). We also note that for each string X ∈ Tmin

there is a proper node v such that s′(v) = X and numA(v) 6= numB(v) which guarantees
that Tmin ⊆ T ′.

a
b $ababa#

#

ab$ababa# b # a $ababa#

a $ababa# ab$ababa#
ba#

#

ab$ababa#
ba#

#

A

A
B

B

A

B

A
B

B

A

Figure 2: Suffix tree τ of the string C = abaab$ababa#. The larger dots denote the proper
nodes.

To give an example, consider strings A = abaab and B = ababa. The suffix tree of the
string C = A$B# is given in Figure 2 and the relevant sets are as follows:

T ′ = {aa, aba, abaa, abab, ba, baa, bab}

Tmin = {aa, ba}

Φ = {aa, ba}

A = (ab, a, ab)

B = (ab, ab, a)

To finish the description of the fast implementation of the algorithm, it remains to
describe how to maintain the set Φ, how to test the condition duos(X) ∩ Φ 6= ∅ and
how to realize the cuts. We employ a data structure for the set–splitting problem [8]. In
this problem, we are given a set consisting of the integers {1, . . . , m} and the task is to
perform an intermixed sequence of the following two operations:

• split(i) – splits the set containing i into two sets, one with all integers smaller than
i and the other with all integers greater than or equal to i,

• find(i) – returns the smallest integer in the set containing i.

the electronic journal of combinatorics 14 (2007), #R50 9



Gabow and Tarjan [8] describe a data structure that requires O(1) amortized time for
each operation. In our setting, we maintain for each partition A and B a separate data
structure that stores information about cuts in that partition. Initially, each structure
consists of only one set, the set {1, . . . , n}. Each time when we add a duo cd to Φ we
perform the cuts of the partitions A and B as follows:

for each occurrence of the duo cd in A do
A.split(j +1), where j is the position of the current occurrence cd in A (ajaj+1 = cd)

for each occurrence of the duo cd in B do
B.split(j +1), where j is the position of the current occurrence cd in B (bjbj+1 = cd)

Since every duo appearing in A and B is processed at most once by the algorithm the
total number of split operations is at most O(n).

For an occurrence ai . . . aj = X (resp., bi, . . . , bj = X) of the substring X ∈ T ′, it holds
that duos(X)∩Φ = ∅ if and only if A.find(i) = A.find(j) (resp., B.find(i) = B.find(j)).
This provides a way for testing the condition duos(X) ∩ Φ 6= ∅ in constant time.

Theorem 2. The above implementation of the algorithm Fast HS runs in linear time.

5 Sorting by reversals

One can easily modify the algorithms HS and Fast HS to work also for instances of MCSP

with the relation ∼=, for both signed and unsigned strings. We redefine #substr(A, S) so
that it counts occurrences of both S and −S in A; the definitions of the sets T , T ′

and Tmin remain unchanged. The new definition of #substr requires a small change in the
computation of the set T ′: we compute a suffix tree of the string C = A#B$(−A)#(−B)$
(the brackets are only used to denote the scope of the reversal operation). We also need
a slight change in Lemma 3 and Lemma 4:

Lemma 3a If X ∈ Tmin then there exists an occurrence of X or −X in A or in B that
goes over an optimal break.

Lemma 4a If X, Y ∈ Tmin, X = x1, . . . , xl and f(X) = f(Y ), then duos(Y ) ∩
{x1x2, xl−1xl, −(x1x2), −(xl−1xl)} 6= ∅.

Finally, whenever the original algorithm cuts duos xy, the modified algorithm also
cuts duos −(xy). This increases the approximation ratio by a factor of two.

Recalling the close relation between SBR and MCSP that we described at the end of
Section 1 (cf. [3, 11]), we are ready the state the following theorem.

Theorem 3. The algorithm Fast HS computes in linear time Θ(k)-approximation for
signed, unsigned and reversed k-MCSP and for signed and unsigned k-SBR.

6 Conclusion

We presented Θ(k)-approximation algorithms for signed and unsigned k-MCSP and k-
SBR, running in time O(n). A challenging open question is whether it is possible to get a

the electronic journal of combinatorics 14 (2007), #R50 10



nontrivial approximation ratio independent of the parameter k (or at least less dependent,
say an approximation ratio O(log k)).

References

[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex
optimization problems. Journal of Computer and System Sciences, 21(1):136–153,
1980.

[2] A. Caprara. Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91–110, 1999.

[3] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2(4):302–315, 2005.

[4] D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions.
SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

[5] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum com-
mon string partition problem. ACM Transactions on Algorithms, 1(2):350–366, 2005.

[6] G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODA), pages 667–676, 2002.

[7] M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pages
137–143, 1997.

[8] H. N. Gabow and R. E. Tarjan. A linear-lime algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[9] A. Goldstein, P. Kolman, and J. Zheng. Minimum Common String Partition Problem:
Hardness and Approximations. The Electronic Journal of Combinatorics, 12(1), 2005.

[10] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM, 46(1):1–
27, 1999.

[11] P. Kolman and T. Waleń. Approximating reversal distance for strings with bounded
number of duplicates. Discrete Applied Mathematics, 155(3):327–336, 2007.

[12] P. Weiner. Linear pattern matching algorithms. In 14th IEEE Symposium on switch-
ing and automata theory, pages 1–11, 1973.

the electronic journal of combinatorics 14 (2007), #R50 11


