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Abstract

We use methods of combinatorics of polytopes together with geometrical and
computational ones to obtain the complete list of compact hyperbolic Coxeter n-
polytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann this
gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3
facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré and
Andreev.

1 Introduction

A polytope in the hyperbolic space H
n is called a Coxeter polytope if its dihedral angles

are all integer submultiples of π. Any Coxeter polytope P is a fundamental domain of
the discrete group generated by reflections in the facets of P .

There is no complete classification of compact hyperbolic Coxeter polytopes. Vin-
berg [V1] proved there are no such polytopes in H

n, n ≥ 30. Examples are known only
for n ≤ 8 (see [B1], [B2]).

In dimensions 2 and 3 compact Coxeter polytopes were completely classified by Poinca-
ré [P] and Andreev [A]. Compact polytopes of the simplest combinatorial type, the
simplices, were classified by Lannér [L]. Kaplinskaja [K] (see also [V2]) listed simplicial
prisms, Esselmann [E2] classified the remaining compact n-polytopes with n+ 2 facets.

In the paper [ImH] Im Hof classified polytopes that can be described by Napier cycles.
These polytopes have at most n + 3 facets. Concerning polytopes with n + 3 facets,
Esselmann proved the following theorem ([E1, Th. 5.1]):

∗Partially supported by grants MK-6290.2006.1, NSh-5666.2006.1, INTAS grant YSF-06-10000014-
5916, and RFBR grant 07-01-00390-a

the electronic journal of combinatorics 14 (2007), #R69 1



Let P be a compact hyperbolic Coxeter n-polytope bounded by n+3 facets. Then n ≤ 8;
if n = 8, then P is the polytope found by Bugaenko in [B2]. This polytope has the following
Coxeter diagram:

In this paper, we expand the technique derived by Esselmann in [E1] and [E2] to
complete the classification of compact hyperbolic Coxeter n-polytopes with n + 3 facets.
The aim is to prove the following theorem:

Main Theorem. Tables 4.8–4.11 contain all Coxeter diagrams of compact hyperbolic
Coxeter n-polytopes with n+ 3 facets for n ≥ 4.

The paper is organized as follows. In Section 2 we recall basic definitions and list
some well-known properties of hyperbolic Coxeter polytopes. We also emphasize the con-
nection between combinatorics (Gale diagram) and metric properties (Coxeter diagram)
of hyperbolic Coxeter polytope. In Section 3 we recall some technical tools from [V1]
and [E1] concerning Coxeter diagrams and Gale diagrams, and introduce notation suit-
able for investigating of large number of diagrams. Section 4 is devoted to the proof of
the main theorem. The most part of the proof is computational: we restrict the number
of Coxeter diagrams in consideration, and use a computer check after that. The bulk is
to find an upper bound for the number of diagrams, and then to reduce the number to
make the computation short enough.

This paper is a completely rewritten part of my Ph.D. thesis (2004) with several errors
corrected. I am grateful to my advisor Prof. E. B. Vinberg for his help. I am also grateful
to Prof. R. Kellerhals who brought the papers of F. Esselmann and L. Schlettwein to my
attention, and to the referee for useful suggestions.

2 Hyperbolic Coxeter polytopes and Gale diagrams

In this section we list essential facts concerning hyperbolic Coxeter polytopes, Gale dia-
grams of simple polytopes, and Coxeter diagrams we use in this paper. Proofs, details
and definitions in general case may be found in [G] and [V2]. In the last part of this
section we present the main tools used for the proof of the main theorem.

We write n-polytope instead of “n-dimensional polytope” for short. By facet we mean
a face of codimension one.

2.1 Gale diagrams

An n-polytope is called simple if any its k-face belongs to exactly n− k facets. Proposi-
tion 2.2 implies that any compact hyperbolic Coxeter polytope is simple. From now on
we consider simple polytopes only.
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Every combinatorial type of simple n-polytope with d facets can be represented by its
Gale diagram G. This consists of d points a1, . . . , ad on the (d− n− 2)-dimensional unit
sphere in R

d−n−1 centered at the origin.
The combinatorial type of a simple convex polytope can be read off from the Gale

diagram in the following way. Each point ai corresponds to the facet fi of P . For any
subset J of the set of facets of P the intersection of facets {fj | j ∈ J} is a face of P if
and only if the origin is contained in the interior of conv{aj | j /∈ J}.

The points a1, . . . , ad ∈ S
d−n−2 compose a Gale diagram of some n-dimensional poly-

tope P with d facets if and only if every open half-space H+ in R
d−n−1 bounded by a

hyperplane H through the origin contains at least two of the points a1, . . . , ad.
We should notice that the definition of Gale diagram introduced above is “dual” to

the standard one (see, for example, [G]): usually Gale diagram is defined in terms of
vertices of polytope instead of facets. Notice also that the definition above concerns
simple polytopes only, and it takes simplices out of consideration: usually one means the
origin of R

1 with multiplicity n + 1 by the Gale diagram of an n-simplex, however we
exclude the origin since we consider simple polytopes only, and the origin is not contained
in G for any simple polytope except simplex.

We say that two Gale diagrams G and G′ are isomorphic if the corresponding polytopes
are combinatorially equivalent.

If d = n + 3 then the Gale diagram of P is two-dimensional, i.e. nodes ai of the
diagram lie on the unit circle.

A standard Gale diagram of simple n-polytope with n + 3 facets consists of vertices
v1, . . . , vk of regular k-gon (k is odd) in R

2 centered at the origin which are labeled
according to the following rules:

1) Each label is a positive integer, the sum of labels equals n + 3.
2) The vertices that lie in any open half-space bounded by a line through the origin

have labels whose sum is at least two.
Each point vi with label µi corresponds to µi facets fi,1, . . . , fi,µi

of P . For any subset
J of the set of facets of P the intersection of facets {fj,γ | (j, γ) ∈ J} is a face of P if and
only if the origin is contained in the interior of conv{vj | (j, γ) /∈ J}.

It is easy to check (see, for example, [G, Sec. 6.3]) that any two-dimensional Gale
diagram is isomorphic to some standard diagram. Two simple n-polytopes with n + 3
facets are combinatorially equivalent if and only if their standard Gale diagrams are
congruent.

2.2 Coxeter diagrams

Any Coxeter polytope P can be represented by its Coxeter diagram.
An abstract Coxeter diagram is a one-dimensional simplicial complex with weighted

edges, where weights are either of the type cos π
m

for some integer m ≥ 3 or positive real
numbers no less than one. We can suppress the weights but indicate the same information
by labeling the edges of a Coxeter diagram in the following way:
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• if the weight equals cos π
m

then the nodes are joined by either an (m− 2)-fold edge or a
simple edge labeled by m;
• if the weight equals one then the nodes are joined by a bold edge;
• if the weight is greater than one then the nodes are joined by a dotted edge labeled by
its weight.

A subdiagram of Coxeter diagram is a subcomplex with the same as in Σ. The order
|Σ| is the number of vertices of the diagram Σ.

If Σ1 and Σ2 are subdiagrams of a Coxeter diagram Σ, we denote by 〈Σ1,Σ2〉 a sub-
diagram of Σ spanned by all nodes of Σ1 and Σ2. We say that a node of Σ attaches to a
subdiagram Σ1 ⊂ Σ if it is joined with some nodes of Σ1 by edges of any type.

Let Σ be a diagram with d nodes u1,...,ud. Define a symmetric d× d matrix Gr(Σ) in
the following way: gii = 1; if two nodes ui and uj are adjacent then gij equals negative
weight of the edge uiuj; if two nodes ui and uj are not adjacent then gij equals zero.

By signature and determinant of diagram Σ we mean the signature and the determi-
nant of the matrix Gr(Σ).

An abstract Coxeter diagram Σ is called elliptic if the matrix Gr(Σ) is positive definite.
A Coxeter diagram Σ is called parabolic if the matrix Gr(Σ) is degenerate, and any
subdiagram of Σ is elliptic. Connected elliptic and parabolic diagrams were classified by
Coxeter [C]. We represent the list in Table 2.1.

A Coxeter diagram Σ is called a Lannér diagram if any subdiagram of Σ is elliptic,
and the diagram Σ is neither elliptic nor parabolic. Lannér diagrams were classified by
Lannér [L]. We represent the list in Table 2.2. A diagram Σ is superhyperbolic if its
negative inertia index is greater than 1.

By a simple (resp., multiple) edge of Coxeter diagram we mean an (m − 2)-fold edge
where m is equal to (resp., greater than) 3. The number m − 2 is called the multiplicity
of a multiple edge. Edges of multiplicity greater than 3 we call multi-multiple edges. If
an edge uiuj has multiplicity m − 2 (i.e. the corresponding facets form an angle π

m
), we

write [ui, uj] = m.
A Coxeter diagram Σ(P ) of Coxeter polytope P is a Coxeter diagram whose matrix

Gr(Σ) coincides with Gram matrix of outer unit normals to the facets of P (referring to the
standard model of hyperbolic n-space in R

n,1). In other words, nodes of Coxeter diagram
correspond to facets of P . Two nodes are joined by either an (m − 2)-fold edge or an
m-labeled edge if the corresponding dihedral angle equals π

m
. If the corresponding facets

are parallel the nodes are joined by a bold edge, and if they diverge then the nodes are
joined by a dotted edge (which may be labeled by hyperbolic cosine of distance between
the hyperplanes containing these facets).

If Σ(P ) is the Coxeter diagram of P then nodes of Σ(P ) are in one-to-one correspon-
dence with elements of the set I = {1, . . . , d}. For any subset J ⊂ I denote by Σ(P )J the
subdiagram of Σ(P ) that consists of nodes corresponding to elements of J .
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Table 2.1: Connected elliptic and parabolic Coxeter diagrams are listed in left and right
columns respectively.

An (n ≥ 1)
Ã1

���
�
�������
�

Ãn (n ≥ 2)

Bn = Cn
B̃n (n ≥ 3)

(n ≥ 2)
C̃n (n ≥ 2)

Dn (n ≥ 4) D̃n (n ≥ 4)

G
(m)
2

PSfrag replacements m G̃2

F4 F̃4

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

H3

H4

2.3 Hyperbolic Coxeter polytopes

In this section by polytope we mean a (probably non-compact) intersection of closed
half-spaces.

Proposition 2.1 ([V2], Th. 2.1). Let Gr = (gij) be indecomposable symmetric matrix
of signature (n, 1), where gii = 1 and gij ≤ 0 if i 6= j. Then there exists a unique (up to
isometry of H

n) convex polytope P ⊂ H
n whose Gram matrix coincides with Gr.

Let Gr be the Gram matrix of the polytope P , and let J ⊂ I be a subset of the set of
facets of P . Denote by GrJ the Gram matrix of vectors {ei | i ∈ J}, where ei is outward
unit normal to the facet fi of P (i.e. GrJ = Gr(Σ(P )J)). Denote by |J | the number of
elements of J .
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Table 2.2: Lannér diagrams.

order diagrams

2

3
PSfrag replacements k l

m

(2 ≤ k, l,m <∞,
1
k

+ 1
l
+ 1

m
< 1)

4

5

Proposition 2.2 ([V2], Th. 3.1). Let P ⊂ H
n be an acute-angled polytope with Gram

matrix Gr, and let J be a subset of the set of facets of P . The set

q = P ∩
⋂

i∈J

fi

is a face of P if and only if the matrix GrJ is positive definite. Dimension of q is equal
to n− |J |.

Notice that Prop. 2.2 implies that the combinatorics of P is completely determined
by the Coxeter diagram Σ(P ).

Let A be a symmetric matrix whose non-diagonal elements are non-positive. A is called
indecomposable if it cannot be transformed to a block-diagonal matrix via simultaneous
permutations of columns and rows. We say A to be parabolic if any indecomposable
component of A is positive semidefinite and degenerate. For example, a matrix Gr(Σ) for
any parabolic diagram Σ is parabolic.

Proposition 2.3 ([V2], cor. of Th. 4.1, Prop. 3.2 and Th. 3.2). Let P ⊂ H
n be a

compact Coxeter polytope, and let Gr be its Gram matrix. Then for any J ⊂ I the matrix
GrJ is not parabolic.
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Corollary 2.1 reformulates Prop. 2.3 in terms of Coxeter diagrams.

Corollary 2.1. Let P ⊂ H
n be a compact Coxeter polytope, and let Σ be its Coxeter

matrix. Then any non-elliptic subdiagram of Σ contains a Lannér subdiagram.

Proposition 2.4 ([V2], Prop. 4.2). A polytope P in H
n is compact if and only if it is

combinatorially equivalent to some compact convex n-polytope.

The main result of paper [FT] claims that if P is a compact hyperbolic Coxeter n-
polytope having no pair of disjoint facets, then P is either a simplex or one of the seven
polytopes with n + 2 facets described in [E1]. As a corollary, we obtain the following
proposition.

Proposition 2.5. Let P ⊂ H
n be a compact Coxeter polytope with at least n + 3 facets.

Then P has a pair of disjoint facets.

2.4 Coxeter diagrams, Gale diagrams, and missing faces

Now, for any compact hyperbolic Coxeter polytope we have two diagrams which carry the
complete information about its combinatorics, namely Gale diagram and Coxeter diagram.
The interplay between them is described by the following lemma, which is a reformulation
of results listed in Section 2.3 in terms of Coxeter diagrams and Gale diagrams.

Lemma 2.1. A Coxeter diagram Σ with nodes {ui | i = 1, . . . , d} is a Coxeter diagram of
some compact hyperbolic Coxeter n-polytope with d facets if and only if the following two
conditions hold:

1) Σ is of signature (n, 1, d− n− 1);
2) there exists a (d − n − 1)-dimensional Gale diagram with nodes {vi | i = 1, . . . , d}

and one-to-one map ψ : {ui | i = 1, . . . , d} → {vi | i = 1, . . . , d} such that for any J ⊂
{1, . . . , d} the subdiagram ΣJ of Σ is elliptic if and only if the origin is contained in the
interior of conv{ψ(vi) | i /∈ J}.

Let P be a simple polytope. The facets f1, . . . , fm of P compose a missing face of P

if
m⋂

i=1

fi = ∅ but any proper subset of {f1, . . . , fm} has a non-empty intersection.

Proposition 2.6 ([FT], Lemma 2). Let P be a simple d-polytope with d+k facets {fi},
let G = {ai} ⊂ S

k−2 be a Gale diagram of P , and let I ⊂ {1, . . . , d + k}. Then the set
MI = {fi | i ∈ I} is a missing face of P if and only if the following two conditions hold:

(1) there exists a hyperplane H through the origin separating the set M̂I = {ai | i ∈ I}
from the remaining points of G;

(2) for any proper subset J ⊂ I no hyperplane through the origin separates the set

M̂J = {ai | i ∈ J} from the remaining points of G.
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Remark. Suppose that P is a compact hyperbolic Coxeter polytope. The definition of
missing face (together with Cor. 2.1) implies that for any Lannér subdiagram L ⊂ Σ(P )
the facets corresponding to L compose a missing face of P , and any missing face of P
corresponds to some Lannér diagram in Σ(P ).

Now consider a compact hyperbolic Coxeter n-polytope P with n + 3 facets with
standard Gale diagram G (which is a k-gon, k is odd) and Coxeter diagram Σ. Denote by
Σi,j a subdiagram of Σ corresponding to j− i+1 (mod k) consecutive nodes ai, . . . , aj of
G (in the sense of Lemma 2.1). If i = j, denote Σi,i by Σi.

The following lemma is an immediate corollary of Prop. 2.6.

Lemma 2.2. For any i ∈ {0, . . . , k − 1} a diagram Σi+1,i+ k−1

2

is a Lannér diagram. All

Lannér diagrams contained in Σ are of this type.

It is easy to see that the collection of missing faces completely determines the combi-
natorics of P . In view of Lemma 2.2 and the remark above, this means that in Lemma 2.1
for given Coxeter diagram we need to check the signature and correspondence of Lannér
diagrams to missing faces of some Gale diagram.

Example. Suppose that there exists a compact hyperbolic Coxeter polytope P with
standard Gale diagram G shown in Fig. 2.1(a). What can we say about Coxeter diagram
Σ = Σ(P )?

PSfrag replacements

(a) (b)

8 8

11

1

22

u1u2

u3 u4

u5

u6 u7

Figure 2.1: (a) A standard Gale diagram G and (b) a Coxeter diagram of one of polytopes
with Gale diagram G

The sum of labels of nodes of Gale diagram G is equal to 7, so P is a 4-polytope with 7
facets. Thus, Σ is spanned by nodes u1, . . . , u7, and its signature equals (4, 1, 2). Further,
G is a pentagon. By Lemma 2.2, Σ contains exactly 5 Lannér diagrams, namely 〈u1, u2〉,
〈u2, u3, u4〉, 〈u3, u4, u5〉, 〈u5, u6, u7〉, and 〈u6, u7, u1〉.

Now consider the Coxeter diagram Σ shown in Fig. 2.1(b). Assigning label 1 +
√

2 to
the dotted edge of Σ, we obtain a diagram of signature (4, 1, 2) (this may be shown by
direct calculation). Therefore, there exist 7 vectors in H

4 with Gram matrix Gr(Σ). It
is easy to see that Σ contains exactly 5 Lannér diagrams described above. Thus, Σ is a
Coxeter diagram of some compact 4-polytope with Gale diagram G.

Of course, Σ is just an example of a Coxeter diagram satisfying both conditions of
Lemma 2.1 with respect to given Gale diagram G. In the next two sections we will show
how to list all compact hyperbolic Coxeter polytopes of given combinatorial type.
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3 Technical tools

From now on by polytope we mean a compact hyperbolic Coxeter n-polytope with n+ 3
facets, and we deal with standard Gale diagrams only.

3.1 Admissible Gale diagrams

Suppose that there exists a compact hyperbolic Coxeter polytope P with k-angled Gale
diagram G. Since the maximal order of Lannér diagram equals five, Lemma 2.2 implies
that the sum of labels of k−1

2
consecutive nodes of Gale diagram does not exceed five. On

the other hand, by Lemma 2.5, P has a missing face of order two. This is possible in two
cases only: either G is a pentagon with two neighboring vertices labeled by 1, or G is a
triangle one of whose vertices is labeled by 2 (see Prop. 2.6). Table 3.1 contains all Gale
diagrams satisfying one of two conditions above with at least 7 and at most 10 vertices,
i.e. Gale diagrams that may correspond to compact hyperbolic Coxeter n-polytopes with
n+ 3 facets for 4 ≤ n ≤ 7.

3.2 Admissible arcs

Let P be an n-polytope with n + 3 facets and let G be its k-angled Gale diagram. By
Lemma 2.2, for any i ∈ {0, . . . , k−1} the diagram Σi+1,i+ k−1

2

is a Lannér diagram. Denote

by
bx1, . . . , xlc k−1

2

, l ≤ k

an arc of length l of G that consists of l consecutive nodes with labels x1, . . . , xl. By
writing J = bx1, . . . , xlc k−1

2

we mean that J is the set of facets of P corresponding to

these nodes of G. The index k−1
2

means that for any k−1
2

consecutive nodes of the arc (i.e.

for any arc I =
⌊
xi+1, . . . , xi+ k−1

2

⌋
k−1

2

) the subdiagram ΣI of Σ(P ) corresponding to these

nodes is a Lannér diagram (i.e. I is a missing face of P ).
By Cor. 2.1, any diagram ΣJ ⊂ Σ(P ) corresponding to an arc J = bx1, . . . , xlc k−1

2

satisfies the following property: any subdiagram of ΣJ containing no Lannér diagram
is elliptic. Clearly, any subdiagram of Σ(P ) containing at least one Lannér diagram is
of signature (k, 1) for some k ≤ n. As it is shown in [E1], for some arcs J there exist
a few corresponding diagrams ΣJ only. In the following lemma, we recall some results
of Esselmann [E1] and prove similar facts concerning some arcs of Gale diagrams listed
in Table 3.1. This will help us to restrict the number of Coxeter diagrams that may
correspond to some of Gale diagrams listed in Table 3.1.

Lemma 3.1. The diagrams presented in the middle column of Table 3.2 are the only
diagrams that may correspond to arcs listed in the left column.

Proof. At first, notice that for any J as above (i.e. J consists of several consecutive nodes
of Gale diagram) the diagram ΣJ must be connected. This follows from the fact that any
Lannér diagram is connected, and that ΣJ is not superhyperbolic.
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Table 3.1: Gale diagrams that may correspond to compact Coxeter polytopes (see Sec-
tion 3.1)

n = 4

PSfrag replacements

11 11

11 11

11

22

22
22

33

4

G232 G11311 G21112 G12121

n = 5

PSfrag replacements

1

2

3

4

G232

G11311

G21112

G12121

1 1 1

111

1 111

11

2

22
2

2 22

2 33

33

44

G242 G323 G21311 G12311 G11411 G12221

n = 6

PSfrag replacements

1

2

3

4

G232

G11311

G21112

G12121

111111

1 1

1

1

2

22

2
222

2 3

3

3 3

3

445

G252 G342 G21411 G12321 G22311 G13131

n = 7

PSfrag replacements

1

2

3

4

G232

G11311

G21112

G12121

1

111

1

2

22

3

3
3

3

44

45

G352 G424 G31411 G13231

Now we restrict our considerations to items 8–11 only. For none of these J the diagram
ΣJ contains a Lannér diagram of order 2 or 3. Since ΣJ is connected and does not contain
parabolic subdiagrams, this implies that ΣJ does not contain neither dotted nor multi-
multiple edges. Thus, we are left with finitely many possibilities only, that allows us to
use a computer check: there are several (from 5 to 7) nodes, some of them joined by edges
of multiplicity at most 3. We only need to check all possible diagrams for the number of
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Table 3.2: Possible diagrams ΣJ for some arcs J . White nodes correspond to endpoints
of arcs having multiplicity one

J all possibilities for ΣJ reference (if any)

1
bx, yc1,

x ≥ 4, y ≥ 3
∅ [E1], Lemma 4.7

2 b1, 4, 1c2 [E1], Lemma 5.3

3 b3, 2, 2c2 ∅ [E1], Lemma 5.7

4 b4, 1, 3c2 [E1], Lemma 5.9

5 b3, 1, 4, 1c2 ∅ [E1], Folgerung 5.10

6 b2, 3, 2c2 [E1], Lemma 5.12

7 b3, 2, 3c2 [E1], Lemma 5.12

8 b1, 3, 1c2

PSfrag replacements
3, 4

4,5
3, 4, 5

PSfrag replacements
3, 4

4,5

3, 4, 5

PSfrag replacements
3, 4
4,5

3, 4, 5

9 b1, 3, 2c2

PSfrag replacements 3,4

4,5
3, 4, 5

PSfrag replacements
3, 4
4, 5 3,4,5

PSfrag replacements
3,4
4, 5

3, 4, 5

10 b2, 2, 2c2

11 b3, 1, 3c2 ∅

Lannér diagrams of all orders and for parabolic subdiagrams. Namely, in items 8, 10 and
11 we look for diagrams of order 5, 6 and 7 containing exactly 2 Lannér subdiagrams of
order 4 (and containing neither other Lannér diagrams nor parabolic subdiagrams), and in
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item 9 we look for diagrams of order 6 containing exactly one Lannér subdiagram of order
4 and exactly one Lannér diagram of order 5. Notice also that we do not need to check
the signature of obtained diagrams: all them are certainly non-elliptic, and since any of
them contains exactly two Lannér diagrams which have at least one node in common, by
excluding this node we obtain an elliptic diagram.

However, the computation described above is really huge. In what follows we describe
case-by-case how to reduce these computations to a few minutes of hand-calculations.

• Item 8 (J = b1, 3, 1c2). We may consider ΣJ as a Lannér diagram L of order 4
together with one vertex attached to L to compose a unique additional Lannér diagram
which should be of order 4, too. There are 9 possibilities for L only (Table 2.2).

• Item 9 (J = b1, 3, 2c2). The considerations follow the preceding ones, but we take as
L a Lannér diagram of order 5. Again, there are few possibilities for L only (namely five:
see Table 2.2).

• Item 10 (J = b2, 2, 2c2). Again, ΣJ contains a Lannér diagram L of order 4. One
of the two remaining nodes of ΣJ must be attached to L. Denote this node by v. The
diagram 〈L, v〉 ⊂ ΣJ consists of five nodes and contains a unique Lannér diagram which
is of order 4. All such diagrams are listed in [E1, Lemma 3.8] (see the first two rows of
Tabelle 3, the case |NF | = 1, |LF | = 4). We reproduce this list in Table 3.3.

Table 3.3: One of these diagrams should be contained in ΣJ for J = b2, 2, 2c2

PSfrag replacements

u7

One can see that there are six possibilities only. Now to each of them we attach the
remaining node to compose a unique new Lannér diagram which should be of order 4.

• Item 11 (J = b3, 1, 3c2). The considerations are very similar to the preceding case.
ΣJ contains a Lannér diagram L of order 4. One of the three remaining nodes of ΣJ must
be attached to L. Denote this node by v. Now, one of the two remaining nodes attaches
to 〈L, v〉 ⊂ ΣJ . Denote it by u. The diagram 〈L, v, u〉 ⊂ ΣJ consists of six nodes and
contains a unique Lannér diagram which is of order 4. All such diagrams are listed in [E1,
Lemma 3.8] (see Tabelle 3, the first two rows of page 27, the case |NF | = 2, |LF | = 4).
We reproduce this list in Table 3.4.

There are five possibilities only. As above, we attach to each of them the remaining
node to compose a unique new Lannér diagram which should be of order 4.
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Table 3.4: One of these diagrams should be contained in ΣJ for J = b3, 1, 3c2

PSfrag replacements

u7

3.3 Local determinants

In this section we list some tools derived in [V1] to compute determinants of Coxeter
diagrams. We will use them to show that some (infinite) series of Coxeter diagrams are
superhyperbolic.

Let Σ be a Coxeter diagram, and let T be a subdiagram of Σ such that det(Σ\T ) 6= 0.
A local determinant of Σ on a subdiagram T is

det(Σ, T ) =
det Σ

det(Σ\T )
.

Proposition 3.1 ([V1], Prop. 12). If a Coxeter diagram Σ consists of two subdiagrams
Σ1 and Σ2 having a unique vertex v in common, and no vertex of Σ1 \v attaches to Σ2 \v,
then

det(Σ, v) = det(Σ1, v) + det(Σ2, v) − 1.

Proposition 3.2 ([V1], Prop. 13). If a Coxeter diagram Σ is spanned by two disjoint
subdiagrams Σ1 and Σ2 joined by a unique edge v1v2 of weight a, then

det(Σ, 〈v1, v2〉) = det(Σ1, v1) det(Σ2, v2) − a2.

Denote by Lp,q,r a Lannér diagram of order 3 containing subdiagrams of the dihedral

groups G
(p)
2 , G

(q)
2 and G

(r)
2 . Let v be the vertex of Lp,q,r that does not belong to G

(r)
2 , see

Fig. 3.1. Denote by D (p, q, r) the local determinant det(Lp,q,r, v).
It is easy to check (see e.g. [V1]) that

D (p, q, r) = 1 − cos2(π/p) + cos2(π/q) + 2 cos(π/p) cos(π/q) cos(π/r)

sin2(π/r)
.

Notice that |D (p, q, r)| is an increasing function on each of p, q, r tending to infinity
while r tends to infinity.

4 Proof of the Main Theorem

The plan of the proof is the following. First, we show that there is only a finite number
of combinatorial types (or Gale diagrams) of polytopes we are interested in, and we list
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Figure 3.1: Diagram Lp,q,r

these Gale diagrams. This was done in Table 3.1. For any Gale diagram from the list we
should find all Coxeter polytopes of given combinatorial type. For that, we try to find all
Coxeter diagrams with the same structure of Lannér diagrams as the structure of missing
faces of the Gale diagram is, and then check the signature. Our task is to be left with
finite number of possibilities for each of Gale diagrams, and use a computer after that.
Some computations involve a large number of cases, but usually it takes a few minutes of
computer’s thought. In cases when it is possible to hugely reduce the computations by
better estimates we do that, but we follow that by long computations to avoid mistakes.

Lemma 4.1. The following Gale diagrams do not correspond to any hyperbolic Coxeter
polytope: G342, G22311, G13131, G352, G424, G31411.

Proof. The statement follows from Lemma 3.1. Indeed, the diagram G342 contains an
arc J = b3, 4c1. The corresponding Coxeter diagram ΣJ should be of order 7, should
contain exactly two Lannér diagrams of order 3 and 4 which do not intersect, and should
have negative inertia index at most one. Item 1 of Table 3.2 implies that there is no
such Coxeter diagram ΣJ . Thus, G342 is not a Gale diagram of any hyperbolic Coxeter
polytope.

Similarly, Item 1 of Table 3.2 also implies the statement of the lemma for diagrams
G352 and G424. Item 3 implies the statement for G22311, Item 11 implies the statement for
G13131, and Item 5 implies the statement for the diagram G31411.

In what follows we check the 14 remaining Gale diagrams case-by-case. We start from
larger dimensions.

4.1 Dimension 7

In dimension 7 we have only one diagram to consider, namely G13231.

Lemma 4.2. There are no compact hyperbolic Coxeter 7-polytopes with 10 facets.

Proof. Suppose that there exists a compact hyperbolic Coxeter polytope P with Gale di-
agram G13231. This Gale diagram contains an arc J = b3, 2, 3c2. According to Lemma 3.1
(Item 7 of Table 3.2) and Lemma 2.2, the Coxeter diagram Σ of P consists of a subdiagram
ΣJ shown in Fig. 4.1, and two nodes u9, u10 joined by a dotted edge. By Lemma 2.1,
the subdiagrams 〈u10, u1, u2, u3〉 and 〈u6, u7, u8, u9〉 are Lannér diagrams, and no other
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Figure 4.1: A unique diagram ΣJ for J = b3, 2, 3c2

Lannér subdiagram of Σ contains u9 or u10. In particular, Σ does not contain Lannér
subdiagrams of order 3.

Consider the diagram Σ′ = 〈ΣJ , u9〉. It is connected and contains neither Lannér
diagrams of order 2 or 3, nor parabolic diagrams. Therefore, Σ′ does not contain neither
dotted nor multi-multiple edges. Moreover, by the same reason the node u9 may attach
to nodes u1, u2, u7 and u8 by simple edges only. It follows that there are finitely many
possibilities for the diagram Σ′. Further, since the diagram Σ′ defines a collection of 9
vectors in 8-dimensional space R

7,1, the determinant of Σ′ is equal to zero. A few seconds
computer check shows that the only diagrams satisfying conditions listed in this paragraph
are the following ones:

PSfrag replacements
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u9
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u1 u2 u3 u4 u5 u6 u7 u8
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However, the left one contains a Lannér diagram 〈u2, u1, u9, u4, u5〉, and the right one
contains a Lannér diagram 〈u7, u8, u9, u5, u4〉, which is impossible since u9 does not belong
to any Lannér diagram of order 5.

4.2 Dimension 6

In dimension 6 we are left with three diagrams, namely G252, G21411, and G12321.

Lemma 4.3. There is only one compact hyperbolic Coxeter polytope with Gale diagram
G12321. Its Coxeter diagram is the lowest one shown in Table 4.9.

Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram G12321. This
Gale diagram contains an arc J = b2, 3, 2c2. According to Lemma 3.1 (Item 6 of Table 3.2)
and Lemma 2.2, the Coxeter diagram Σ of P consists of a subdiagram ΣJ shown in Fig. 4.2,
and two nodes u8, u9 joined by a dotted edge. By Lemma 2.1, the subdiagrams 〈u8, u1, u2〉

PSfrag replacements
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Figure 4.2: A unique diagram ΣJ for J = b2, 3, 2c2

and 〈u6, u7, u9〉 are Lannér diagrams, and no other Lannér subdiagram of Σ contains u8

or u9. So, we need to check possible multiplicities of edges incident to u8 and u9.
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Consider the diagram Σ′ = 〈ΣJ , u8〉. It is connected, contains neither Lannér diagrams
of order 2 nor parabolic diagrams, and contains a unique Lannér diagram of order 3,
namely 〈u8, u1, u2〉. Therefore, Σ′ does not contain dotted edges, and the only multi-
multiple edge that may appear should join u8 and u1.

On the other hand, the signature of ΣJ is (6, 1). This implies that the corresponding
vectors in R

6,1 form a basis, so the multiplicity of the edge u1u8 is completely determined
by multiplicities of edges joining u8 with the remaining nodes of ΣJ . Since these edges are
neither dotted nor multi-multiple, we are left with a finite number of possibilities only.
We may reduce further computations observing that u8 does not attach to 〈u4, u5, u6, u7〉
(since the diagram 〈u8, u4, u5, u6, u7〉 should be elliptic), and that multiplicities of edges
u8u2 and u8u3 are at most two and one respectively.

Therefore, we have the following possibilities: [u8, u2] = 2, 3, 4, and, independently,
[u8, u3] = 2, 3. For each of these six cases we should attach the node u8 to u1 satisfying
the condition det Σ′ = 0. An explicit calculation shows that there are two diagrams listed
below.
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The left one contains a Lannér diagram 〈u1, u8, u3, u4, u5〉, which is impossible. At the
same time, the right one contains exactly Lannér diagrams prescribed by Gale diagram.

Similarly, the node u9 may be attached to ΣJ in a unique way, i.e. by a unique edge
u9u6 of multiplicity two. Thus, Σ must look like the diagram shown in Fig. 4.3.

Now we write down the determinant of Σ as a quadratic polynomial of the weight d
of the dotted edge. An easy computation shows that

det Σ =

√
5 − 2

32

(
d− (

√
5 + 2)

)2

.

The signature of Σ for d =
√

5 + 2 is equal to (6, 1, 2), so we obtain that this diagram
corresponds to a Coxeter polytope.

PSfrag replacements

Figure 4.3: Coxeter diagram of a unique Coxeter polytope with Gale diagram G12321

Lemma 4.4. There are two compact hyperbolic Coxeter polytopes with Gale diagram
G21411. Their Coxeter diagrams are shown in the upper row of Table 4.9.
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Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram G21411. This
Gale diagram contains an arc J = b1, 4, 1c2. Hence, the Coxeter diagram Σ of P contains
a diagram ΣJ which coincides with one of the three diagrams shown in Item 2 of Table 3.2.
Further, Σ contains two Lannér diagrams of order 3, one of which (say, L) intersects ΣJ .
Denote the common node of that Lannér diagram L and ΣJ by u1, the 5 remaining nodes
of ΣJ by u2, . . . , u6 (in a way that u6 is marked white in Table 3.2, i.e. it belongs to only
one Lannér diagram of order 5), and denote the two remaining nodes of L by u7 and u8.
Since L is connected, we may assume that u7 is joined with u1. Notice that u1 is also a
node marked white in Table 3.2, elsewhere it belongs to at least three Lannér diagrams
in Σ.

Consider the diagram Σ′ = 〈ΣJ , u7〉. It is connected, and all Lannér diagrams con-
tained in Σ′ are contained in ΣJ . In particular, Σ′ does not contain neither dotted nor
multi-multiple edges. Hence, we have only finite number of possibilities for Σ′. More
precisely, to each of the three diagrams ΣJ shown in Item 2 of Table 3.2 we must attach
a node u7 without making new Lannér (or parabolic) diagrams, and all edges must have
multiplicities at most 3. In addition, u7 is joined with u1. The last condition is restrictive,
since we know that u1 and u6 are the nodes of ΣJ marked white in Table 3.2. A direct
computation (using the technique described in Section 3.2) leads us to the two diagrams
Σ′

1 and Σ′
2 (up to permutation of indices 2, 3, 4 and 5 which does not play any role) shown

in Fig. 4.4.

Σ′
1 =

PSfrag replacements
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Figure 4.4: Two possibilities for diagram Σ′, see Lemma 4.4

Now consider the diagram Σ′′ = 〈Σ′, u8〉 = 〈ΣJ , u7, u8〉 = 〈ΣJ , L〉. As above, u8

may attach to ΣJ by edges of multiplicity at most 3, so the only multi-multiple edge
that may appear in Σ′′ is u8u7. Since both diagrams Σ′

1 and Σ′
2 have signature (6, 1),

the corresponding vectors in R
6,1 form a basis, so the multiplicity of the edge u8u7 is

completely determined by multiplicities of edges joining u8 with the remaining nodes of
Σ′. Thus, there is a finite number of possibilities for Σ′′. To reduce the computations
note that u8 is not joined with 〈u2, u3, u4, u5〉 (since the diagram 〈u2, u3, u4, u5, u8〉 must
be elliptic). Attaching u8 to Σ′

2, we do not obtain any diagram with zero determinant and
prescribed Lannér diagrams. Attaching u8 to Σ′

1, we obtain the two diagrams Σ′′
1 and Σ′′

2

shown in Fig. 4.5.
The remaining node of Σ, namely u9, is joined with u6 by a dotted edge. It is also

contained in a Lannér diagram 〈u7, u8, u9〉 of order 3, but no other Lannér diagram con-
tains u9. Since u7 attaches to u1, we see that all edges joining u9 with Σ′ \ u6 are neither
dotted nor multi-multiple. On the other hand, for both diagrams Σ′′

1 and Σ′′
2, the diagram

Σ′′ \ u6 has signature (6, 1). Hence, the weight of edge u9u8 is completely determined
by multiplicities of edges joining u9 with the remaining nodes of Σ′′ \ u6, so we are left
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Σ′′
1 =
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Figure 4.5: Two possibilities for diagram Σ′′, see Lemma 4.4

with finitely many possibilities for Σ′′ \ u6. Again, we note that u9 is not joined with
〈u2, u3, u4, u5〉. Now we attach u9 to u1 and to u7 by edges of multiplicities from 0 (i.e. no
edge) to 3, and then compute the weight of the edge u9u8 to obtain det(Σ \ u6) = 0. This
weight is equal to cos π

m
for integer m only in case of the diagrams shown in Fig. 4.6.
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Figure 4.6: Coxeter diagrams of Coxeter polytopes with Gale diagram G21411

The last step is to find the weight of the dotted edge u9u6 to satisfy the signature
condition, i.e. the signature should equal (6, 1, 2). We write the determinant of Σ as a
quadratic polynomial of the weight d of the dotted edge, and compute the root. An easy
computation shows that for both diagrams the signature of Σ for d = 1+

√
5

2
is equal to

(6, 1, 2), so we obtain that these two diagrams correspond to Coxeter polytopes. One can
note that the right polytope can be obtained by gluing two copies of the left one along
the facet corresponding to the node u8.

Lemma 4.5. There are no compact hyperbolic Coxeter polytopes with Gale diagram G252.

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G252. The Coxeter diagram Σ of P contains a Lannér diagram L1 = 〈u1, . . . u5〉 of order 5,
and two diagrams of order 2, denote them L2 = 〈u6, u8〉 and L3 = 〈u7, u9〉. The diagram
〈L1, L2〉 is connected, otherwise it is superhyperbolic. Thus, we may assume that u6

attaches to L1. Similarly, we may assume that u7 attaches to L1.
Therefore, the diagram Σ′ = 〈L1, u6, u7〉 consists of a Lannér diagram L1 of order 5

and two additional nodes which attach to L1, and these nodes are not contained in any
Lannér diagram. According to [E1, Lemma 3.8] (see Tabelle 3, page 27, the case |NF | = 2,
|LF | = 5), Σ′ must coincide with the diagram (up to permutation of indices of nodes of
L1) shown in Fig. 4.7.

Consider the diagram Σ′′
1 = 〈Σ′, u8〉 = Σ\u9. The node u8 is joined with u6 by a dotted

edge. The diagram Σ′′
1 \ u6 contains a unique Lannér diagram, L1. If u8 attaches to L1,

Σ′′
1 \u6 should coincide with Σ′. Thus, u8 does not attach to 〈u1, . . . , u4〉, and [u8, u5] = 2

or 3. It is also easy to see that [u8, u7] ≤ 4. Since the signature of Σ′ is (6, 1), the weight
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Figure 4.7: The diagram Σ′, see Lemma 4.5

of the edge u8u6 is completely determined by multiplicities of edges joining u8 with the
remaining nodes of Σ′. Hence, we have a finite number of possibilities for Σ′′

1. To reduce
the computations observe that either [u5, u8] or [u7, u8] must equal 2. We are left with
only 4 cases: the pair ([u5, u8], [u7, u8]) coincides with one of (2, 2), (2, 3), (2, 4) or (3, 2).
For each of them we compute the weight of u8u6 by solving the equation det Σ′′

1 = 0. Each
of these equations has one positive and one negative solution, but the positive solution
in case of ([u5, u8], [u7, u8]) = (2, 4) is less than one, so it cannot be a weight of a dotted
edge. Therefore, we have three cases ([u5, u8], [u7, u8]) = (2, 2), (2, 3) or (3, 2), for which

the weight of u8u6 is equal to
√

2
√

4+
√

5√
11

,
−3

√
5+7+4

√
10−4

√
5√

−9+5
√

5
, and 5+4

√
5

11
respectively.

By symmetry, we obtain the same cases for the diagram Σ′′
2 = 〈Σ′, u9〉 = Σ \ u8, and

the same values of the weight of the edge u9u7 when ([u5, u9], [u6, u9]) = (2, 2), (2, 3) and
(3, 2) respectively. Now, we have only 9 cases to attach nodes u8 and u9 to Σ′ (in fact,
there are only six up to symmetry). For each of these cases we compute the weight of
the edge u8u9 by solving the equation det Σ = 0. None of these solutions is equal to
cos π

m
for integer m, which contradicts the fact that the diagram 〈u8, u9〉 is elliptic. This

contradiction proves the lemma.

4.3 Dimension 5

In dimension 5 we must consider six Gale diagrams, namely G242, G323, G21311, G12311,
G11411, and G12221.

Lemma 4.6. There is only one compact hyperbolic Coxeter polytope with Gale diagram
G12221. Its Coxeter diagram is the left one shown in the first row of Table 4.10.

Proof. The proof is similar to the proof of Lemma 4.3. We assume that there exists a
hyperbolic Coxeter polytope P with Gale diagram G12221. This Gale diagram contains
an arc J = b2, 2, 2c2. According to Lemma 3.1 (Item 10 of Table 3.2) and Lemma 2.2,
the Coxeter diagram Σ of P consists of the subdiagram ΣJ shown in Fig. 4.8, and two

PSfrag replacements

u1 u2 u3 u4 u5 u6

Figure 4.8: A unique diagram ΣJ for J = b2, 2, 2c2

nodes u7, u8 joined by a dotted edge. By Lemma 2.1, the subdiagrams 〈u7, u1, u2〉 and
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〈u5, u6, u8〉 are Lannér diagrams, and no other Lannér subdiagram of Σ contains u7 or u8.
So, we need to check possible multiplicities of edges incident to u7 and u8.

Again, we consider the diagram Σ′ = 〈ΣJ , u7〉. It is connected, does not contain dotted
edges, and its determinant is equal to zero. Furthermore, observe that u7 does not attach
to 〈u2, u3, u4, u5〉 (since the diagram 〈u7, u2, u3, u4, u5〉 should be elliptic), and u7 does not
attach to u6 (since the diagram 〈u7, u4, u5, u6〉 should be elliptic). Therefore, u7 is joined
with u1 only. Solving the equation det Σ′ = 0, we find that [u7, u1] = 4.

By symmetry, we obtain that u8 is not joined with 〈u1, u2, u3, u4, u5〉, and [u8, u6] = 4.
Thus, we have the Coxeter diagram Σ shown in Fig. 4.9. Assigning the weight d =PSfrag replacements

u2 u5
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u3 u4

Figure 4.9: Coxeter diagram of a unique Coxeter polytope with Gale diagram G12221

√
2(
√

5 + 1)/4 to the dotted edge, we see that the signature of Σ is equal to (5, 1, 2), so
we obtain that this diagram corresponds to a Coxeter polytope.

Before considering the diagram G11411, we make a small geometric excursus, the first
one in this purely geometric paper.

The combinatorial type of polytope defined by Gale diagram G11411 is twice truncated
5-simplex, i.e. a 5-simplex in which two vertices are truncated by hyperplanes very close
to the vertices. If we have such a polytope P with acute angles, it is easy to see that we
are always able to truncate the polytope again by two hyperplanes in the following way:
we obtain a combinatorially equivalent polytope P ′; the two truncating hyperplanes do
not intersect initial truncating hyperplanes and intersect exactly the same facets of P the
initial ones do; the two truncating hyperplanes are orthogonal to all facets of P they do
intersect.

The difference between polytopes P and P ′ consists of two small polytopes, each of
them is combinatorially equivalent to a product of 4-simplex and segment, i.e. each of
these polytopes is a simplicial prism. Of course, it is a Coxeter prism, and one of the bases
is orthogonal to all facets of the prism it does intersect. All such prisms were classified
by Kaplinskaja in [K]. Simplices truncated several times with orthogonality condition
described above were classified by Schlettwein in [S]. Twice truncated simplices from the
second list are the right ones in rows 1, 3, and 5 of Table 4.10.

Therefore, to classify all Coxeter polytopes with Gale diagram G11411 we only need
to do the following. We take a twice truncated simplex from the second list, it has two
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“right” facets, i.e. facets which make only right angles with other facets. Then we find
all the prisms that have “right” base congruent to one of “right” facets of the truncated
simplex, and glue these prisms to the truncated simplex by “right” facets in all possible
ways.

The result is presented in Table 4.10. All polytopes except the left one from the
first row have Gale diagram G11411. The polytopes from the fifth row are obtained by
gluing one prism to the right polytope from this row, the polytopes from the third and
fourth rows are obtained by gluing prisms to the right polytope from the third row, and
the polytopes from the first and second rows are obtained by gluing prisms to the right
polytope from the first row. The number of glued prisms is equal to the number of edges
inside the maximal cycle of Coxeter diagram. Hence, we come to the following lemma:

Lemma 4.7. There are 15 compact hyperbolic Coxeter 5-polytopes with 8 facets with Gale
diagram G11411. Their Coxeter diagrams are shown in Table 4.10.

Proof. In fact, the lemma has been proved above. Here we show how to verify the previous
considerations without any geometry and without referring to classifications from [K]
and [S]. Since the procedure is very similar to the proof of Lemma 4.6, we provide only
a plan of necessary computations without details.

Let P be a compact hyperbolic Coxeter polytope P with Gale diagram G11411. This
Gale diagram contains an arc J = b1, 4, 1c2, so the Coxeter diagram Σ of P consists of
one of the diagrams ΣJ presented in Item 2 of Table 3.2 and two nodes u7 and u8 joined
by a dotted edge.

Choose one of three diagrams ΣJ . Consider the diagram Σ′ = 〈ΣJ , u7〉. It is connected,
contains a unique dotted edge, no multi-multiple edges, and its determinant is equal to
zero. So, we are able to find the weight of the dotted edge joining u7 with ΣJ depending
on multiplicities of the remaining edges incident to u7. The weight of this edge should
be greater than one. Of course, we must restrict ourselves to the cases when non-dotted
edges incident to u7 do not make any new Lannér diagram together with ΣJ . The number
of such cases is really small.

Further, we do the same for the diagram Σ′′ = 〈ΣJ , u8〉, and we find all possible such
diagrams together with the weight of the dotted edge joining u8 with ΣJ . Then we are
left to determine the weight of the dotted edge u7u8 for any pair of diagrams Σ′ and Σ′′.
It occurs that this weight is always greater than one.

Doing the procedure described above for all the three possible diagrams ΣJ , we obtain
the complete list of compact hyperbolic Coxeter 5-polytopes with 8 facets with Gale dia-
gram G11411. The computations completely confirm the result of considerations previous
to the lemma.

In the remaining part of this section we show that Gale diagrams G242, G323, G21311,
and G12311 do not give rise to any Coxeter polytope.

Lemma 4.8. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G12311.
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Proof. Suppose that there exists a compact hyperbolic Coxeter polytope P with Gale di-
agram G12311. This Gale diagram contains an arc J = b2, 3, 1c2. According to Lemma 3.1
(Item 9 of Table 3.2) and Lemma 2.2, the Coxeter diagram Σ of P consists of one of the
nine subdiagrams ΣJ shown in Table 4.1, and two nodes u7, u8 joined by a dotted edge.

Table 4.1: All possible diagrams ΣJ for J = b2, 3, 1c2
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4,5
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By Lemma 2.1, the subdiagrams 〈u7, u1, u2〉 and 〈u6, u8〉 are Lannér diagrams, and no
other Lannér subdiagram of Σ contains u7 or u8.

Consider the diagram Σ′ = 〈ΣJ , u7〉. It is connected, does not contain dotted edges,
and its determinant is equal to zero. Observe that the diagram 〈u2, u3, u4, u5〉 is of the
type H4. Since the diagram 〈u7, u2, u3, u4, u5〉 is elliptic, this implies that u7 is not joined
with 〈u2, u3, u4, u5〉. Furthermore, notice that the diagram 〈u3, u4, u6〉 is of the type H3.
Since the diagram 〈u7, u3, u4, u6〉 is elliptic, we obtain that [u7, u6] = 2 or 3. Thus, for
each of 9 diagrams ΣJ we have 2 possibilities of attaching u7 to ΣJ \ u1. Solving the
equation det Σ′ = 0, we compute the weight of the edge u7u1. In all 18 cases the result is
not of the form cos π

m
for positive integer m, which proves the lemma.

Lemma 4.9. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G21311.

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G21311. This Gale diagram contains an arc J = b1, 3, 1c2. Therefore, the Coxeter diagram
Σ of P contains one of the five subdiagrams ΣJ , shown in Item 8 of Table 3.2.

On the other hand, Σ contains a Lannér diagram L of order 3 intersecting ΣJ . Denote
by u1 the intersection node of L and ΣJ , and denote by u6 and u7 the remaining nodes of
L. Since L is connected, we may assume that u6 attaches to u1. Denote by u2 the node
of ΣJ different from u1 and contained in only one Lannér diagram of order 4, and denote
by u3, u4, u5 the nodes of ΣJ contained in two Lannér diagrams of order 4.

Consider the diagram Σ0 = 〈ΣJ , u6〉 \ u2. It is connected, has order 5, and contains a
unique Lannér diagram which is of order 4. All such diagrams are listed in [E1, Lemma
3.8] (see the first two rows of Tabelle 3, the case |NF | = 1, |LF | = 4). We have reproduced
this list in Table 3.3.
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Consider the diagram Σ1 = 〈ΣJ , u6〉 = 〈ΣJ ,Σ0〉. Comparing the lists of possibilities
for ΣJ and Σ0, it is easy to see that Σ1 coincides with one of the four diagrams listed
in Table 4.2 (up to permutation of indices 3, 4 and 5). Now consider the diagram Σ′ =

Table 4.2: All possibilities for diagram Σ1, see Lemma 4.9

PSfrag replacements

u1 u1

u1

u2 u2

u2

u3

u3u3

u4 u4

u4

u5 u5

u5

u6 u6

u6

4, 5

〈ΣJ , L〉 = 〈Σ1, u7〉. It is connected, does not contain dotted edges, its determinant is
equal to zero, and the only multi-multiple edge may join u7 and u6. To reduce further
computations notice, that the diagram 〈u7, u3, u4, u5〉 is elliptic, so u7 does not attach
to 〈u3, u4〉, and may attach to u5 by simple edge only. Moreover, since the diagrams
〈u7, u2, u4, u5〉 and 〈u7, u1, u4, u5〉 are elliptic, u7 is not joined with u5. Furthermore, since
the diagrams 〈u7, u1, u4, u5〉 and 〈u7, u1, u3, u4〉 are elliptic, [u7, u1] = 2 or 3. Considering
elliptic diagrams 〈u7, u2, u4, u5〉 and 〈u7, u2, u3, u4〉, we obtain that [u7, u2] is also at most
3. Then for all 4 diagrams Σ1 and all admissible multiplicities of edges u7u1 and u7u2

we compute the weight of the edge u7u6. We obtain exactly two diagrams Σ′ where
this weight is equal to cos π

m
for some positive integer m, these diagrams are shown in

Fig. 4.10. We are left to attach the node u8 to Σ′. Consider the diagram Σ′′ = Σ \ u2.

PSfrag replacements

u1 u1u2 u2

u3 u3

u4 u4u5 u5u6 u6u7

u7

10

Figure 4.10: All possibilities for diagram Σ′, see Lemma 4.9

As usual, it is connected, does not contain dotted edges, its determinant is equal to zero,
and the only multi-multiple edge that may appear is u8u7. Furthermore, the diagram
〈u3, u4, u1, u6〉 is of the type H4, and the diagram 〈u8, u3, u4, u1, u6〉 is elliptic. Thus, u8

does not attach to 〈u3, u4, u1, u6〉. The diagram 〈u3, u4, u5〉 is of the type H3, and since
the diagram 〈u8, u3, u4, u5〉 should be elliptic, this implies that [u8, u5] = 2 or 3. Now for
both diagrams Σ′ \u2 ⊂ Σ′′ we compute the weight of the edge u8u5. In all four cases this
weight is not equal to cos π

m
for any positive integer m, that finishes the proof.

Lemma 4.10. There are no compact hyperbolic Coxeter polytope with Gale diagram G323.

Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G323. The Coxeter diagram Σ of P consists of two Lannér diagrams L1 and L2 of order
3, and one Lannér diagram L3 of order 2. Any two of these Lannér diagrams are joined
in Σ, and any subdiagram of Σ not containing one of these three diagrams is elliptic.
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Consider the diagram Σ12 = 〈L1, L2〉. Due to [E2, p. 239, Step 4], we have three cases:

(1) L1 and L2 are joined by two simple edges having a common vertex, say in L2;
(2) L1 and L2 are joined by a unique double edge;
(3) L1 and L2 are joined by a unique simple edge.

We fix the following notation: L1 = 〈u1, u2, u3〉, L2 = 〈u4, u5, u6〉, L3 = 〈u7, u8〉, the only
node of L2 joined with L1 is u4; u4 is joined with u3 and, in case (1), with u1. We may
assume also that u7 attaches to L1, u4 is joined to u5 in L2, and u2 is joined to u3 in L1.
Case (1). Since the diagrams 〈u2, u1, u4〉 and 〈u2, u3, u4〉 are elliptic, [u2, u1] and [u2, u3]
do not exceed 5. On the other hand, 〈u1, u2, u3〉 = L1 is a Lannér diagram, so we may
assume that [u2, u1] = 5, and [u2, u3] = 4 or 5. Now attach u7 to L1. If u7 is joined with
u1 or u2, then the diagram 〈u2, u1, u4〉 is not elliptic, and if u7 is joined with u3, then the
diagram 〈u2, u3, u4〉 is not elliptic, which contradicts Lemma 2.1.
Case (2). It is clear that [u2, u3] = [u4, u5] = 3, and u7 cannot be attached to u3. Thus,
u7 is joined with u1 or u2, which implies that [u2, u1] ≤ 5. Therefore, [u1, u3] = 3. So, the
diagrams 〈u1, u3, u4, u5〉 and 〈u2, u3, u4, u5〉 are of the type F4. Therefore, if u7 attaches
u1, then the diagram 〈u7, u1, u3, u4, u5〉 is not elliptic, and if u7 is joined with u2, then the
diagram 〈u7, u2, u3, u4, u5〉 is not elliptic.
Case (3). The signature of Σ12 is either (5, 1) or (4, 1, 1). Thus, det Σ12 ≤ 0. By
Prop. 3.2, det(L1, u3) det(L2, u4) ≤ 1

4
. We may assume that | det(L1, u3)| ≤ | det(L2, u4)|,

in particular, | det(L1, u3)| ≤ 1
2
. By [E2, Table 2], there are only 6 possibilities for 〈L1, u4〉,

we list them in Table 4.3.

Table 4.3: All possibilities for diagram 〈L1, u4〉, see Case (3) of Lemma 4.10

PSfrag replacements

u1u1u1 u1u1u1

u2u2u2u2u2u2
u3u3u3u3u3u3 u4u4u4u4u4u4

7

For any of these six diagrams | det(L1, u3)| ≥
√

5−1
8

. Thus, | det(L2, u4)| ≤ 1
4

8√
5−1

= 2√
5−1

.

Notice that since the diagrams 〈u3, u4, u5〉 and 〈u3, u4, u6〉 are elliptic, [u4, u5] and [u4, u6]
do not exceed 5. Now, since the local determinant is an increasing function of multiplicities
of the edges, it is not difficult to list all Lannér diagrams L2 = 〈u4, u5, u6〉, such that
[u4, u5], [u4, u6] ≤ 5, and | det(L2, u4)| ≤ 2√

5−1
. This list contains 17 diagrams only.

Then, from 6 ·17 = 102 pairs (L1, L2) we list all pairs with det(L1, u3) det(L2, u4) ≤ 1
4
.

Each of these pairs corresponds to a diagram Σ12. After that, we attach to all diagrams
Σ12 a node u7 in the following way: u7 is joined with L1 (and may be joined with L2,
too), and it does not produce any new Lannér or parabolic diagram. It occurs that none
of obtained diagrams 〈Σ12, u7〉 has zero determinant.

Lemma 4.11. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G242.
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Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G242. The Coxeter diagram Σ of P consists of one Lannér diagram L1 of order 4, and two
Lannér diagrams L2 and L3 of order 2. Any two of these Lannér diagrams are joined in
Σ, and any subdiagram of Σ not containing one of these three diagrams is elliptic.

We fix the following notation: L1 = 〈u1, u2, u3, u4〉, L2 = 〈u5, u7〉, L3 = 〈u6, u8〉, u5

and u6 attach to L1.
Consider the diagram Σ0 = 〈L1, u5, u6〉. It is connected, has order 6, and contains a

unique Lannér diagram which is of order 4. All such diagrams are listed in [E1, Lemma
3.8] (see Tabelle 3, the first two rows of page 27, the case |NF | = 2, |LF | = 4). We have
reproduced this list in Table 3.4. The list contains five diagrams, but we are interested
in four of them: in the fifth one only one of two additional nodes attaches to the Lannér
diagram. We list these four possibilities for Σ0 in Table 4.4.

Table 4.4: All possibilities for diagram Σ0, see Lemma 4.11

PSfrag replacements
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u2u2
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Now consider the diagram Σ′ = 〈Σ0, u7〉. It contains a unique dotted edge u5u7. Since
the diagram 〈u7, u1, u2, u3, u6〉 is elliptic and the diagram 〈u1, u2, u3, u6〉 is of the type H4

or B4, u7 is not joined with 〈u1, u2, u3〉, and it may attach to u6 if [u1, u2] = 4 only. It is
easy to see that [u7, u4] = 2 or 3 in all four cases. We obtain 9 possibilities for attaching
u7 to Σ0 \ u5. For each of them we compute the weight of the edge u5u7.

By symmetry, we may list all 9 possibilities for the diagram Σ′′ = 〈Σ0, u8〉. Now we
are left to compute the weight of the edge u7u8 in Σ. Diagrams Σ0 with [u1, u2] = 5
produce three possible diagrams Σ each, and the diagram Σ0 with [u1, u2] = 4 produces
six possible diagrams Σ (we respect symmetry). In all these 15 cases the weight of the
edge u7u8 is not of the form cos π

m
for positive integer m.

4.4 Dimension 4

In dimension 4 we must consider four Gale diagrams, namely G232, G11311, G21112, and
G12121. Three of them, i.e. G232, G11311, and G12121, give rise to Coxeter polytopes.

Lemma 4.12. There are exactly three compact hyperbolic Coxeter polytopes with Gale
diagram G232. Their Coxeter diagrams are shown in the third row of the second part of
Table 4.11.

Proof. Let P be a compact hyperbolic Coxeter polytope with Gale diagram G232. The
Coxeter diagram Σ of P consists of one Lannér diagram L1 of order 3, and two Lannér
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diagrams L2 and L3 of order 2. Any two of these Lannér diagrams are joined in Σ, and
any subdiagram of Σ containing none of these three diagrams is elliptic.

On the first sight, the considerations may repeat ones from the proof of Lemma 4.11.
However, there is a small difference: the number of Lannér diagrams of order 3 is infinite.
Thus, at first we must bound the multiplicities of the edges of the Lannér diagram of
order 3.

We fix the following notation: L1 = 〈u1, u2, u3〉, L2 = 〈u5, u6〉, L3 = 〈u4, u7〉, u4 and
u5 attach to L1. We may also assume that u4 attaches to u3.

Since the diagrams 〈u1, u3, u4〉 and 〈u2, u3, u4〉 should be elliptic, the edges u3u1 and
u3u2 are not multi-multiple. We consider two cases: u1 or u2 is either joined with
〈u4, u5, u6, u7〉 or not.

Case 1: u1 and u2 are not joined with 〈u4, u5, u6, u7〉. In particular, this is true if the
edge u1u2 is multi-multiple. Then u5 attaches to u3. Since the diagrams 〈u1, u3, u4, u5〉
and 〈u2, u3, u4, u5〉 are elliptic, [u3, u1] and [u3, u2] do not exceed 3, [u3, u4] = [u3, u5] = 3,
and [u4, u5] = 2. We may assume that [u3, u1] = 3, and [u3, u2] = 2 or 3.

Consider the diagram Σ′ = 〈L1, L2, u4〉 = Σ \ u7. We know that u6 is joined with u5

by a dotted edge, and u6 does not attach to u1 and u2. Furthermore, since the diagram
〈u1, u3, u4, u6〉 is elliptic, [u6, u3] ≤ 3 and [u6, u4] ≤ 4. By the same reason, either [u6, u3]
or [u6, u4] is equal to 2. Thus, we have four possibilities to attach u6 to u3 and u4.

Denote by d the weight of the dotted edge u5u6, and compute the local determinant
det (〈u3, u4, u5, u6〉, u3) for all four diagrams 〈u3, u4, u5, u6〉 as a function of d.

Case 1.1: [u6, u4] 6= 2. In this case det (〈u3, u4, u5, u6〉, u3) equals either 12d2+4d−5
4(4d2−3)

(when

[u6, u4] = 3) or 6d2+2
√

2d−1
4(2d2−1)

(when [u6, u4] = 4). Both expressions decrease in the ray

[1,∞), so the maximal values are 11/4 and (5 + 2
√

2)/4 respectively. Now recall that
det Σ′ = 0, so by Prop. 3.1 we have det(L1, u3) = 1 − det (〈u3, u4, u5, u6〉, u3). Therefore,
| det(L1, u3)| is bounded from above by 7/4 or (1 + 2

√
2)/4 if [u6, u4] = 3 or [u6, u4] = 4

respectively. Since | det(L1, u3)| is an increasing function on [u1, u2], an easy check shows
that [u1, u2] is bounded by 10 or 8 respectively. So, in both cases we have finitely many
possibilities for L1.

Further considerations follow ones from Lemma 4.11. We list all possible Σ′ together
with the weight of the dotted edge u5u6 (which may be computed from the equation
det Σ′ = 0), then we list all possible diagrams Σ′′ = 〈L1, L3, u5〉 = Σ \ u6 in a similar way.
After that for all pairs (Σ′,Σ′′) (with the same L1) we compute the weight of the edge
u6u7. It occurs that in all cases the weight is not of the form cos π

m
for positive integer m.

Case 1.2: [u6, u4] = 2. In this case det (〈u3, u4, u5, u6〉, u3) equals either 3d2−2
4(d2−1)

(when

[u6, u3] = 2) or 3d−1
4(d−1)

(when [u6, u3] = 3). These tend to ∞ when d tends to 1, so we do

not obtain any bound for [u1, u2].
Let m12 = [u1, u2], m23 = [u2, u3], and let m36 = [u3, u6]. Notice that m23, m36 = 2 or

3. Define also c12 = cos(π/m12). We compute the weight of the edge u5u6 as a function
d(m12, m23, m36) of m12, m23 and m36. Solving the equation det Σ′ = 0, we see that
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d(m12, 2, 2) =

√
2c212 − 1

2c212 − 2
; d(m12, 3, 2) =

√
2c12

3c12 − 1
;

d(m12, 2, 3) =
c212

3c212 − 2
; d(m12, 3, 3) =

c12 + 1

3c12 − 1
.

Consider the diagram Σ. According to Case 1.1, we may assume that [u5, u7] = 2. Since
L2 and L3 are joined in Σ, [u6, u7] 6= 2. On the other hand, the diagram 〈u3, u6, u7〉 is
elliptic. Thus, either [u3, u6] or [u3, u7] equals 2. By symmetry, we may assume that
[u3, u7] = 2. We also know how the weight of the edge u4u7 depends on m12 and m23.

Now we are able to compute the weight w(m12, m23, m36) of the dotted edge u4u7 as
a function of m12, m23 and m36. For that we simply solve the equation det Σ = 0. Notice
that since L1 is a Lannér diagram, m12 ≥ 7 when m23 = 2, and m12 ≥ 4 when m23 = 3.
We obtain:

• w(m12, 2, 2) =
1 − c212
3c212 − 2

is a decreasing function of m12 as m12 ≥ 7, and w(7, 2, 2) < 1/2;

• w(m12, 2, 3) =
2(1 − c212)

√
2c212

(3c212 − 2)3/2
is a decreasing function of m12 as m12 ≥ 7, w(9, 2, 3) <

1/2, and w(m12, 2, 3) 6= cos(π/m) when m12 = 7 or 8;

• w(m12, 3, 2) =
1 − c12
3c12 − 1

is a decreasing function of m12 as m12 ≥ 4, and w(4, 2, 2) < 1/2;

• w(m12, 3, 3) =
2(1 − c12)

√
2c12

(3c12 − 1)3/2
is a decreasing function of m12 as m12 ≥ 4, w(5, 3, 3) <

1/2, and w(4, 3, 3) 6= cos(π/m).

This finishes considerations of Case 1.

Case 2: either u1 or u2 is joined with 〈u4, u5, u6, u7〉. In particular, this implies that
L1 contains no multi-multiple edges, so we deal with a finite number of possibilities for
L1 only. This list contains 11 Lannér diagrams of order 3. Using that list, it is not too
difficult to list all the diagrams Σ0 = 〈L1, u4, u5〉. This list contains 19 diagrams, we
present them in Table 4.5. Now we follow the proof of Lemma 4.11. Choose one of 19

Table 4.5: All possibilities for diagram Σ0, see Case 2 of Lemma 4.12

3,4,5 4,5

3,4

4,5

4,
5

4,5

2,3
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u7

diagrams Σ0, and consider the diagram Σ′ = 〈Σ0, u6〉. It contains a unique dotted edge
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u5u6, and that is the only Lannér diagram in Σ′ containing u6. We have a finite number
of possibilities to attach u6 to Σ0 \ u5. For each of them we compute the weight of the
edge u5u6.

Similarly, we list all possibilities for the diagram Σ′′ = 〈Σ0, u7〉. Now we are left to
compute the weight of the edge u6u7 in Σ. A computation shows that the weight is of
the form cos π

m
only for the diagrams listed in Table 4.6. To verify that these diagrams

Table 4.6: Coxeter diagrams of Coxeter polytopes with Gale diagram G232

PSfrag replacements
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u2 u2u2u3 u3u3

u4 u4u4
u5 u5u5

u6 u6u6u7 u7u7

2, 3

4, 5

3, 4, 5

correspond to polytopes, we need to assign weights to the dotted edges. We assign a

weight
√

2
√

5+1
4

to all edges u5u6, and weights

√
15(5+

√
5)

10
, 5+3

√
5

10
and 3+

√
5

4
to the edge u4u7

on the left, middle and right diagrams respectively. A direct calculation shows that the
diagrams have signature (4, 1, 2).

Lemma 4.13. There are 29 compact hyperbolic Coxeter polytopes with Gale diagram
G11311. Their Coxeter diagrams are shown in the first part of Table 4.11 and in the first
three rows of the second part of the same table.

Proof. The proof is identical to one which concerns the diagram G11411 (see Lemma 4.7).
The combinatorial type of polytope defined by Gale diagram G11311 is twice truncated
4-simplex. Any such Coxeter polytope may be obtained by gluing one or two prisms to
a twice truncated 4-simplex with orthogonality conditions described before Lemma 4.7.
Such simplices were classified by Schlettwein in [S], they appear as right ones in rows 1, 2,
and 4 of the first part of Table 4.11, and in rows 1 and 2 of the second part. The prisms
were classified by Kaplinskaja in [K].

For each twice truncated simplex from the list of Schlettwein we find all the prisms
that have “right” base congruent to one of “right” facets of the truncated simplex, and
glue these prisms to the truncated simplex. The result is presented in Table 4.11.

The verification of the result above by computations is completely identical to the
proof of Lemma 4.7. We only need to replace an arc J = b1, 4, 1c2 from G11411 by an arc
J = b1, 3, 1c2, and refer to Item 8 of Table 3.2 instead of Item 2.

Lemma 4.14. There are no compact hyperbolic Coxeter polytopes with Gale diagram
G21112.
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Proof. Suppose that there exists a hyperbolic Coxeter polytope P with Gale diagram
G21112. The Coxeter diagram Σ of P consists of one Lannér diagram L1 = 〈u1, u2, u3, u4〉
of order 4, two Lannér diagrams L2 = 〈u6, u1, u2〉 and L3 = 〈u3, u4, u5〉 of order 3, and
two Lannér diagrams 〈u6, u7〉 and 〈u7, u5〉 of order 2.

Consider the diagram Σ′ = 〈L1, L2, L3〉 = Σ \ u7. It is connected, has order 6, and
contains no dotted edges. We may also assume that u5 attaches to u4. Clearly, any multi-
multiple edge that may appear in Σ′ belongs to L2 or L3 and does not belong to L1. We
consider two cases: either Σ′ contains multi-multiple edges or not.

Suppose that Σ′ contains no multi-multiple edges. Then we have 9 possibilities for
L2, and 9 possibilities for L3. For each of 81 pairs (or 45 in view of symmetry) we join
nodes of L2 with nodes of L3 in all possible ways (9 edges, 4 possibilities for each of
them, from empty to triple one). We are looking for diagrams satisfying the following
conditions: the determinant should vanish, there are no parabolic subdiagrams, and the
diagram contains a unique new Lannér diagram, which has order 4. A computer check
(which takes about 10 hours of computer thought) shows that only 39 obtained diagrams
have zero determinant, and only 11 of them contain Lannér diagrams of order 4. However,
each of them contains some new Lannér diagram of order 3. Therefore, none of them may
be considered as Σ′.

Now suppose that Σ′ contains at least one multi-multiple edge. We may assume that
u4u5 is multi-multiple. In this case u4 must be a leaf of L1, i.e. it should have valency one
in L1. Indeed, if u4 is joined with two vertices v, w ∈ L1, then both diagrams 〈u5, u4, v〉
and 〈u5, u4, w〉 are not elliptic, which is impossible. Thus, L1 is not a cycle, so we have
4 possibilities for L1 only (see Table 2.2). In Table 4.7 we list all possible diagrams L1

together with all possible numerations of nodes. A numeration should satisfy the following
properties: u4 is a leaf, and u3 is a unique neighbor of u4. We consider numerations up
to interchange of u1 and u2.

Table 4.7: Numberings of vertices of Lannér diagrams of order 4 without cycles
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(2a)

(4a)

(2b)

(4b)

(1)

(3)

Consider 6 diagrams case-by-case. For all of them we claim that u5 and u4 do not
attach to L2 = 〈u1, u2, u6〉: this is because the edge u4u5 is multi-multiple.

Diagram (1). Since the diagram 〈u1, u2, u3, u5〉 is elliptic, u5 is not joined with u3. Fur-
thermore, since the diagram 〈u6, u2, u3, u4〉 is elliptic, u6 is not joined with 〈u2, u3〉. There-
fore, [u6, u2] = 2, so [u6, u1] ≥ 7. Applying Prop. 3.2, we see that det(L2, u2) det(L3, u3) =
cos2(π/5). An easy calculation shows that the inequality [u6, u1] ≥ 7 implies that
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[u4, u5] ≤ 10. By symmetry, [u6, u1] ≤ 10, too. We are left with a finite (and very
small) number of possibilities for Σ′. For none of them det Σ′ = 0.

Diagrams (2a), (2b) and (3). Since the diagram 〈u1, u2, u3, u5〉 is elliptic, [u3, u5] ≤ 3.
Since the diagram 〈u6, u2, u3, u4〉 is elliptic, u6 is not joined with u3, and [u6, u2] ≤ 3,
so [u6, u1] ≥ 3. Applying Prop. 3.2, we have det(L2, u2) det(L3, u3) = 1/4. By assump-
tion, [u4, u5] ≥ 6, which implies the inequality | det(L3, u3)| ≥ |D (2, 4, 6)| = 1. Thus,
| det(L2, u2)| ≤ 1/4. But since [u1, u2] ≥ 4 and [u6, u2] ≥ 3, either | det(L2, u2)| ≥
|D (2, 4, 5)| = 1/

√
5 > 1/4 or | det(L2, u2)| ≥ |D (3, 4, 3)| =

√
2/3 > 1/4, so we come to a

contradiction.

Diagram (4a). Since the diagram 〈u6, u1, u3〉 is elliptic, [u6, u1] ≤ 3. On the other hand,
L2 = 〈u1, u2, u6〉 is a Lannér diagram, so [u6, u2] ≥ 7. This implies that 〈u6, u2, u3〉 is a
Lannér diagram, which is impossible.

Diagram (4b). Since the diagram 〈u6, u2, u3, u4〉 is elliptic, [u6, u2] ≤ 3. Hence, [u6, u1] ≥
7, and 〈u6, u1, u3〉 is a Lannér diagram. This contradiction completes the proof of the
lemma.

Lemma 4.15. There are exactly eight compact hyperbolic Coxeter 4-polytopes with 7 facets
with Gale diagram G12121. Their Coxeter diagrams are shown in the bottom of the second
part of Table 4.11.

Proof. Let P be a hyperbolic Coxeter polytope with Gale diagram G12121. The Coxeter
diagram Σ of P contains two Lannér diagrams L1 = 〈u1, u2, u3〉 and L2 = 〈u3, u4, u5〉
of order 3, a dotted edge u6u7, and other two Lannér diagrams L3 = 〈u1, u2, u6〉 and
L4 = 〈u7, u4, u5〉 of order 3. Any subdiagram of Σ containing none of these five diagrams
is elliptic. Since L3 and L4 are connected, we may assume that u6 attaches to u2, and u7

attaches to u5.
Consider the diagram Σ′ = 〈L3, L1, L2〉 = Σ \ u7. Clearly, the only multi-multiple

edges that may appear in Σ′ are u1u2, u6u2, u6u1, and u4u5.
At first, suppose that the edge u6u2 is multi-multiple. Then 〈u6, u2〉 is not joined with

〈u3, u4, u5〉 = L2. In particular, [u2, u3] = 2, so [u1, u3] 6= 2. Thus, [u6, u1] is also equal
to 2. Furthermore, since diagrams 〈u1, u3, u4〉 and 〈u1, u3, u5〉 are elliptic, [u3, u4], [u3, u5]
and [u1, u3] ≤ 5. Therefore, since 〈u1, u2, u3〉 = L1 is a Lannér diagram, [u1, u2] ≥ 4. Now
suppose that [u1, u4] 6= 2. Then [u3, u4] = 2, so [u4, u5] ≥ 4, and the diagram 〈u2, u1, u4, u5〉
is not elliptic, which is impossible. The contradiction shows that [u1, u4] = 2. Similarly,
[u1, u5] = 2. Consequently, the diagram Σ′ looks like the diagram shown in Fig. 4.11, where
m45 = [u4, u5]. Now we may apply Prop. 3.2: det(L3, u1) det(L2, u3) = cos2(π/m13), where
m13 = [u1, u3]. Notice that since [u1, u2] ≥ 4 and [u2, u6] ≥ 6, we have | det(L3, u1)| ≥
|D (2, 4, 6)| = 1.

If m13 = 4 or 5, we obtain that [u3, u4], [u3, u5] ≤ 3, which implies [u4, u5] = 7 in
view of | det(L2, u3)| ≤ cos2(π/m13). Thus, | det(L2, u3)| ≥ |D (2, 3, 7)|. This implies
that | det(L3, u1)| ≤ cos2(π/5)/|D (2, 3, 7)|. An easy calculation shows that in this case
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Figure 4.11: A diagram Σ′, see Lemma 4.15

[u2, u6] ≤ 7, [u2, u1] ≤ 6. Then we check the finite (small) number of possibilities for Σ′

and see that none of them has determinant equal to zero.
If m13 = 3, then [u2, u1] ≤ 7. Therefore, | det(L3, u1)| ≥ |D (2, 6, 7)|. Hence,

| det(L2, u3)| ≤ cos2(π/3)/|D (2, 6, 7)|, but such L2 does not exist.
The contradiction shows that the edge u6u2 is not multi-multiple. Similarly, the edges

u6u1, u7u5, and u7u4 of Σ are not multi-multiple either. Thus, the only edges that may
be multi-multiple in Σ are u4u5 and u1u2.

Consider again the diagram Σ′ and suppose that the diagram 〈u4, u5〉 is not joined
with 〈u1, u2, u6〉. In particular, this holds if at least one of the edges u4u5 and u1u2 is
multi-multiple. We may apply Prop. 3.1:

det(〈L3, L1〉, u3) + det(L2, u3) = 1.

By definition,
det(〈L3, L1〉, u3) = det〈L3, L1〉/ det(L3).

We use a very rough bound: | det〈L3, L1〉| < 16 since it is a determinant of a 4× 4 matrix
with entries between −1 and 1, and | det(L3)| ≥ |3/4 − cos2(π/7)| = | det(L2,3,7)|, since
det(L2,3,7) is maximal among all determinants of Lannér diagrams of order 3. This bound
implies

| det(L2, u3)| ≤ 1 + | det(〈L3, L1〉, u3)| ≤ 1 +
16

|3/4 − cos2(π/7)| < 261.

Now an easy computation shows that [u4, u5] ≤ 101. Considering a diagram Σ′′ =
〈L1, L2, L4〉 = Σ \ u6 in a similar way, we obtain that [u1, u2] ≤ 101, too, and we are
left with a finite number of possibilities for Σ′ (and for Σ′′). We list all diagrams L2 (less
that 1000 possibilities) and all possible diagrams 〈L3, L1〉 (less that 10000 possibilities),
and find all pairs such that det(〈L3, L1〉, u3) + det(L2, u3) = 1, there are about 50 such
pairs. Therefore, we obtain a complete list of possibilities for Σ′ (and for Σ′′). Then we
look for unordered pairs (Σ′,Σ′′), such that the diagrams coincide on their intersection,
i.e. a subdiagram 〈L1, L2〉 ⊂ Σ′ coincides with a subdiagram 〈L1, L2〉 ⊂ Σ′′. There are
only 8 such pairs, all them give rise to Coxeter diagrams of Coxeter polytopes. The dia-
grams are shown in the bottom of the second part of Table 4.11. The weight of the dotted
edge is equal to

√
2 cos(π/8) for the two last diagrams, is equal to (

√
5 + 1)/2 for the

three diagrams in the second row from the bottom, and is equal to 1 +
√

2 for the three
diagrams in the third row from the bottom.
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Now suppose that the diagram 〈u4, u5〉 is joined with 〈u1, u2, u6〉. This implies that Σ
does not contain multi-multiple edges, so we have a finite number of possibilities for the
diagrams Σ′ and Σ′′. A computation shows that we do not obtain any polytope in this
way.

The result of the considerations above is presented below. Recall that there are no
7-dimensional polytopes with 10 facets.

Table 4.8: 8-dimensional polytope with 11 facets
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Table 4.9: 6-dimensional polytopes with 9 facets
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Table 4.10: 5-dimensional polytopes with 8 facets
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Table 4.11: 4-dimensional polytopes with 7 facets
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Table 4.11: Cont.
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[P] H. Poincaré, Théorie des groups fuchsiennes. Acta Math. 1 (1882), 1–62.

[V1] E. B. Vinberg, The absence of crystallographic groups of reflections in Lobachevsky
spaces of large dimensions. Trans. Moscow Math. Soc. 47 (1985), 75–112.

[V2] E. B. Vinberg, Hyperbolic reflection groups. Russian Math. Surveys 40 (1985), 31–75.

the electronic journal of combinatorics 14 (2007), #R69 36


