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Abstract

A genus one labeled circle tree is a tree with its vertices on a circle, such that
together they can be embedded in a surface of genus one, but not of genus zero. We
define an e-reduction process whereby a special type of subtree, called an e-graph, is
collapsed to an edge. We show that genus is invariant under e-reduction. Our main
result is a classification of genus one labeled circle trees through e-reduction. Using this
we prove a modified version of a conjecture of David Hough, namely, that the number
of genus one labeled circle trees on n vertices is divisible by n or n/2. Moreover, we
explicitly characterize when each of these possibilities occur.

1 Introduction

Graphical enumeration arises in a variety of contexts in combinatorics [2], and naturally so
in the realm of combinatorial objects with interesting topological properties [5]. We provide
a new classification of genus one circle trees and address a question raised by Hough [3]
about their number. Our study is motivated by numerous results in the study of partitions
and trees of a certain genus, as well as results about the genuses of maps and hypermaps,
[1], [6], [7], [8].

The following two definitions are discussed in [3] in great detail; we shall use the definition
of a labeled circle tree throughout the paper, whereas we shall mostly use an alternate, less
technical definition for the genus of a circle tree.

Definition 1. A labeled circle tree (l-c-tree) on n points is a tree with its n vertices
labeled 1 through n on a circle in a counterclockwise direction and its edges drawn as straight
lines within the circle.
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Definition 2. The genus g of a l-c-tree T on n points is defined to be g(α) =1+ 1

2
(n-1-

z (α) − z (α−1 · σ)), where α is the matching of the given l-c-tree T , σ =(1 2 3 4 . . . n), and
the function z gives the number of cycles of its argument; α−1 is the inverse permutation of
α, and the multiplication of two permutations is from right to left.

The genus of a l-c-tree can also be described as the genus of the surface with minimal
genus such that the tree together with the circle it is drawn on can be drawn on the surface
without crossing edges. In particular, a genus one l-c-tree is such that the tree together with
the circle it is drawn on can be embedded in a surface of genus one, but not of genus zero.

Hough [3] observed that the number of genus one labeled circle trees on n points (denoted
by f(n)) is divisible by n for small values of n, and hypothesized the same for all integers
n > 3. Using our classification of all genus one labeled circle trees, we prove that either f(n)
is divisible by n, or it is divisible by n

2
; moreover, we explicitly describe when each of these

possibilities occur.
In Section 2 we discuss the necessary definitions and review a result of Marcus [4], which

implies that deleting an uncrossed edge from a l-c-tree or deleting all but one of several
parallel edges leads to one of two canonical reduced forms of circle trees if and only if the
l-c-tree was genus one. Although Marcus’ result [3] is formulated for partitions, it easily
translates to l-c-trees. Since the labeling of the l-c-tree is irrelevant for the deletion of edges
mentioned above, we introduce the concept of an unlabeled circle tree to which Marcus’
result still applies. For understanding the interrelation between the number of genus one
l-c-trees and genus one u-c-trees we explore the basic properties of u-c-trees in Section 3.
We introduce a special-structured subgraph, called an edgelike-graph , in Section 4, and we
describe an e-reduction process in Section 5. Based on the e-reduction process we give a
classification of genus one c-trees by nineteen reduced forms in Section 6. We clarify the
connection between the number of l-c-trees and u-c-trees on n points in the further sections,
analyzing reduced forms. Finally, using our previous results we formulate the theorem about
f(n)’s divisibility by n or n

2
.

2 Definitions and Remarks

The definition of a labeled circle tree straighforwardly extends to the definition of a labeled
circle graph . Indeed, replacing the word tree with graph in the definition of l-c-tree gives
the desired definition of a l-c-graph. Two l-c-graphs G1 and G2 are said to be isomorphic
if an edge e1 with endpoints labeled i and j is in G1 if and only if there is an edge e2 in
G2 with endpoints i and j (we consider graphs without multiple edges). Furthermore, if a
vertex labeled k is of degree zero in one of the graphs then it is of degree zero in both of
them. An unlableled circle graph (u-c-graph) is a graph obtained by deletion of labels
of a l-c-graph. Two u-c-graphs are said to be isomorphic if it is possible to label their
vertices so that the obtained l-c-graphs are isomorphic.

It follows from the definition of genus that isomorphic l-c-trees have equal genuses. Thus
we can define the genus of a u-c-tree T on n points to be the genus of any of the l-c-trees
one obtains by labeling the vertices of T by 1 through n in a counterclockwise direction.
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The left u-c-tree has exatcly three  
corresponding non-isomorphic l-c-trees,
while the right one has four. 

Figure 2.1

Figure 2.2: The two canonical reduced forms of genus one c-trees. 

Form 1 Form 2

Call u-c-graphs (u-c-trees) and l-c-graphs (l-c-trees) by the common name c-graphs (c-
trees). Edges e1 and e2 of a c-graph cross if they have a point in common on the drawing
of the c-graph other than their endpoints. Edges e1 and e2 of a c-graph G are parallel if
they cross the same edges of G, respectively. That the relation ‘parallel’ is an equivalence
relation is a straightforward check of reflexivity, symmetry and transitivity.

Definition 3. An u-c-tree C and a l-c-tree T are said to correspond if the u-c-tree
obtained by the deletion of the labels of T is isomorphic to C.

By the definition of genus the genuses of corresponding u-c-trees and l-c-trees are equal.
Note that a u-c-tree C on n points can correspond to at most n non-isomorphic l-c-trees. In
some cases the u-c-tree corresponds to exactly n non-isomorphic l-c-trees, but in some cases
a u-c-tree corresponds to less then n non-isomorphic l-c-trees, Figure 2.1.

The reinterpretation of Marcus’ result [3, 4]:

Proposition 1. Performing the following two operations on a c-tree as many times as
possible:

1) deleting an edge from the c-tree, which is not crossed by any other edge
2) deleting all but one of several parallel edges
leads to Form 1 or Form 2 shown on Figure 2.2 if and only if the c-tree was genus one.

We refer to the two operations of Proposition 1 as operation 1) and operation 2).

Definition 4. Call the u-c-graphs obtained from a u-c-tree C by executing operations 1) and
2) offsprings. A u-c-tree C descends to a u-c-graph, if the u-c-graph is an offspring of C.
The final offspring of a u-c-tree C is the offspring which has no edges which could be deleted
by the execution of operations 1) and 2). (Some offsprings of a u-c-tree are represented on
Figure 2.3)
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A u-c-tree and its offsprings

Figure 2.3
Final offspring

In Section 3 we conclude that the final offspring of a genus one u-c-tree C is unique (up
to isomorphism).

We now rephrase Proposition 1:
Proposition 1′. The genus of a u-c-tree T is one if and only if its final offspring is Form

1 or Form 2.
Naturally, by saying that the final offspring is Form 1 or Form 2, we mean that the final

offspring is isomorphic either to Form 1 or to Form 2. We do not stress this in the future,
since it is clear from the context.

We can now reformulate the question about the divisibility of f(n) by n or n
2

as follows:
When is the number of l-c-trees on n points, which have corresponding u-c-trees that descend
to Form 1 or Form 2 (Figure 2.2) by the execution of operations 1) and 2) (these are all of
the genus one l-c-trees), divisible by n and when is it divisible just by n

2
and not by n?

3 Initial Observations Concerning U-C-Trees

We state two simple lemmas concerning u-c-trees without proof. The proofs are based on
the definitions of uncrossed and parallel edges, and are easily derived by contracition.

Lemma 1. If an edge is uncrossed after a number of operations 1) and 2) are executed on
a u-c-tree, then that edge is uncrossed in the u-c-tree, as well as in all its offsprings (if not
deleted).

Lemma 2. If two edges are parallel after a number of operations 1) and 2) are executed on
a u-c-tree, then those two edges are parallel in the u-c-tree, as well as in all its offsprings (if
not deleted).

From Lemma 1 and Lemma 2 we conclude that the order of the execution of operations
1) and 2) and the particular choice of the order of the edges to be deleted do not affect the
final offspring. By Proposition 1, after executing operations 1) and 2) on a u-c-tree until
applicable, Form 1 or Form 2 are obtained if and only if the u-c-tree was genus one. Thus,
it is possible to construct every genus one u-c-tree by beginning from Form 1 or Form 2 and
by adding parallel edges to the ones presented in the form, and by adding uncrossed edges.
Moreover, starting with these two forms and adding only parallel and uncrossed edges any
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u-c-tree obtained is of genus one. See Figure 3.1 for illustration. This “building” idea might
serve as a basis for obtaining the exact number of genus one l-c-trees on n points.

           Figure 3.1

First way of executing operations 1) and 2).

First way of building a genus one u-c-tree.

Second way of executing operations 1) and 2). 

Second way of building a genus one u-c-tree.

4 About Edgelike-Graphs

In this section we introduce a main concept of our work, that of an edgelike-graph . As the
name already suggests, these graphs behave somewhat like edges. Indeed, edgelike-graphs, or
e-graphs for short, are subtrees of a given u-c-tree with the special property that collapsing
an e-graph to an edge (a specified one) the obtained u-c-tree has the same genus as the one
we began with.

Once the concept of e-graph is grasped, the way operations 1) and 2) act on a c-tree
becomes easy to visualize and understand. A u-c-tree can be decomposed into e-graphs, in
which case operations 1) and 2) act within these decomposed structures. The previous fact
exhibits the correlation between the structure of a c-graph and operations 1) and 2).

Let edges e1, e2, · · · , ek be parallel. If ei and ej are the outermost edges among ei, ei+1, · · · ,
ej, for all 1 ≤ i ≤ j ≤ k, then edges e1, e2, · · · , ek are increasingly parallel . Edges CD,
CG, JH, FE are increasingly parallel on Figure 4.1. Edges e1, e2, . . ., ek constitute a path
if and only if there exist points E1, E2, . . . , Ek+1 on the circle such that the endpoints of ei
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Figure 4.1
Edges of an e-graph. 

are Ei and Ei+1 for all 1 ≤ i ≤ k. We also make the convention that arc ÂB is the arc
between points A and B when going in a counterclockwise direction from A to B.

Definition 5. Given a c-graph G take any crossed edge AB of it. Let increasingly parallel
edges e1, e2, · · · , ek be all edges of G parallel to AB (including AB itself). Let increasingly
parallel edges a1, a2, · · · , al ∈ {e1, e2, · · · , ek} be all of the edges parallel to AB such that
there exist a path of edges AB = b1, b2, · · · , bm = ai (i ∈ [l]) such that each bj, j ∈ [m], is
either uncrossed or parallel to AB. If a1 = CD and al = EF , then the edges of G such that
both of their endpoints are on arcs D̂E and F̂C and they are uncrossed or parallel to AB

constitute the edgelike-graph, or e-graph, of G containing AB. Figure 4.1.

Observe that there is a unique e-graph containing each crossed edge.

Definition 6. Let the arcs D̂E and F̂C as in the above definition be called the arcs of an
e-graph, whereas edges CD and EF the outermost edges of it. Also, call the set of crossed
edges of the e-graph the set of parallel edges of the e-graph and call the set of edges of the
e-graph that are uncrossed the set of uncrossed edges.

Lemma 3. Using the notation of Definition 5, edges a1, a2, · · · , al are all of the edges parallel
to AB having both of their endpoints on arcs D̂E and F̂C.

Proof. Note that if AB = ei, and ej = az for some z ∈ [l], then any er, r between i and j, is
equal to some aq for some q ∈ [l]. This observation leads to the proof of the lemma.

Lemma 4. If E is an e-graph of c-graph G, then E consists of edges having no points in
common except for their vertices.

Proof. Suppose the opposite. Let e1 and e2 be two edges of E having a point A in common,
such that A is not their endpoint. Since any edge of E is either uncrossed or parallel to an
edge e (being uncrossed and parallel considered within G), we conclude that e1 and e2 are
both parallel to e. However, crossing edges cannot be parallel. This contradiction proves the
statement.

Lemma 5. If E is an e-graph of a u-c-tree C with arcs D̂E and F̂C and outermost edges
CD and EF , then there is no edge of C having one of its endpoints of the open arcs D̂E or
F̂C and the other endpoint on the open arcs ĈD or ÊF .
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Proof. The statement of the lemma follows since CD and EF are parallel edges.

Proposition 2. Given an e-graph E of a genus one u-c-tree C, let KL and MN be its
outermost edges, and the arcs L̂M and N̂K its arcs. Then all edges of C which have both of
their endpoints on arcs L̂M and N̂K are edges of E . Conversely, only such edges are edges
of an e-graph E of a genus one u-c-tree C.

Proof. Let U and P be the sets of uncrossed and parallel edges of e-graph E described in
the proposition. By the definition of e-graph U contains all the uncrossed edges of C with
endpoints on arcs L̂M and N̂K and P contains all edges of C parallel to KL with endpoints
on arcs L̂M and N̂K. To prove Proposition 2 it suffices to show that there is no edge e of C
with both of its endpoints on arcs L̂M and N̂K such that it is not in U or P. Suppose the
opposite, that there was an edge e of C with both of its endpoints on arcs L̂M and N̂K such
that it is not in U or P. If e had one of its endpoints on L̂M and the other on N̂K, then all
the edges crossing KL would cross e. Since e was not parallel to KL there would have been
some edge e′ which does not cross KL and MN but crosses e. Edge e′ could clearly not be
in U , and it also could not be in P, since KL and MN could not be crossed by e, given that
the endpoints of e are on arcs L̂M and N̂K. Edge e′ could be an edge with both endpoints
on one of the arcs L̂M or N̂K or with one endpoint on L̂M and other endpoint on N̂K (by
Lemma 5 these are the only possibilities), Figure 4.2. It is clear that executing operations
1) and 2) we would not get to Form 1 or Form 2, since the cross from e and e′ and from KL

and some edge it crosses would remain.
On the other hand, if e had both of its endpoints on one of the arcs L̂M or N̂K, since

it was not uncrossed it would have been crossed by some edge e′ and by Lemma 5 e′ would
have both of its endpoints on arcs L̂M and N̂K. All cases are depicted on Figure 4.3. The
cross obtained from the crossing of e and e′ and the cross from KL and some edge it crossed
it would necessarily remain after executing operations 1) and 2) so we could not get to Form
1 or Form 2, thus the genus of the u-c-tree could not be one.

e

e
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e
e

’
Figure 4.3

Edges of an e-graph
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After executing operations 1) and 2) the cross of 

Figure 4.4

Edges of e-graph

Edges of e-graph

and the cross ofand cannot be eliminated. eand 

Thus, all edges of C which have both of their endpoints on arcs L̂M and N̂K are edges
of the e-graph E . It follows by definition that only such edges are edges of the e-graph.

Corollary. (Definition 5, Lemma 5, Proposition 2) An e-graph of a genus one u-c-tree is
a tree. Proposition 2 also implies that given the outermost edges of an e-graph, the e-graph
is uniquely determined.

Lemma 6. Given two e-graphs E1 and E2 in a genus one u-c-tree C with sets of parallel
edges P1 and P2, if P1 = P2, then E1 and E2 are not different. (Two e-graphs of a c-tree
are said to be different if there is an edge in one of them which does not belong to the other.
When two e-graphs are not different, we also say that they are identical.)

Proof. The set of parallel edges of an e-graph determine its outermost edges and the outer-
most edges determine the e-graph in a genus one u-c-tree.

Proposition 3. There are no two different e-graphs E1 and E2 in a genus one u-c-tree C
such that they have vertices in common.

Proof. Let U1,P1,U2,P2 be the sets of uncrossed and parallel edges of two different e-graphs
E1 and E2. From Lemma 6 P1 6= P2. If the edges of P1 and P2 are parallel it is impossible
that the e-graphs have common vertices by the definition of an e-graph. In case the edges of
P1 and P2 are not parallel, the only vertex two e-graphs E1 and E2 might have in common
is an endpoint of some of their outermost edges. However, if E1 and E2 had such a point in
common, there must have been some edge e which crosses, say the edges of P2 and does not
cross the edges of P1. In this case the cross made by e and some edge of P2 as well as some
cross from some edge of P1 and another edge, not parallel to e, must stay after executing
operations 1) and 2) thus it is impossible to obtain Form 1 or Form 2 (Figure 4.4). Thus, if
the u-c-tree is genus one then no two e-graphs of the u-c-tree have vertices in common.

Given an e-graph E of a u-c-graph with its set of uncrossed edges U and set of parallel
edges P, call the elements of P the parallel edges and the elements of U the uncrossed
edges of the e-graph E . We say that an e-graph E is parallel to an edge e if its parallel edges
are parallel to e. Similarly, e-graph E1 is parallel to another e-graph E2 if their parallel edges
are parallel. We say that an edge e is between parallel e-graphs E1 and E2 if both endpoint
of e are on arcs B̂E and ĤC, where edges AD, BC, EH, FG are increasingly parallel and
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In this picture only a part of the hypothetical u-c-tree,
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namely, the three parallel e-graphs and the edges crossing  

the arcs of E1 are ÂB, ĈD and the arcs of E2 are ÊF , ĜH (and if e is not an edge of E1 or
E2). For example, taking e-graphs E1 and E2 from Figure 4.5, an edge is between these two

e-graphs if and only if both of its endpoints are on arcs ÊF and ĜH. A path consisting of
edges E1E2, E2E3, . . ., EkEk+1, connects two e-graphs E1 and E2 if and only if point E1

is the intersection of {E1, E2,. . .,Ek+1} and the points of one of the e-graphs, and point Ek+1

is the intersection of {E1, E2, . . . , Ek+1} and the points of the other of the e-graphs.

Theorem 1. There can be at most two different e-graphs E1 and E2 of a genus one u-c-tree
C such that E1 and E2 are parallel.

Proof. The main idea of the proof is that a u-c-tree is connected, and if there were already
three parallel e-graphs the u-c-tree, then it would be impossible to connect them into a
connected c-graph so that the three e-graphs were really three different e-graphs, and that
they were in a genus one u-c-tree. We analyze how could we possibly connect the “middle”
e-graph (supposing three parallel e-graphs) to the other parts of the u-c-tree in order to
obtain the desired contradiction.

Suppose the statement of Theorem 1 was false. Let E1, E2, E3 be three different e-graphs
of a genus one u-c-tree C parallel to each other. Let P1, P2, P3 be the sets of parallel edges,
and U1, U2, U3 be the sets uncrossed edges of E1, E2, E3, respectively. Let edges e1, e2, . . . , en

be all of the edges crossing their parallel edges. Let P = P1 ∪P2 ∪P3 = {a1, . . . , ak}, where

a1, . . . , ak are increasingly parallel. If a1 = BC and ak = DA, then arcs ÂB and ĈD are the
minimal arcs such that all edges from P have one of their endpoints on ÂB while the other
on ĈD. Let edge BC be an edge of P1 and DA an edge of P3. Recall that different e-graphs
have no common points and call E1 the left e-graph, E3 the right e-graph and E2 the middle
e-graph. Since e-graphs E1, E2 and E3 are subtrees of u-c-tree C, they are all connected to
each other within the u-c-tree. We concentrate our efforts on how could E2 be connected to
the other parts of the u-c-tree C.

We prove that there is no path connecting E1 and E2 such that the path contains exclu-
sively edges between E1 and E2. Analogously, there is no path connecting E2 and E3 such
that the path contains exclusively edges between E2 and E3.

Suppose the opposite. Suppose that there was a path consisting of edges between E1

and E2 connecting E2 to E1. Then, either E2 is connected to E1 by only uncrossed edges and
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edges parallel to E1 or E2 is connected to E1 with edges among which there are edges which
are neither uncrossed nor parallel to E1. From the definition of an e-graph we see that only
the second possibility might hold. However, if there was an edge e on the path connecting
E1 and E2 which is neither uncrossed nor parallel to E1, then it would have been crossed by
some edge which crosses none of E1, E2, E3 or it would have been not crossed by some which
crosses these. However, if e is not crossed by some of e1, e2, ..., en, then it is not crossed by
any of them1, thus, since e is crossed it must be crossed by some edge which cross none of
E1, E2, E3. Therefore, edge e is crossed by some edge e′, such that e′ 6∈ {e1, e2, ..., en} and
e′ is between E1 and E2 (so as for the three e-graphs to be parallel, and e′ not to be among
e1, e2, ..., en). All possibilities are depicted on Figure 4.6, where we did not present the whole
c-tree, but only the edges that are of importance for our proof. Using operations 1) and 2) it
would be impossible to obtain Form 1 or Form 2 (the cross of the three e-graphs and edges
e1, e2, ..., en and the other from the crossing of e and e′ would remain). Therefore, E2 is not
connected to E1 or E3 with edges between them.

Thus, if E2 was connected to the other parts of the u-c-tree, namely to E1 and E3, then
there had to be some edge e on the path which connected E2 to E1 and E3 which was not
between E1 and E2 or E2 and E3. However, some of such edges e would intersect some of
the three e-graphs and not intersect some other, thus this would contradict that the parallel
edges of E1, E2, E3 are parallel to each other. Therefore, there cannot be three e-graphs
parallel to each other in a genus one u-c-tree. The statement of Theorem 1 is proven.

Examples of trees with two parallel e-graphs are shown in Figure 6.1, where parallel edges
represent different parallel e-graphs.

5 The E-Reduction Process

In this section we describe the e-reduction process which reduces a u-c-tree C to a re-
duced form which carries enough information of the original u-c-tree C so that from the
reduced form of a u-c-tree C we know how many e-graphs C had and how they were connected
among each other.

Given a u-c-tree T perform the following e-reduction process:
First Step. For all e-graphs of T do the following: given e-graph E in T with set P

of parallel edges, delete all but one of the edges of P (operation 2)) obtaining u-c-graph T1

from T .
Second Step. Delete all the uncrossed edges of T1 (operation 1)) obtaining u-c-graph

T2. (Note that an edge e is uncrossed in T1 if and only if it was uncrossed in T .)
Third Step. If in the original u-c-tree T there was a path consisting of uncrossed edges

E1E2,..., EkEk+1 connecting e-graphs E1 (with arcs A1, A2) and E2 (with arcs B1, B2) in T ,

1Since if an edge e between E1 and E2 is crossed by some of ei, then e’s endpoints are on the two different
arcs between the e-graphs, and in the case e’s endpoints are on the two different arcs between the e-graphs
(ÊF and ĜH , Figure 4.5), then e is crossed by all e1, e2, ..., en, since the endpoints of e1, e2, ..., en are left to
E1 and right to E3 (left and right, referring to Figure 4.5).
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then, if A1A2 is the edge left from the set of parallel edges of E1 in the First Step such that
A1 ∈ A1 and A2 ∈ A2 and if B1B2 is the edge left from the set of parallel edges of E2 in the
First Step such that B1 ∈ B1 and B2 ∈ B2 then add edge AjBi (1 ≤ j, i ≤ 2) to u-c-graph
T2 provided E1 belongs to arc Aj and Ek+1 belongs to Bi. Do this for all possible paths of
uncrossed edges connecting two e-graphs in T . Call the u-c-graph obtained at the end T3.
Note that T3 is a u-c-tree.

To emphasize the importance of u-c-graphs obtained after the Second and Third Step
of the e-reduction process we give them special names: pre-reduced forms and reduced
forms, respectively, Figure 5.1. The pre-reduced form of a genus one u-c-tree T is the
u-c-tree T2 obtained by the execution of the first two steps of the e-reduction process on T .
The reduced form of a genus one u-c-tree T is the u-c-tree T3 obtained by execution of the
e-reduction process on T . We say that u-c-tree T reduces to u-c-graph T3 if the u-c-tree T3

is the reduced form of T .

pre-reduced form of T reduced form of Tu-c-tree T 
Figure 5.1

Definition 7. Let G denote the set of all c-graphs. Let T2 = {T2 ∈ G | T2 is a pre-reduced
form of some genus one u-c-tree C} and T3 = {T3 ∈ G | T3 is a reduced form of some genus
one u-c-tree C}

Lemma 7. Any T3 ∈ T3 can be obtained from some T2 ∈ T2 by addition of uncrossed edges
but without addition of any vertices so that the obtained u-c-graph is a tree. Also, all possible
u-c-trees T obtained by taking some u-c-graph T2 ∈ T2 and adding exclusively uncrossed edges
without adding any vertices so as to form a tree are in T3.

Proof. Follows from the e-reduction process.

Lemma 8. Let forms T2 and T3 be the pre-reduced and reduced forms of u-c-tree T , respec-
tively. Let T2 have np points and ne edges. Then T2 is a subgraph of the tree T3, the set of
vertices of T2 is equal to the set of vertices of T3, and there are exactly np − ne − 1 edges of
T3 which are not in T2. All of these edges are uncrossed.

Proof. The facts that T2 is a subgraph of T3, T3 is a tree, the set of vertices of T2 is equal to
the set of vertices of T3, and that the edges which belong to T3 but do not belong to T2 are
all uncrossed follow directly from the e-reduction process. Since T3 is a tree on np points it
has np − 1 edges, and since T2 has ne edges there are exactly np −ne − 1 in T3 which are not
in T2.

Lemma 9. Let T2 be the pre-reduced form of a genus one u-c-tree C. Then T2 is an offspring
of C.
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Proof. Since the First Step and the Second Step of the e-reduction process require only
repeated execution of operations 1) and 2) on a u-c-tree C, the u-c-graph obtained after the
Second Step, T2, is an offspring of C by definition.

Proposition 4. The genus of the reduced form T3 of a u-c-tree T is one if and only if the
genus of T is one.

Proof. Let T2 be the pre-reduced form of u-c-tree T . Then T2 is an offspring of T by Lemma
9. Note that T2 is an offspring of T3, since deleting the uncrossed edges of T3 results in
T2. Thus, T and T3 have a common offspring and so their final offspring is the same. By
Proposition 1’ the genus of T is one if and only if the genus of T3 is one.

Lemma 10. If T2 is a pre-reduced form of a genus one u-c-tree T, then T2 descends to Form
1 or Form 2.

Proof. From Lemma 9 we know that T2 is an offspring of T. Since T is genus one if and only
if its final offspring is Form 1 or Form 2, and the final offspring depends only on the starting
u-c-graph, it is clear that from any offspring, so in particular from T2, Form 1 or Form 2
can be obtained by executing operations 1) and 2) on the offspring provided T was genus
one.

Proposition 5. If T2 is the pre-reduced form of a genus one u-c-tree T, then T2 is one of
the 7 u-c-graphs on Figure 5.22

2The labels a, b, c, d, e, f, g, h, i, j, k, l are not part of the forms. They serve only to enable us to
specify certain edges of the forms.
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Proof. As a pre-reduced form T2 contains no uncrossed edges, and in u-c-graph T2 each e-
graph of T is represented by a single edge, a representative of the set of parallel edges of the
e-graph in T . Since, according to Theorem 1, there can be at most two parallel e-graphs,
in T2 there are no three edges parallel to each other. Since no different e-graphs in T had
common vertices (Proposition 3), no edges of T2 have common endpoints. By Lemma 10 T2

descends to Form 1 or Form 2. These conditions are fulfilled exclusively in the presented 7
forms, therefore, T2 ⊆ {T2

1, T2
2, T2

3, T2
4, T2

5, T2
6, T2

7} as stated in the proposition.

6 Classification of All Genus One C-Trees

In this section we prove that there exist genus one u-c-trees such that their pre-reduced
forms are T2

1, T2
2, T2

3, T2
4, T2

5, T2
6, but that there is no genus one u-c-tree having T2

7 as
its pre-reduced form, that is T2={T2

1, T2
2, T2

3, T2
4, T2

5, T2
6}. Throughout the analysis of

the seven candidates for pre-reduced forms presented in Proposition 5 we also describe all
of the possible reduced forms of genus one u-c-trees. The interrelations of a u-c-tree and
its reduced form enables us to get an insight into the behavior of the number of genus one
l-c-trees on n points.

Theorem 2. T2= {T2
1, T2

2, T2
3, T2

4, T2
5, T2

6}.
T3= {T3

1[1], T3
2[1], T3

2[2], T3
2[3], T3

3[1], T3
4[1], T3

4[2], T3
5[1], T3

5[2], T3
5[3], T3

5[4],
T3

5[5], T3
5[6], T3

6[1], T3
6[2], T3

6[3], T3
6[4], T3

6[5], T3
6[6]}, Figure 6.1.

Proof. We try to obtain a tree from each of the seven different candidates for pre-reduced
forms from Proposition 5 by addition of uncrossed edges as described in Lemma 8, pretending
the candidates were in fact pre-reduced forms. In case we are able to obtain a tree without
adding vertices as Lemma 8 states, we know that the candidate was in fact a pre-reduced
form, since the tree we obtain does have the candidate for its pre-reduced form and itself
for its reduced form. However, in case we are unable to obtain a tree by the addition of
uncrossed edges as Lemma 8 states, we know that the candidate cannot possibly be a pre-
reduced form. Also, for the candidates which prove to be pre-reduced forms we give all of
the reduced forms which can result from them after the execution of the Third Step of the
e-reduction process. Since all reduced forms are obtainable from some pre-reduced form by
the execution of the Third Step of the e-reduction process we get all of the reduced forms
of genus one u-c-trees.The analysis of the seven candidates follows. We are referring to the
figure of Proposition 5.

• T2
1 has 4 points and 2 edges. In order to obtain a tree one edge needs to be added.

There are 4 possibilities for uncrossed edges between the e-graphs: ab, bc, cd and da. All the
4 u-c-trees which could be obtained by adding one of these edges are isomorphic. Thus, one
reduced form: T3

1[1] can be obtained from T2
1.

• T2
2 has 6 points and 3 edges, thus 2 edges need to be added to obtain a tree. There

are 4 possibilities for uncrossed edges between the e-graphs: ab, cd, de and fa. (Note that
bc and ef are not such edges, since bf and ce have to become different e-graphs, and if
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there would be an uncrossed edge connecting these parallel edges, they would form a single
e-graph.) Edges fa and ab cannot be added at the same time to form a tree nor can cd and
de together, {fa, ab, bf} or {cd, de, ec} would form a cycle. Thus, the 2 edges which could
be added are: {fa, cd}, {fa, de}, {ab, cd}, {ab, de}. The u-c-trees obtained by adding {fa,
de} and {ab, cd} are isomorphic. However, none of the u-c-trees obtained by adding {fa,
de}, {fa, cd}, {ab, de} are isomorphic, thus three reduced forms: T3

2[1], T3
2[2], T3

2[3] can
be obtained from T2

2.
• T2

3 has 8 points and 4 edges, thus 3 edges need to be added to obtain a tree. There
are 4 possibilities for uncrossed edges between the e-graphs: ab, cd, ef and gh. All the four
u-c-trees which could be obtained by adding three of these edges are isomorphic. Thus, one
reduced form: T3

3[1] can be obtained from T2
3.

• T2
4 has 6 points and 3 edges, thus 2 edges need to be added to obtain a tree. There are

6 possibilities for uncrossed edges between the e-graphs: ab, bc, cd, de, ef , and fa. Edges
{ab, ed}, {bc, ef}, {cd, fa} cannot added at the same time to form a tree, since {ab, be,
ed, da}, {bc, cf , ef , eb} or {cd, da, fa, fc} would form a cycle. Thus, the 2 edges which
might be added are: {ab, bc}, {ab, cd}, {ab, ef}, {ab, fa}, {bc, cd}, {bc, de}, {bc, fa}, {cd,
de}, {cd, ef}, {de, ef}, {de, fa}, {ef , fa}. The u-c-trees obtained by adding {ab, bc}, {ab,
fa}, {bc, cd}, {cd, de}, {de, ef}, {ef , fa} are isomorphic; also u-c-trees obtained by adding
{ab, cd}, {ab, ef}, {bc, de}, {bc, fa}, {cd, ef}, {de, fa} are isomorphic. However, u-c-trees
obtained by adding {ab, bc}, {ab, cd} are not isomorphic, thus two reduced forms: T3

4[1],
T3

4[2] can be obtained from T2
4.

• T2
5 has 8 points and 4 edges, thus 3 edges need to be added to obtain a tree. There are

6 possibilities for uncrossed edges between the e-graphs: ab, bc, cd, ef , fg, and gh. Since
we want to obtain a tree, one of {ef , gh} and one of {ab, cd} must be among the added
uncrossed edges in order for edges he and ad to be connected to something. Thus, two out
of the three edges needed to be added must be {ef , ab} or {ef , cd} or {gh, ab} or {gh, cd}.
In order to obtain a tree the three added edges can be: {ef , ab, fg}, {ef , ab, gh}, {ef , ab,
bc}, {ef , ab, cd}, {ef , cd, bc}, {ef , cd, fg}, {ef , cd, gh}, {gh, ab, bc}, {gh, ab, cd}, {gh, ab,
fg}, {gh, cd, bc}, {gh, cd, fg}. The u-c-trees obtained by adding {ef , ab, fg}, {ef , ab, bc}
are isomorphic; also u-c-trees obtained by adding {ef , ab, gh}, {ef , ab, cd} are isomorphic;
also u-c-trees obtained by adding {ef , cd, bc}, {gh, ab, fg} are isomorphic; also u-c-trees
obtained by adding {ef , cd, fg}, {gh, ab, bc} are isomorphic; also u-c-trees obtained by
adding {ef , cd, gh}, {gh, ab, cd} are isomorphic; also u-c-trees obtained by adding {gh, cd,
bc}, {gh, cd, fg} are isomorphic. However, u-c-trees obtained by adding {ef , ab, fg}, {ef ,
ab, gh}, {ef , cd, bc}, {ef , cd, fg}, {ef , cd, gh}, {gh, cd, bc} are not isomorphic, thus six
reduced forms: T3

5[1], T3
5[2],T3

5[3], T3
5[4], T3

5[5], T3
5[6] can be obtained from T2

5.
• T2

6 has 10 points and 5 edges, thus 4 edges need to be added to obtain a tree. There
are 6 possibilities for uncrossed edges between the e-graphs: ab, cd, ef , fg, hi, and ja. There
are 15 possibilities to choose 4 edges out of these 6: {ab, cd, ef , fg}, {ab, cd, ef , hi}, {ab,
cd, fg, hi}, {ab, ef , fg, hi}, {cd, ef , fg, hi}, {ab, cd, ef , ja}, {ab, cd, fg, ja}, {ab, ef , fg,
ja}, {cd, ef , fg, ja}, {ab, cd, hi, ja}, {ab, ef , hi, ja}, {cd, ef , hi, ja}, {ab, fg, hi, ja},
{cd, fg, hi, ja}, {ef , fg, hi, ja}. Edges {ab, bh, hi, ie, ef , fa} form a cycle thus {ab, hi,
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ef} cannot be in a tree. Similarly {cd, dj, ja, af , fg, gc} form a cycle thus {cd, ja, fg}
cannot be in a tree. Therefore only 9 possibilities out of 15 remain: {ab, cd, ef , fg}, {ab,
cd, fg, hi}, {cd, ef , fg, hi}, {ab, cd, ef , ja}, {ab, ef , fg, ja}, {ab, cd, hi, ja}, {cd, ef , hi,
ja}, {ab, fg, hi, ja}, {ef , fg, hi, ja}. Note that the u-c-trees obtained by adding {ab, cd,
ef , fg}, {ab, fg, hi, ja} are isomorphic; also u-c-trees obtained by adding {cd, ef , fg, hi},
{ab, cd, hi, ja} are isomorphic; also u-c-trees obtained by adding {ab, cd, ef , ja}, {ef , fg,
hi, ja} are isomorphic. However, u-c-trees obtained by adding {ab, cd, ef , fg}, {cd, ef , fg,
hi}, {ab, cd, ef , ja}, {ab, cd, fg, hi}, {ab, ef , fg, ja}, {cd, ef , hi, ja} are not isomorphic,
thus six reduced forms: T3

6[1], T3
6[2],T3

6[3], T3
6[4], T3

6[5], T3
6[6] can be obtained from T2

6.
• Finally, T2

7 has 12 points and 6 edges, thus 5 edges need to be added to obtain a tree.
There are 6 possibilities for uncrossed edges between the e-graphs: ab, cd, ef , gh, ij, and
kl. Note, however, that {ab, bi, ij, je, ef , fa}, {cd, dk, kl, lg, gh, hc} are cycles, thus {ab,
ij, ef}, {cd, kl, gh} cannot be added to obatin a tree. However, there is no way to choose
5 edges out of the 6 possible so that none of the sets {ab, ij, ef}, {cd, kl, gh} is a subset of
the set of the chosen 5 edges. Therefore, no reduced form can be obtained from T2

7.
We have analyised all possible forms from Proposition 7, and saw that some element of T3

can be obtained from all of T2
1, T2

2, T2
3, T2

4, T2
5, T2

6, but no element of T3 can be obtained
from T2

7. Using the result of Proposition 7 we conclude that T2= {T2
1, T2

2, T2
3, T2

4, T2
5,

T2
6}, and since all elements of T3 are obtainable from some pre-reduced form we have that

T3= {T3
1[1], T3

2[1], T3
2[2], T3

2[3], T3
3[1], T3

4[1], T3
4[2], T3

5[1], T3
5[2], T3

5[3], T3
5[4], T3

5[5],
T3

5[6], T3
6[1], T3

6[2], T3
6[3], T3

6[4], T3
6[5], T3

6[6]}. This concludes the proof of Theorem 2.

The nineteen reduced forms from Theorem 2 classify genus one l-c-trees, namely, for
all such l-c-trees the corresponding u-c-trees reduce to one of these nineteen reduced forms.

7 The Connection Between L-C-Trees and U-C-Trees

Given a genus one u-c-tree C let l(C) denote the number of non-isomorphic genus one l-
c-trees corresponding to C. Alternatively, l(C) is the number of non-isomorphic l-c-trees
obtained from different labelings of C. If C1, C2, C3, . . ., Ck are all of the non-isomorphic
genus one u-c-trees on n points, then f(n) = l(C1) + l(C2) + l(C3) + · · ·+ l(Ck).

Definition 8. Given a l-c-tree T on n points let the rotation of T result in r(T ), the l-c-tree
with edges {r(a)r(b) | ab is an edge of T}, where r(i) = i + 1 for i ∈ [n − 1], and r(n) = 1.

It directly follows that if T is a l-c-tree on n points, then T and rn(T ) are isomorphic.
When writing T = rm(T ) where T is a l-c-tree it is meant that T and rm(T ) are isomorphic.

Definition 9. Given a u-c-tree C on n points with vertices evenly distributed on the circle
let the rotation of C result in R(C), the u-c-tree obtained by a geometrical rotation of C

around the center of the circle by 2π
n

in a counterclockwise direction, Figure 7.1.
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These two l-c-trees are isomorphic.

R(C) with the labels from T’

3R (T)u-c-tree T
Figure 7.1

Clearly, if C is a u-c-tree on n points with evenly distributed vertices, then C coincides
with Rn(C) geometrically. When writing C = Rm(C) where C is a u-c-tree it is meant that
C and Rm(C) coincide geometrically.

Proposition 6. Given a l-c-tree T on n points, let C be a u-c-tree corresponding to T,
such that C has its vertices evenly distributed on a circle. Then, T = rm(T ) if and only if
C = Rm(C), for all m ∈ N.

Proof. Let T ′ be an l-c-tree isomorphic to T such that simply deleting the labels of T ′ results
in C. Note that if we fix the labels of T ′, rotate C and associate the fixed labels to R(C)
we obtain the l-c-tree r(T ′). (Figure 7.2.) Iterating this, it is true that associating the fixed
labels of T ′ to Rm(C) we obtain rm(T ′). Thus, T ′ = rm(T ′) if and only if C = Rm(C).
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Since T and T ′ are isomorphic l-c-trees, T = rm(T ) if and only if T ′ = rm(T ′). Therefore,
T = rm(T ) if and only if C = Rm(C).

Proposition 7. Given a l-c-tree T on n points let m be the minimal positive integer such
that T = rm(T ). Let C be a u-c-tree corresponding to T. Then l(C)=m and m divides n.

Proof. Note that T, r(T ), r2(T ), . . . , rm−1(T ) are all non-isomorphic l-c-trees, since if ri(T )
was isomorphic to rj(T ), 0 ≤ i < j ≤ m − 1 then T = rj−i(T ), j − i < m, contradicting
that m is the minimal positive integer such that T = rm(T ). Also note that any rk(T ),
where k > m− 1, is isomorphic to rk′

(T ), where k′ is the smallest nonnegative remainder of
k modulo m. Therefore, T, r(T ), r2(T ), . . . , rm−1(T ) are all of the non-isomorphic l-c-trees
corresponding to C, thus l(C) = m. Since T = rn(T ), m divides n. (This follows since there
exists k such that 0 ≤ k · m − n < m, and since m was chosen to be the minimal positive
integer with property T = rm(T ), and T = rk·m−n(T ) it must be that k · m − n = 0.)

Proposition 8. f(n) is divisible by n if n is prime, n>3.

Proof. Let C1, C2, . . . , Ck be all non-isomorphic u-c-trees on n points. Let Ti be one of the
genus one l-c-trees corresponding to Ci for 1 ≤ i ≤ x, and let mi be the minimal positive
integer such that Ti = rmi(Ti). According to Proposition 7 all mi divide n, but it is clear that
mi cannot be 1. Thus mi = n for all 1 ≤ i ≤ k, and f(n) = l(C1)+l(C2)+l(C3)+· · ·+l(Ck) =
k · n, is divisible by n.

If for all genus one u-c-trees C on n points l(C) was n, it would be trivial to conclude
that f(n) is divisible by n. However, this is not the case, as already pointed out in Section
2, Figure 2.1. We investigate the minimal number of rotations needed for a u-c-tree C to
rotate into itself, which number is equal to l(C) by Proposition 7.

Observation. When a u-c-tree C is rotated into itself, then its e-graphs rotate into e-
graphs, and paths of uncrossed edges connecting e-graphs rotate into paths of uncrossed edges
connecting e-graphs.

Recall that we can think of the reduced form of a u-c-tree C as of a u-c-tree where e-
graphs are represented by e-graphs which have a single edge, and paths of uncrossed edges
connecting e-graphs by single uncrossed edges. From the Observation we conclude that if
the minimum number of rotations m for which a u-c-tree C rotates into itself, Rm(C) = C,
is less than n, and k is the number of vertices of its reduced form, then the reduced form
rotates into itself in less then k rotations (the points of the reduced form can be made to
be evenly distributed on the circle, and the definition of rotation is analogous as in case of
a u-c-tree).

Proposition 9. The number of genus one l-c-trees on n points which have corresponding u-
c-trees that reduce to reduced forms T3

1[1], T3
2[1], T3

3[1], T3
4[1], T3

4[2], T3
5[1], T3

5[2], T3
5[3],

T3
5[4], T3

5[5], T3
5[6], T3

6[1], T3
6[2], T3

6[3] is divisible by n.
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Proof. Let min(T) denote the minimum number of rotations needed for a u-c-graph T

to rotate into itself. Since min(T ) <(the number of vertices of T ) fails for all reduced
forms except for T3

2[2], T3
2[3], T3

6[4], T3
6[5], and T3

6[6], only the genus one u-c-trees on
n points having these reduced forms might rotate into themselves in less then n rotations
(by Observation). Therefore, the number of genus one l-c-trees on n points which have
corresponding u-c-trees that reduce to T3

1[1], T3
2[1], T3

3[1], T3
4[1], T3

4[2], T3
5[1], T3

5[2],
T3

5[3], T3
5[4], T3

5[5], T3
5[6], T3

6[1], T3
6[2], T3

6[3] is divisible by n, since for each such u-c-tree
C, l(C) = n.

When T3
2[2], T3

2[3], T3
6[4], T3

6[5], T3
6[6] are rotated into themselves in less than k rota-

tions (thinking of k as the number of vertices of a particular reduced form) in each of the
reduced forms exactly one edge (which is an e-graph) rotates into itself, while all the other
edges are “paired up,” meaning that if edge e rotates into edge e′ then edge e′ rotates into
edge e. Consider a u-c-tree C on n points which reduces to one of T3

2[2], T3
2[3], T3

6[4],
T3

6[5], T3
6[6] and for which min(C) < n.

Based on the observation made about these reduced forms, we conclude that in C one of
its e-graphs rotates into itself, while the edges not belonging to that e-graph pair up in the
rotation which takes C into itself in less than n rotations.

Let the e-graph of C which rotates into itself have outermost edges e1 and e2. In the
rotation e1 rotates into e2 and e2 rotates into e1, therefore points Zi, Pi, Xj, Yj rotate into
points Pi, Zi, Yj, Xj respectively, where Zi, Pi, Xj, Yj, i = 1, 2, . . . , r and j = 1, 2, . . . , k,
are as shown in Figure 7.3. Thus, n = 2 · (k + r) in case a u-c-tree rotates into itself in
less then n rotations, and we conclude that if for a u-c-tree C on n points min(C) < n,
then min(C) = n

2
rotations. The results we obtained in this discussion are summarized in

Theorem 3:

Theorem 3. Given a u-c-tree C on n points, where n > 3 is odd, C rotates into itself only
after i · n rotations, i ∈ N, thus l(C) = n. Given a u-c-tree C on n points, where n > 3 is
even, if l(C) 6= n, then l(C) = n

2
.

Theorem 4. f(n) is divisible by n for n>3, n odd. For n even, n>3, f(n) is divisible by n
2
.

Proof. Theorem 4 follows from Theorem 3, since f(n) = l(C1) + · · · + l(Ck), where C1, . . .,
Ck are all of the non-isomorphic genus one l-c-trees on n points.
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8 Reduced Forms T3
2[2], T3

2[3], T3
6[4], T3

6[5], T3
6[6]

By Proposition 9 the number of genus one l-c-trees on n points with corresponding u-c-trees
that reduce to T3

1[1], T3
2[1], T3

3[1], T3
4[1], T3

4[2], T3
5[1], T3

5[2], T3
5[3], T3

5[4], T3
5[5], T3

5[6],
T3

6[1], T3
6[2], T3

6[3] is divisible by n, thus we are further interested in the number of genus
one l-c-trees on n points with corresponding u-c-trees reducing to T3

2[2], T3
2[3], T3

6[4], T3
6[5],

T3
6[6]. For each u-c-tree on n points, reducing to T3

2[2] there is a naturally corresponding u-
c-tree on n points reducing to T3

2[3] (due to axis symmetry, Figure 8.1) and for each u-c-tree
reducing to T3

6[4] there is a u-c-tree reducing to T3
6[6] for the same reason. This statement

is formalized in Proposition 10.

u-c-tree with reduced                    

form form

u-c-tree with reduced                    

Figure 8.1

T3
2[2] T3

2[3]

Proposition 10. There exists a bijection b between u-c-trees on n points reducing to T3
2[2]

(T3
6[4]) and u-c-trees on n points reducing to T3

2[3] (T3
6[6]) such that if b(C[1]) = C[2], then

min(C[1]) = min(C[2]) to rotate into itself.

Proof. We exhibit an explicit bijection b satisfying the conditions of Proposition 10. Given
a u-c-tree C[1] on n points reducing to T3

2[2] (T3
6[4]), label its vertices with 1 through n in

a counterclockwise direction starting by labeling an arbitrary vertex with 1 . Take a circle
c2 and label n of its points in a clockwise direction with 1 through n. Draw edges ij on
c2 provided some edge of C[1] was labeled with ij. Then delete the labels of the points of
c2. The obtained graph b(C[1]) = C[2] is a u-c-tree reducing to T3

2[3] (T3
6[6]). Bijection b

satisfies the conditions specified.

Proposition 11. The number of genus one l-c-trees on n points with u-c-trees reducing to
T3

2[2], T3
2[3] T3

6[4], or T3
6[6] is divisible by n.

Proof. Proposition 10 proves the existence of a bijection b between u-c-trees on n points
reducing to T3

2[2] (T3
6[4]) and u-c-trees on n points reducing to T3

2[3] (T3
6[6]) such that

if b(C[1]) = C[2], then min(C[1]) = min(C[2]). Since for any u-c-tree C, min(C) = n or
min(C) = n

2
, it follows that l(C[1])+ l(C[2]) is always divisible by n (since min(C) = l(C)).

Therefore, summing l(C) over all u-c-trees C on n points reducing to T3
2[2], T3

2[3] T3
6[4],

T3
6[6] we obtain a number divisible by n. The statement of the proposition follows.

Remark. From Proposition 9 and Proposition 11 we conclude that it depends only upon
the number of genus one l-c-trees T with corresponding u-c-trees C reducing to T3

6[5] and
such that min(C) = n

2
, whether f(n) is divisible by n, or only by n

2
. Note that this question

is for n even, since for n odd we already saw that l(C) = n for all genus one u-c-trees C on
n points.
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Figure 9.1
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9 The Examination of Reduced Form T3
6[5]

Let Pn = {C ∈ G | C is a u-c-tree on n points reducing to T3
6[5] such that min(C) = n

2
}.

From the Remark of Section 8 f(n) (n even) is divisible by n if and only if |Pn| is even, since
f(n) ≡|Pn|·

n
2

(mod n). If |Pn| is odd, then f(n) is not divisible by n but is divisible by n
2
.

In this section we investigate the parity of |Pn|.
We say that an e-graph reduces to an edge ab if and only if in the e-reduction process

edge ab (or a− b) was the one left (not deleted) from the set of parallel edges of the e-graph.
In a u-c-tree C ∈ Pn e-graph a − b, a, b ∈ {i, ii, iii, · · · , ix, x}, is the e-graph reducing to
edge a − b in the reduced form of C, Figure 9.1.

Proposition 12. There exists a bijection h mapping the u-c-trees C ∈ Pn with e-graph
iii − viii consisting of more than one edge into the u-c-trees C ∈ Pn with e-graph iii − viii

consisting of more than one edge, such that if h(C[1]) = C[2] then h(C[2]) = C[1] and C[1]
and C[2] are non-isomorphic.

Proof. Given a u-c-tree C[1] ∈ Pn we know min(C) = n
2

and thus its e-graph iii − viii also
rotates into itself in n

2
rotations. Let e1 and e2 be the e-graph’s outermost edges in C[1].

Let points X1, X2, X3, .., Xm be the points on one arc of the e-graph in counterclockwise
direction and let Y1, Y2, Y3, ..., Ym be the points on the other arc of the e-graph in clockwise
direction, so {e1, e2} = {X1Y1, XmYm}. (Note that the number of points on the two arcs of
the e-graph is the same since they rotate into each other being that e1 rotates into e2 and
vica versa. Also, m > 1 since we supposed the e-graph consists of more than one edge.).
Leaving the edges of u-c-tree C[1] the same, except changing the edges of form (Xi, Xj)
into (Yi, Yj), (Yi, Yj) into (Xi, Xj) and (Xi, Yj) into (Yi, Xj) we obtain a u-c-tree C[2] such
that min(C[2]) = n

2
, Figure 9.2. It is clear from the construction that if h(C[1]) = C[2]

then h(C[2]) = C[1]. To complete the proof, we need to show that C[1] and C[2] are
different. Suppose the opposite. Then e-graph iii − viii also coincides in the two u-c-trees.
Let e1 = E1,1E1,2 and e2 = E2,1E2,2. Then e1 and e2 need to be connected by the edges of
e-graph iii − viii since they are the outermost edges of the e-graph. Let there be a path
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of edges of the e-graph connecting vertices E1,i1 and E2,j1 (1 ≤ i1, j1 ≤ 2) in C[1]. Then in
C[2] vertices E1,i2 and E2,j2 (1 ≤ i2, j2 ≤ 2, i1 6= i2, j1 6= j2) would be connected, and if
C[1] = C[2] then there would be a circle of edges containing vertices E1,1, E1,2, E2,1, and
E2,2. This, however, cannot happen since in a tree there cannot be circles.

Proposition 13. The number of u-c-trees C such that C ∈ Pn and e-graph iii − viii in C

consists of more than one edge is even.

Proof. Follows from the existence of bijection h described in Proposition 12.

Proposition 13 implies that the number of genus one l-c-trees on n points with correspond-
ing u-c-trees that are in Pn and for which in the corresponding u-c-trees e-graph iii − viii

consists of more than one edge is divisible by n.

About U-C-Trees C ∈ Pn Such That E-Graph iii − viii of C Consists of a Single

Edge

It remains to examine the u-c-trees C ∈ Pn such that e-graph iii − viii of C consists of
a single edge. Until the end of this section it is assumed that all u-c-trees are such. The
definitions assume this as well. Also, we simply denote such a u-c-tree by C. The labels
i, ii, . . . , viii, ix, x refer to Figure 9.1 or to a u-c-tree C which has T3

6[5] as its reduced form.
When we refer to uncrossed edges which connect to e-graph E , we mean the set

of uncrossed edges E, defined recursively as follows:
• all the uncrossed edges which are not edges of E but have some of the endpoints of the

outermost edges of E as their endpoints are in E

• edge e is in E if it is not in E and if it is uncrossed and has a common endpoint with
some edge already in E

Definition 10. Let K1 be the subgraph of C such that it consists of e-graph vi − ii, and all
the uncrossed edges connecting to e-graph vi − ii with the restriction that they have both of
their endpoints on arcs i − iii and v − vii.
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Figure 9.3

Only the edges of K1 and K2
and edge iii-viii are represented. 

viii iii viii iii

edges of K2

edges of K1

1 2K  and K   are not different. 1K  and K   are different. 2

Definition 11. Let K2 be the subgraph of C such that it consists of e-graph x − iv, all of
the uncrossed edges connecting to e-graph x − iv with the restriction that they have both of
their endpoints on arcs ix − i and iii − v.

Lemma 11. E-graph iii − viii, K1, and K2 uniquely determine a u-c-tree C such that
min(C) = n

2
.

Proof. When C rotates into itself in n
2

rotations, then K1 rotates into the union of e-graph
i − vii and the uncrossed edges connecting to the e-graph i − vii with the restriction that
they have both of their endpoints on arcs vi− viii and x− ii, and K2 rotates into the union
of e-graph v − ix, the uncrossed edges connecting to the e-graph v − ix with the restriction
that they have both of their endpoints on arcs viii − x and iv − vi. Therefore, e-graph
iii − viii, K1, K2, and the edges into which K1 and K2 rotate constitute all of the edges of
C, thus the statement of the lemma follows.

Definition 12. Given C we say that K1 and K2 are identical if when we label the points
of C with 1 through n in a clockwise direction so that iii gets labeled with 1 the edges of K1

get the same labels as the edges of K2 when we label the points of C with 1 through n in a
counterclockwise direction so that iii gets labeled with 1. If this is not the case we say that
K1 and K2 are different.

Intuitively, K1 and K2 are different if by reflecting K1 upon the axis of symmetry parallel
to viii − iii we do not get K2, Figure 9.3.

Lemma 12. If in a u-c-tree C K1 is different from K2, then there exists a bijection g

mapping the set of u-c-trees C with K1 and K2 different into itself, so that if g(C[1]) = C[2],
then g(C[2]) = C[1] and C[1] is not isomorphic to C[2].

Proof. Intuitively, g maps u-c-tree C[1] into a u-c-tree C[2] such that C[2] is obtained from
C[1] by reflecting all the edges of C[1] upon edge iii − viii, Figure 9.4.

Formally, the following bijection g has the property described. Given C[1] with K1 and
K2 different, label its vertices with 1 through n in a counterclockwise direction starting by
labeling iii with 1 . Take a circle c2 and label n of its points in a clockwise direction with
1 through n. Draw edges ij on c2 provided some edge of C[1] was labeled with ij. Then
delete the labels of the points of c2. The obtained graph is C[2].
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Pairs of u-c-trees in case K  and K  are different. 

viii iii viii iii

Only the edges of K1 and K2
and edge iii-viii are represented. 

Figure 9.4

1 2

1edges of K

2edges of K

Lemma 13. The number of u-c-trees C with K1 and K2 different is even.

Proof. The statement follows from the existence of bijection g described in Lemma 12.

Therefore, it remains to determine the parity of the number p of u-c-trees in Pn, such
that e-graph iii − viii is a single edge, and K1 and K2 are identical. This can happen only
if n−2

2
is even (since if K1 and K2 are identical, then the number of edges in K1 and K2 is

the same, thus the sum of the number of edges in K1 and K2 is even, and on the other hand
it is n−2

2
). Therefore, in case n−2

2
is odd (which is equivalent to n divisible by 4 ) p = 0 and

it follows that:

Theorem 5. If n is divisible by 4, the parity of the number of u-c-trees on n points is even,
and so f(n) is divisible by n.

For n ≡ 2 (mod 4 ) (n−2
2

is divisible by 2 ) p is equal to the number of possible ways of
constructing the union of e-graph vi − ii and all the uncrossed edges connecting to e-graph
vi− ii with the restriction that they have both of their endpoints on arcs i− iii and v − vii

using n−2
4

edges, since this uniquely determines a u-c-tree C where iii − viii is a single edge
and K1 and K2 are identical. We formalize the previous notion in the following definition.

Definition 13. Suppose we draw e-graph E with parallel edges represented by vertical lines,
then we call the outermost edge on the right the rightmost edges of E . Km = {K ∈ G | K is
a u-c-graph with m edges consisting of an e-graph E and uncrossed edges connecting to the
e-graph, with the special property that there is at least one uncrossed edge AX, not an edge
of the e-graph E , connecting to the e-graph whose rightmost edge is AB and X is in open arc
ÂB}.

Clearly, e-graph vi − ii of C is imitated by e-graph E , that there are uncrossed edges on
the arc between ii and iii is ensured by the edge AX mentioned in the definition, and the
uncrossed edges connecting to e-graph E imitate the uncrossed edges connecting to e-graph
vi − ii of C with the restriction that they have both of their endpoints on arcs i − iii and
v − vii, and vice versa. From this p =| K n−2

4

|.

Lemma 14. There is an even number of K ∈ Km such that the e-graph of K consists of
more than one edge.
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consists of more than one edge.  
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Figure 9.5

are AB and CD.
outermost edges of the e-graph 

Proof. Let K ′ ∈ K′

m be given, where K′

m = {K ∈ Km | the e-graph of K consists of more
than one edge}. Define a function k : K′

m → K′

m as follows. Think of K ′ using k edges as
K1 with the property that e-graph vi− ii has more than one edge. Let the points of e-graph
vi − ii be X1, X2, X3, . . ., Xm1

counterclockwise on one of its arcs and Y1, Y2, Y3,. . ., Ym2

clockwise on the other of its arcs (m1 > 1 or m2 > 1). Changing edges of form (Xi, Xj) into
(Yi, Yj), (Yi, Yj) into (Xi, Xj) and (Xi, Yj) into (Yi, Xj), and leaving the other edges of K ′

the same we obtain K ′′ = k(K ′) different from K ′ (The proof that K ′ and K ′′ are different
follows the lines of an analogous proof at the end of Proposition 12.). Clearly, K ′ = k(K ′′).
Therefore, | K′

m | is even, which is the statement of the lemma. See Figure 9.5.

Conclusion. Since | K′
n−2

4

| contributes an even number to p, the only remaining case to

consider is when e-graph ii − vi in K ∈ Kn−2

4

consists of one edge. Our goal is to determine

the parity of the number of possible constructions of: union of e-graph vi − ii, consisting of
a single edge, and all the uncrossed edges connecting to e-graph vi − ii with the restriction
that they have both of their endpoints on arcs i − iii and v − vii and that there is at least
on edge on arc ii − iii, using n−2

4
edges.

10 L-C-Trees and Left-Right Trees

Observe that the structure described in the Conclusion of the previous section naturally
decomposes into three parts, namely the edge vi−ii, and the uncrossed edges with endpoints
on arc i − iii and the uncrossed edges with endpoints on arc v − vii. The following two
definitions capture the latter two trees, whereas the third definition is a formal way of
defining the structure from the Conclusion. We note in advance that the edge AB in the
definitions represents the edges vi − ii from the Conclusion.

Definition 14. A= {T ∈ G | T is a u-c-tree, such that given a specially designated edge
AB, called the axis of T , the union of T and AB is a u-c-tree with all edges uncrossed, and
there is no edge in T having B as its endpoint (but clearly, vertex A is a vertex of T )}.

If the axis of T is AB and A is a vertex of T , then vertex A is called the root of T . It is
also said that T is rooted at A. (Note, we don’t consider AB to be an edge of T .)

Definition 15. B= {T ∈ G | T is a u-c-tree, such that given a specially designated edge AB,
called the axis of T , the union of T and AB is a u-c-tree with all edges uncrossed, and there
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is no edge in T having A as endpoint (but clearly, vertex B is a vertex of T ); furthermore,

we require that there is at least one edge of T of form BC with C in open arc B̂A}. If the
axis of T is AB and B is a vertex of T , then vertex B is called the root of T . It is also said
that T is rooted at B. (Note, we don’t consider AB to be an edge of T .)

Definition 16. L = {L | L = (AB, T1, T2), where AB is a specially designated edge on the
circle, T1 ∈ A rooted at vertex A having axis AB, and T2 ∈ B rooted at vertex B having axis
AB; the union of AB, T1 and T2 is a u-c-tree with all edges uncrossed, such that T1 and T2

have no vertices in common}.
The number of edges of L = (AB, T1, T2) ∈ L is the number of edges of T1 plus the

number of edges of T2 plus one.

As already noted at the beginning of the section, the structure defined in the conclusion
of Section 9 is modeled by L = (AB, T1, T2), indeed, AB corresponds to the edge vi− ii, T1

rooted at A (vi) corresponds to the uncrossed edges with endpoints on arc v−vii connecting
to e-graph vi− ii, and T2 rooted at B (ii) corresponds to the uncrossed edges with endpoints
on arc i − iii connecting to e-graph vi − ii. Indeed, there is a one-to-one correspondence
between L = (AB, T1, T2) with k edges and a u-c-subgraph of the u-c-tree C reducing to
T3

6[5] consisting of vi − ii, and all the uncrossed edges connecting to e-graph vi − ii with
the restriction that they have both of their endpoints on arcs i − iii and v − vii and that
there is at least on edge on arc ii − iii, using k edges. Since we are interested in the parity
of the number of the latter with k = n−2

4
, it suffices to investigate the parity of the number

of L = (AB, T1, T2) with n−2
4

edges in order to obtain an answer to our original question.
This is the problem that we solve in the following sections.

Definition 17. Let Ak = {T ∈ A | T has k edges}. Let ak =| Ak |.
Let Bk = {T ∈ B | T has k edges}. Let bk =| Bk |.
Let Lk = {L ∈ L | L has k + 1 edges}. Let lk =| Lk |.

In terms of the just introduced symbols we are looking for the parity of ls, where s =
n−2

4
− 1.

Lemma 15. ls =
∑s−1

i=0 ai · bs−i.

Proof. By definition, any L ∈ L is a triple (AB, T1, T2), with a fixed edge AB and T1 ∈ A
rooted at A, T2 ∈ B rooted at B. In order to obtain ls we have to sum over all possible
T1 and T2, such that the sum of the number of edges of these two forms is s. Since T2 has
at least one edge by definition, the number of edges of T1 can vary from 0 to s − 1. Thus,
ls =

∑s−1
i=0 ai · bs−i.

Definition 18. A left-right tree T is a finite set of vertices such that:
a. One specially designated vertex is called the root of T and a left-right delimiter k ∈

N\{0} is specified,
b. The remaining vertices (excluding the root) are put into an ordered partition (T1, . . . , Tl)

of l ≥ 0 disjoint non-empty sets T1, . . . , Tl, each of which is a left-right tree. The left-right
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delimiter k specifies that T1, . . . , Tk−1 are left from the root of T , and the edges connecting
the root of T with the roots of T1, . . . , Tk−1 are called left edges, while the roots of Tk, . . . , Tl

are said to be right from the root of T and the edges connecting the root of T and the roots
of Tk, . . . , Tl are called right edges. The edge connecting the root of T with the root of Tl is
called the rightmost edge of the l-r-tree. The trees T1, . . . , Tl are called subtrees of the root,
more precisely trees T1, . . . , Tk−1 are left subtrees while trees Tk, . . . , Tl are right subtrees of
the root.

For some simple examples of l-r-trees see Figure 11.2.
There is a straightforward bijection between the set Ak and the set of left-right-trees

with k edges. Also, there is a straightforward bijection between the set Bk and the set of
left-right-trees with k edges which have at least one right edge coming out of the root.

Namely, given T ∈ A (B) with axis AB, rooted at A (B), let C1, . . . , Ck−1 be all the

vertices of T , such that ACi (BCi) is an edge, and Ci is in arc B̂A (ÂB). Let Ck, . . . , Cl be

all the vertices of T , such that ACi (BCi) is an edge, and Ci is in arc ÂB (B̂A). Arcs ACl,
ClCl−1, · · · , C2C1, C1A (BCl, ClCl−1, · · · , C2C1, C1B) cover the circle and are disjoint. Let
T1, . . . , Tk be elements of A, Ti rooted at vertex Ci, having axis ACi (BCi) and containing
all the edges of T which they can possibly contain.

Then, the recursive definition of the bijection is:
a. Set vertex A′ (B′) to be the root of the corresponding left-right-tree T ′ (l-r-tree for

short).
b. (T ′

1, . . . , T
′

l) are the ordered subtrees of the root of T ′ with the property that
(T ′

1, . . . , T
′

k−1) are the left subtrees, (T ′

k, . . . , T
′

l) are the right subtrees, and T ′

i is the
l-r-tree corresponding to Ti. Finally, a single point corresponds to a single point.

From the bijections above we deduce that the number of l-r-trees with k edges is ak, while
the number of l-r-trees with k edges such that there is at least one right edge coming out of
the root is bk. For convenience we define the following three sets:

Definition 19. A′

k = {T | T is a l-r-trees with k edges}.
B′

k = {T | T is a l-r-trees with k edges such that there is at least one right edge coming
out of the root of T}.

C ′

k = A′

k\B
′

k. Let ck =| C ′

k |

Now we state the results mentioned above using these symbols. We also include the
relation ck = ak − bk which follows directly from the definition of C ′

k.

Lemma 16. | A′

k |= ak, | B
′

k |= bk, and ak = ck + bk.

11 Results About ak, bk and ck

As mentioned in the previous section, we are interested in the parity of the sum ls =
∑s−1

i=0 ai ·
bs−i, where s = n−2

4
− 1. In order to determine this parity, we first investigate the parities of

ak and bk.
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In the following text we write ≡ to mean equivalence modulo 2.
Observe that any T ∈ B′

m consists of the followings:
• a right edge B′C ′ coming out of the root B ′ of the l-r-tree T ; let B′C ′ be the rightmost

edge of T

• a T1 ∈ A′

l rooted in C ′

• a T2 ∈ A′

m−l−1 rooted in B′.
Thus, bm =

∑k−1
l=0 al · am−l−1. This equation immediately shows that if m = 2k, then

bm ≡ 0, and if m = 2k + 1, then bm ≡ a2
k ≡ ak. That is:

Lemma 17. b2k ≡ 0 and b2k+1 ≡ ak.

Lemma 18. a2k+1 ≡ 0

Proof. We prove the statement by induction.
• Base of induction: a1 = 2 ≡ 0
• Inductive hypothesis: for all 0 ≤ k′ < k, a2k′+1 ≡ 0
• Inductive step:
Enumerate a2k+1 summing over all a2k+1,m, m = 1, 2, . . . , 2k + 1, where a2k+1,m is the

number of T ∈ A′

2k+1 such that there are exactly m edges coming out of the root A′ of T .
Let T1, T2, . . ., Tm be the subtrees of T , where Ti is the l-r-tree rooted at the ith child of A′ (so
that the m edges coming out of the root and T1, T2, . . ., Tm have no common edges, but their
union is the whole l-r-tree T ). Let ti be the number of edges in Ti, for all i ∈ {1, 2, . . . , m}.
Then, t1 + t2 + · · · + tm = 2k + 1 − m. We obtain a2k+1,m by summing (m + 1) ·

∏m

i=1 ati

over all possible choices of t1, . . . , tm, since a2k+1,m is equal to the number of ways to choose
which of the m edges coming out of the root are right or left (m + 1 ways for this) times the
number of ways to construct the subtrees rooted at the children of the root (

∏m

i=1 ati), and
this all over the possible t1, . . . , tm, satisfying t1 + t2 + · · ·+ tm = 2k + 1 − m.

First Claim. a2k+1,2l+1 ≡ 0
Regardless of how we fix the ti satisfying t1 + t2 + · · ·+ t2l+1 = 2k + 1− (2l +1), the sum

(2l + 2) ·
∏2l+1

i=1 ati over all possible choices of t1, . . . , tm will be divisible by 2l + 2, therefore,
a2k+1,2l+1 is divisible by 2.

Second Claim. a2k+1,2l ≡ 0
There are 2l edges coming out of the root A′, thus, t1 + t2 + · · · + t2l = 2k + 1 − 2l ≡ 1.

Therefore, in every case when there are 2l edges coming out of the root at least one tj must
be odd, thus there exists a j such that atj ≡ 0 by the inductive hypothesis (since 2l ≥ 2 it
follows that tj < 2k + 1, so we can use the inductive hypothesis). Since a2k+1,2l is the sum

of (2l + 1) ·
∏2l

i=1 ati over all possible t1, t2, . . . , t2l, then this sum is ≡ 0, having that in each
product there is some atj ≡ 0.

Since a2k+1 =
∑2k+1

m=1 a2k+1,m, and a2k+1,m ≡ 0 for all m, then a2k+1 ≡ 0, and the induction
is finished.

Lemma 19. a2k ≡ ck
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Figure 11.1
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Figure 11.2
 A symmetric l-r-tree.  A not symmetric l-r-tree.

Proof. Let F1 be a l-r-tree with 2k edges. Let R be the root of F1, let d be its delimiter,
and let (T1, . . . , Tl) be the l-r-subtrees rooted at the children of the root (Ti is the l-r-tree
having the ith child for its root). We define operation f , “flip,” as follows. Let l-r-tree
F2 = f(F1) have root R, delimiter n − d + 2 and the ordered partition of the remaining
vertices is (T ′

l, . . . , T
′

1), where T ′

i = f(Ti). If F1 contains just one vertex, and no edges,
then f(F1) = F1. Intuitively, flipped F1 is nothing but the l-r-tree flipped over a vertical
axis going through the root, Figure 11.1. It is clear that if f(F1) = F2 then f(F2) = F1. We
consider two l-r-trees identical if the edge connecting the root and the ith child is left in both
l-r-trees or right in both l-r-trees and if the l-r-subtrees rooted each child are identical.

Pairs of l-r-trees (F1, F2), where f(F1) = F2, and F1 and F2 are not identical contribute
an even number to the number of l-r-trees with 2k edges, and so, the parity of a2k is the
parity of the number of l-r-trees F such that f(F ) = F . In order for f(F ) to be identical
to F , it must be that it is “symmetric,” that is, the number of left edges coming out of
the root is equal to the number of rigft edges coming out of the root, all subtrees rooted
at children of the root are symmetric, and finally, a point is symmetric, Figure 11.2. The
subgraph of a symmetric F which contains all the left edges coming out of the root and
all the edges of the subtrees rooted at these left children of the root uniquely determine
a symmetric F , furthermore, there is an obvious one-to-one correspondence between these
subgraphs and symmetric l-r-trees. Also, there is an obvious correspondence between the
subgraph described and elements of C ′

k. Thus, the parity of a2k is the parity of | C ′

k |. Thus,
a2k ≡ ck.

The results obtained so far: i) b2k ≡ 0; ii) b2k+1 ≡ ak; iii) ak = bk + ck; iv) a2k+1 ≡ 0;
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v) a2k ≡ ck; vi) From ii) b4k+1 ≡ a2k and b4k+3 ≡ a2k+1; vii) Using vi) and iv) b4k+3 ≡ 0;
viii) From iii) and i) a2k = b2k + c2k ≡ c2k, that is a2k ≡ c2k; ix) From iii) and vi)
a4k+1 = b4k+1 +c4k+1 and so a4k+1 ≡ b4k+1 +c4k+1 ≡ a2k +c4k+1. Using iv) we get a2k ≡ c4k+1;
x) From iii) and vii) a4k+3 ≡ b4k+3 + c4k+3 ≡ c4k+3. Using iv) c4k+3 ≡ 0. In all cases k ≥ 0.

Summarizing this:
a) a2k+1 ≡ 0; b) a2k ≡ c4k+1 ≡ c2k ≡ ck; c) c4k+3 ≡ 0; d) b2k ≡ 0; e) b4k+3 ≡ 0; f)

b4k+1 ≡ a2k In all cases k ≥ 0.
We now directly attack the problem of determining the parity of ls =

∑s−1
i=0 ai ·bs−i, where

s = n−2
4

− 1, s ≥ 1.

Case 1. If s = 2r, for some r ≥ 1, either i is odd, or s−i is even, therefore
∑s−1

i=0 ai·bs−i ≡
0 by a) and d). Therefore, ls is even for n−2

4
− 1 = s = 2r, where r ≥ 1.

Result. For n = 8r + 6, r ≥ 1, f(n) is divisible by n.
Case 2. If s = 2r + 1, for some r ≥ 0, ls is equivalent with the sum over those i for

which i = 2k and s − i = 4l + 1, since a2k+1 ≡ 0, b2k ≡ 0, and b4k+3 ≡ 0. We analyze this
case by splitting it into more smaller cases.

Case 2.1.: s = 4v + 1, 2k + 4l + 1 = 4v + 1, v, k, l ≥ 0
Then k = 2(v − l). Since l can be 0, 1, 2, . . . , v; k is then 2v, 2v − 2, . . . , 0.
Using b) and f) we have a2k ≡ ck and b4k+1 ≡ ck, and so

∑s−1
i=0 ai ·bs−i ≡

∑v

i=0 c2(v−i) ·ci ≡∑v

i=0 ci · c2(v−i). Using c2k ≡ ck,
∑s−1

i=0 ai · bs−i ≡
∑v

i=0 ci · cv−i. The last sum is symmetric,
thus in case v = 2v1 + 1, for some v1 ≥ 0, this sum is even, that is ls is even for n−2

4
− 1 =

s = 4v + 1 = 4(2v1 + 1) + 1 = 8v1 + 5.
Result. For n = 32v1 + 26, v1 ≥ 0, f(n) is divisible by n.
In the case when v = 2v1, v1 ≥ 0 we have:
Result. For n = 32v1 + 10, v1 ≥ 0 : ls ≡ cv1

, s = n−2
4

− 1.
Case 2.2.: s = 4v + 3, 2k + 4l + 1 = 4v + 3, v, k, l ≥ 0
Then k = 2(v − l) + 1. Since l can be 0, 1, 2, . . . , v; k is then 2v + 1, 2v − 1, . . . , 1. Using

b) and f) we have a2k ≡ ck and b4k+1 ≡ ck, and so
∑s−1

i=0 ai · bs−i ≡
∑v

i=0 ci · c2(v−i)+1.
Case 2.2.1.: v = 2v1, v1 ≥ 0.
Using c4k+3 ≡ 0 we get

∑s−1
i=0 ai · bs−i ≡

∑v1

i=0 c2i · c2(v−2i)+1. Using c2k ≡ ck we get∑s−1
i=0 ai · bs−i ≡

∑v1

i=0 ci · c2(v−2i)+1. Since 2(v − 2i) + 1 = 2(2v1 − 2i) + 1 = 4(v1 − i) + 1,

and c4k+1 ≡ ck, we get
∑s−1

i=0 ai · bs−i ≡
∑v1

i=0 ci · cv1−i. Since
∑v1

i=0 ci · cv1−i is symmetric, we
have the following result: for v1 = 2v2 + 1, v2 ≥ 0, the sum is even, and so ls is even for
n−2

4
− 1 = s = 4v + 3 = 4 · 2v1 + 3 = 8(2v2 + 1) + 3 = 16v2 + 11.
Result. For n = 64v2 + 50, v2 ≥ 0, f(n) is divisible by n.
In the case when v1 = 2v2 we have:
Result. For n = 64v2 + 18, v2 ≥ 0: ls ≡

∑v1

i=0 ci · cv1−i ≡ cv2
.

Case 2.2.2.: v = 2v1 + 1, v1 ≥ 0.
Using c4k+3 ≡ 0 from

∑s−1
i=0 ai ·bs−i ≡

∑v

i=0 ci ·c2(v−i)+1 we get
∑s−1

i=0 ai ·bs−i ≡
∑v1

i=0 c2i+1 ·
c2(v−2i−1)+1 ≡

∑v1

i=0 c2i+1 · c2(2v1−2i)+1 ≡
∑v1

i=0 c2i+1 · c4(v1−i)+1 and using c4k+1 ≡ ck we have∑s−1
i=0 ai·bs−i ≡

∑v1

i=0 c2i+1 ·c4(v1−i)+1 ≡
∑v1

i=0 c2i+1 ·cv1−i. Since,
∑v1

i=0 c2i+1 ·cv1−i =
∑v1

i=0 cv1−i·

c2i+1 =
∑v1

j=0 cj ·c2(v1−j)+1, we get that
∑s−1

i=0 ai·bs−i ≡
∑v1

i=0 ci·c2(v1−i)+1. Note that we started

from
∑s−1

i=0 ai · bs−i ≡
∑v

i=0 ci · c2(v−i)+1, and sums
∑v

i=0 ci · c2(v−i)+1 and
∑v1

i=0 ci · c2(v1−i)+1
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are of the same form, with the difference that the second one is of length v1 + 1, while the
first is of length v + 1 = 2v1 + 2, that is twice the second.

Let S(v) =
∑v

i=0 ci · c2(v−i)+1.
Observe, that we got ls ≡ S(v) ≡ S(v1) and we still do not know what this sum is

equivalent to modulo 2. Observe, that since the last two sums are of the same form, we can
now begin the process of Case 2.2., that is:

Case 2.2.1.: v1 = 2v2, if v2 = 2v3 + 1 the sum is even, but if v2 = 2v3 the sum is ≡ cv3

Case 2.2.2.: v1 = 2v2 + 1, then
∑s−1

i=0 ai · bs−i ≡
∑v

i=0 ci · c2(v−i)+1 ≡
∑v1

i=0 ci · c2(v1−i)+1 ≡∑v2

i=0 ci · c2(v2−i)+1 and so forth. Depending on v2 we either continue the process, or get the
final result in case v2 is even.

Since in case v, v1, v2, etc. are odd, the sums S(v), S(v1), S(v2), etc. we are considering
always get twice shorter (from v + 1 to v1 + 1 to v2 + 1, etc.) and so this process is finite
(we cannot half an integer infinitely many times and still get an integer), i.e. at one point
either the vk we are going to consider must be even and greater than 0, and then we apply
the Case 2.2.1. and get either that the sum is even, or that the sum ≡ cvk

, or vk gets equal
to 1, and in this case the sum is odd.

Result. For n = 32v1 + 34, v1 ≥ 0, we get a sum S(v1) for which we have to decide
depending on v1 which subcase of Case 2.2 applies.

12 The Behavior of ck

In order to clarify the situation in the case where n = 32v1 + 10, v1 ≥ 0, and n = 64v2 + 18,
v2 ≥ 0, we have to determine how ck behaves. We use the facts that c4k+1 ≡ c2k ≡ ck and
c4k+3 ≡ 0.

Let an integer v > 0 of the form 4k + 3, 4k + 1 or 2k be given.
Let V = v. Therefore cV ≡ cv.
Step I :
if v = 4k + 3, we know that cV ≡ cv ≡ 0: proceed to Step II
if v = 4k + 1, v > 1, we know that cV ≡ cv ≡ c4k+1 ≡ ck and k < 4k + 1: redefine v := k

and proceed to Step II
if v = 2k, v > 1, we know that cV ≡ cv ≡ c2k ≡ ck and k < 2k: redefine v := k and

proceed to Step II
if v = 1, we know that cV ≡ cv ≡ 1: proceed to Step II
Step II :
continue Step I until v = 4k + 3 for some k, that is cV ≡ 0, or v = 1, that is cV ≡ 1.
It is clear that by executing the process described above, v must become either 1, or of

form 4k + 3 in a finite number of steps.
Since only those cv, for which v gets to 1 are odd, we aim for determining the form of

these v.
Define:
• unary operation m on an integer k: m(k) = 2 · k
• unary operation M on an integer k: M(k) = 4 · k + 1
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It follows form the process described above that all integers v for which cv ≡ 1 can be
created by any number and any order of operations m and M on 1, e.g.

v = M ◦ M ◦ m ◦ m ◦ m ◦ M ◦ m ◦ m(1) =
M ◦ M ◦ m ◦ m ◦ m ◦ M ◦ m(2) =
M ◦ M ◦ m ◦ m ◦ m ◦ M(4) =
M ◦ M ◦ m ◦ m ◦ m(17) =
M ◦ M ◦ m ◦ m(34) =
M ◦ M ◦ m(68) =
M ◦ M(136) =
M(545) = 2181
⇒ c2181 ≡ 1, thus, for example, for n = 32 · 2181 + 10 = 69802 the number of genus one

c-trees on 69802 points is not divisible by 69802, only by 69802 ÷ 2 = 34901.
It is easy to see, that all v obtained by finitely many operations M and m on 1 are of

the following form:
1 · 2l0 + 4 · 2l1 + 42 · 2l2 + 43 · 2l3 + · · ·+ 4i · 2li + · · ·+ 4f · 2lf , where
0 ≤ l0 ≤ l1 ≤ l2 ≤ l3 ≤ · · · ≤ li ≤ · · · ≤ lf , li ∈ N, i ∈ {0, 1, 2, . . . , f}.
If v satisfies the previous or if v = 0 (c0 ≡ 1), we will say v is a negligent number (or

nn for short).
Therefore, we have proven that (cv ≡ 1) ⇔ (v is nn). For all other v, cv ≡ 0. From this

we have that:
Results. For n = 32v1 + 10, v1 ≥ 0, where v1 is a nn ls is odd, that is f(n) is not

divisible by n but is divisible by n
2
. For n = 32v1 + 10, v1 ≥ 0, where v1 is not a nn ls is

even, that is f(n) is divisible by n.
For n = 64v2 + 18, v2 ≥ 0, where v2 is a nn ls is odd, that is f(n) is not divisible by n

but is divisible by n
2
. For n = 64v2 + 18, v2 ≥ 0, where v2 is not a nn ls is even, that is f(n)

is divisible by n.

13 What If n = 32k + 34?

In Section 11 we have seen that for n = 32v1 + 34, v1 ≥ 0, we get a sum S(v1) for which we
have to decide depending on v1 which subcase of Case 2.2 applies in order to determine the
parity of ls. We decide this now.

We have that n−2
4

− 1 = s = 4v + 3 and v = 2v1 + 1, v1 ≥ 0. There are two possibilities:
First Possibility:
v = 2v1 + 1, v1 = 2v2 + 1, v2 = 2v3 + 1,. . ., vk−1 = 2vk + 1, vk = 2vk+1, vk+1 = 2vk+2 + 1,

k ≥ 1. It is easy to see, that v = 1 + 2 + 22 + · · · + 2k−2 + 2k−1 + 2k · vk = 2k − 1 + 2k · vk,
thus s = 16 · 2k · vk+2 + 3 · 4 · 2k − 1, that is n = 64 · 2k · vk+2 + 3 · 16 · 2k + 2, k ≥ 1. In this
case ls is even.

Second Possibility:
v = 2v1+1, v1 = 2v2+1, v2 = 2v3+1,. . ., vk−1 = 2vk +1, vk = 2vk+1, vk+1 = 2vk+2, k ≥ 1,

vk+2 > 0. It is easy to see, that v = 1 + 2 + 22 + · · ·+ 2k−2 + 2k−1 + 2k · vk = 2k − 1 + 2k · vk,
thus s = 16 · 2k · vk+2 + 4 · 2k − 1, that is n = 64 · 2k · vk+2 + 16 · 2k + 2, vk+2 > 0. In this case
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ls ≡ cvk+2
, and including the case when vk+2 = 0 we get that if vk+2 is a nn then ls is odd,

otherwise ls is even.
Now that we have obtained the parity of ls in every case, we can state the main theorem

of our work, namely when f(n) is divisible by n and when it is divisible only by n
2
.

14 The Theorem

The number of genus one l-c-trees on n points is divisible by n or n
2

for all integers n > 3.
The number of genus one l-c-trees on n points (n > 3) is not divisible by n, but is divisible

by n
2

if and only if n is of form:
32v1 + 10, v1 ≥ 0, and v1 is a negligent number; 64v2 + 18, v2 ≥ 0, and v2 is a negligent

number; 64 · 2k · vk+2 + 16 · 2k + 2,k ≥ 1, and vk+2 is a negligent number.
For all other n the number of genus one l-c-trees on n points (n > 3) is divisible by n.

Proof. The proof is given in sections 1 to 13.
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