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Abstract

Let F4 be the root system associated with the 24-cell, and let M(F4) be the
simple linear dependence matroid corresponding to this root system. We determine
the automorphism group of this matroid and compare it to the Coxeter group W for
the root system. We find non-geometric automorphisms that preserve the matroid
but not the root system.

1 Introduction

Given a finite set of vectors in Euclidean space, we consider the linear dependence matroid
of the set, where dependences are taken over the reals. When the original set of vectors
has ‘nice’ symmetry, it makes sense to compare the geometric symmetry (the Coxeter

or Weyl group) with the group that preserves sets of linearly independent vectors. This
latter group is precisely the automorphism group of the linear matroid determined by the
given vectors.

∗Research supported by NSF grant DMS-055282.
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For the root systems An and Bn, matroid automorphisms do not give any additional
symmetry [4]. One can interpret these results in the following way: combinatorial sym-
metry (preserving dependence) and geometric symmetry (via isometries of the ambient
Euclidean space) are essentially the same. In contrast to these root systems, the root
system associated with the icosahedron (usually denoted H3) does possess matroid au-
tomorphisms that do not correspond to any geometric symmetries [3]. We can interpret
this as follows: it is possible to map the vectors of H3 to themselves so that all linear
dependences are preserved, but angles between vectors are not.

Figure 1: The 24-cell.

In this paper, we study the root system F4. This root system can be defined in at
least two equivalent ways. F4 is the collection of 48 vectors in R4 normal to the 24 mirror
hyperplanes of the 24-cell, a 4-dimensional regular solid whose 24 facets are 3-dimensional
octahedra (see Figure 1). Alternatively, we can view the roots as the vectors of the lattice
D4 of squared lengths 1 and 2. This latter viewpoint will be more useful for us. The
Coxeter group W for this root system (which is also the symmetry group of the 24-cell)
has order 1152 and factors as a semidirect product: W ∼= (Z3

2 o S4) o S3. Much more
information can be found in [5] and [6].

In one respect, computing the automorphisms of the matroid M(F4) (or any given
matroid) is ‘automatic.’ The matroid M(F4) is the column dependence matroid of a
4 × 24 matrix with entries 0,±1 (the 24 vectors are described below). Thus, feeding
the matrix to a computer program should determine the possible permutations of the
columns that preserve all linearly dependent sets. This subset (of the symmetric group
S24) is necessarily isomorphic to our matroid automorphism group. Such an approach will
not explain the structure of the group, however, or how it relates to the geometry of the
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Coxeter group W . It is also unclear how much computation such a computer program
would require; it is obviously not feasible to search through all 24! possible permutations.

As is the case in any comparison of the combinatorial and geometric groups, it is clear
that any geometric symmetry of the 24-cell will preserve the dependence or independence
of any subset of the 24 normal vectors that comprise the matroid M(F4). Further, since
central inversion in W corresponds to the identity operation in the matroid automorphism
group, which we denote Aut(M(F4)), we have a 2-to-1 map from W to Aut(M(F4)).

Our main theorem, Theorem 3.8, computes the structure of the automorphism group
Aut(M(F4)):

Theorem 3.8. Aut(M(F4)) ∼= ((Z3
2 o S4) o Z3) o Z2.

As with the root system H3, there are matroid automorphisms that cannot be realized
‘geometrially’ in the sense that no element of the Coxeter group W corresponds to these
automorphisms. These non-geometric automorphisms correspond to swapping the short
and long vectors in the root system.

The paper is organized as follows: Section 2 defines the matroid M(F4) and introduces
a graphic way to represent the rank 2 flats of the matroid. Section 3 computes the matroid
automorphism group (after a series of lemmas), and a schematic interpretation of the
connection between the two groups is given in section 4.

We thank Derek Smith for very useful discussions on the relationship between F4 and
the D4 lattice.

2 The matroid M(F4).

We refer the reader to the first chapter of [7] for an introduction to matroids. We define
the matroid M(F4) through the root system F4, which we briefly recall now.

Let ei be the ith basis vector in <4. The root system F4 consists of 48 vectors in <4

which can partitioned into 24 short vectors and 24 long vectors:

• Short vectors: ±ei, (±e1 ± e2 ± e3 ± e4)/2

• Long vectors: ±ei ± ej(i < j).

The short vectors have squared length 1, while the long vectors have squared length
2. Note that if v is a root, then so is −v. From the matroid viewpoint, the vectors v and
−v correspond to a multiple point. To define a (linear) matroid from this root system,
we remove one vector from each of the 24 {v,−v} pairs. (The 224 ways to do this all
give the same matroid.) Equivalently, we could define M(F4) to be the simplification of
the matroid formed by all 48 of the roots of F4. Additionally, we can rescale the vectors
without changing the matroid.

For the remainder of this paper, we form M(F4) as a linear dependence matroid over
Q by choosing 24 roots, with labels, as follows:

• For 1 ≤ i < j ≤ 4, let a+

ij and a−

ij denote the vectors ei + ej and ei − ej, resp.
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• The vectors ei are selected.

• Let fi =
∑

4

k=1
ek − 2ei.

• Let g1 =
∑

4

k=1
ek.

• Let g2 = e1 + e2 − e3 − e4.

• Let g3 = e1 − e2 + e3 − e4.

• Let g4 = e1 − e2 − e3 + e4.

Equivalently, M(F4) is the matroid on the central hyperplane arrangement formed by
the 24 3-dimensional hyperplanes v · x = 0, where v ranges over the 24 vectors described
above and x = 〈x1, x2, x3, x4〉. (These are precisely the 24 hyperplanes of symmetry for
the 24-cell.)

Thus, M(F4) is a (vector) matroid on 24 points with ground set {a+

ij, a
−

ij, ek, fl, gm}
for appropriate values of the indices. For convenience, it will be useful to partition the 24
points of M(F4) into two classes A and B:

• A = {a±

ij} for 1 ≤ i < j ≤ 4;

• B = {ei, fj, gk} for 1 ≤ i, j, k ≤ 4.

We further partition A and B each into three blocks as follows:

• E ′ = {a+

12, a
−

12, a
+

34, a
−

34};

• F ′ = {a+

13, a
−

13, a
+

24, a
−

24};

• G′ = {a+

14, a
−

14, a
+

23, a
−

23};

• E = {e1, . . . , e4};

• F = {f1, . . . , f4};

• G = {g1, . . . , g4}.

Then A = E ′ ∪ F ′ ∪ G′ and B = E ∪ F ∪ G.

The rank 2 flats of M(F4)

We will analyze the set of all matroid automorphisms of M(F4) by concentrating on its
rank 2 flats.

The proof of the next proposition is straightforward.

Proposition 2.1. Suppose L is a rank 2 flat in M(F4) with |L| > 2. Then |L| = 3 or 4.
In particular, we have the following:
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1. If |L| = 3, then either L ⊂ A or L ⊂ B. Further,

• 3-point lines in A: L has the form {ar
ij, a

s
jk, a

t
ik} for some 1 ≤ i < j < k ≤ 4

and for signs r, s and t, where rst = −1.

• 3-point lines in B: Every 3-point line has the form {ei, fj, gk} for some 1 ≤
i, j, k ≤ 4.

2. If |L| = 4, then |L ∩ A| = |L ∩ B| = 2. Further, both points in L ∩ A are in the

same block of the partition A = E ′ ∪ F ′ ∪ G′, and both points in L ∩ B are in the

same block of the partition B = E ∪ F ∪ G.

Each point is in four 3-point lines, giving a total of 32 3-point lines in the matroid.
Half of these lines are entirely contained in A and the other half are contained in B. For
example, the point e1 is in the following 3-point lines:

{e1, f1, g1}, {e1, f2, g2}, {e1, f3, g3}, {e1, f4, g4}.

The 3-point lines containing a+

12 are

{a+

12, a
+

23, a
−

13}, {a
+

12, a
−

23, a
+

13}, {a
+

12, a
+

14, a
−

24}, {a
+

12, a
−

14, a
+

24}.

There are a total of 18 4-point lines in M(F4), with each point in precisely three such
lines. For example, the point e1 is in

{e1, e2, a
+

12, a
−

12}, {e1, e3, a
+

13, a
−

13}, {e1, e4, a
+

14, a
−

14}.

Motivated by the treatment of signed graphs and matroid automorphisms in [4], we
represent the 4-point line incidence structure in M(F4) via the labeled graph Γ of Figure 2.

We point out an asymmetry in Γ: Each of the 12 points of B appears exactly once
(as a vertex of one of the components), but each point of A appears three times (once as
an edge in each of the three components E, F and G). Then in the labeled graph Γ, each
4-point line is represented as a pair of parallel edges, together with its two endpoints. For
instance, {f2, f4, a

+

13, a
−

24} appears as one of the diagonals in the F component of Γ. (We
could avoid the vertex-edge mixing by placing a loop at each vertex with label equal to
its vertex label.)

It is also possible to define an ‘inside out’ version of Γ, which we call Γ′. This graph
is isomorphic to Γ, but has vertex labels from A and edge labels from B. Further, the
partition A = E ′ ∪ F ′ ∪G′ is the corresponding vertex partition of Γ′. We will refer to Γ′

in describing certain automorphisms of the matroid.
It is easy to read off all of the 4-point lines of the matroid (there are 18 such lines) from

Γ (or, equally well, from Γ′). In addition, it is easy to see the 16 3-point lines contained
in A: these correspond to triangles in one of the components E, F or G in which there
are an odd number of − labels selected (these are the balanced circles of [8] with signs
reversed). Each such 3-point line appears exactly once in each of the three components.

We remark that the matroid M(F4) has 96 2-point lines – each point is contained
in six such lines. Each 2-point line consists of one point from A and one from B. It is
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Figure 2: The graph Γ represents the 4-point lines of M(F4).

possible to see these lines in the graph Γ: they consist of a vertex and an edge from the
same component where the vertex is not incident to the edge.

There are 24 flats of rank 3, each of which contains 9 points. Half of these flats are
visible in Γ and the other half can be seen in Γ′. In Γ, these flats consist of 3 points from
A and 6 from B (this is reversed in Γ′) and are formed by removing one vertex and all
the edges incident to that vertex in one of the three components E, F or G. These flats
are all isomorphic to the matroid associated with the 3-dimensional cube from [4]. See
Figure 3 for a geometric representation of this flat.

It is clear that any automorphism of M(F4) induces some permutation of the 18 4-point
lines. We will determine the full matroid automorphism group as follows:

1. Determine precisely which permutations of these 18 lines can occur;

2. Show how these permutations correspond to graph automorphisms of Γ;

3. Prove that these permutations completely determine the entire matroid automor-
phism.
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Figure 3: One of the 24 9-point rank 3 flats of M(F4).

The full automorphism group is computed in the next section.

3 Automorphisms of the matroid M(F4)

In this section we determine the automorphism group Aut(M(F4)). The proof will follow
several lemmas that determine the structure of various subgroups of Aut(M(F4)). We
begin with a lemma that reduces matroid automorphisms to labeled graph automorphisms
of Γ. Recall the partition of the ground set of M(F4) into A and B: A = {a±

ij} and
B = {ei, fj, gk}.

Lemma 3.1. Let σ ∈ Aut(M(F4)) be an automorphism of M(F4), and let b ∈ B. If

σ(b) ∈ B, then σ is an automorphism of Γ.

Proof. We must show that σ respects the incidences of Γ, i.e., that σ maps A to A, and
also permutes the three blocks E, F, G.

We may suppose σ(e1) ∈ B (the argument is identical for any element in B). Then,
since σ preserves all flats of M(F4), we have {σ(e1), σ(f1), σ(g1)} is a 3-point line of
M(F4). By Proposition 2.1, this forces both σ(f1) ∈ B and σ(g1) ∈ B. Moreover, we can
apply the same argument to the other three 3-point lines containing e1 to get σ(fi) ∈ B
and σ(gj) ∈ B for all 1 ≤ i, j ≤ 4.

Now choosing b = f1 (say) and repeating the above argument forces ei ∈ B for
i = 2, 3, 4. Thus, the vertices of Γ are mapped to vertices by σ. For σ to be a labeled graph
automorphism, we must also show that adjacent vertices of Γ are mapped to adjacent
vertices. But, by Proposition 2.1, there are no 4-point lines in M(F4) which contain
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points corresponding to vertices in different components of Γ, i.e., there are no 4-point
lines of the form {ei, fj, x, y}. Thus, if σ(e1) = fi for some i, then σ(e2) = fj for some
j 6= i since the 4-point line containing e1 and e2 is preserved by σ. This shows that σ
permutes the three vertex blocks E, F, G.

Since we now have σ(b) ∈ B for all b ∈ B, we know σ(a) ∈ A for all a ∈ A (since σ is
a bijection). To finish the proof, we must show that all of the adjacencies are preserved
in the induced edge mapping on Γ. But the vertex-edge incidence of Γ precisely matches
the 4-point lines of the matroid, which σ must preserve.

Thus, σ is a labeled graph automorphism of Γ.

Since the 2-point lines and the rank 3 flats are also easy to recover from Γ, Lemma
3.1 shows that any permutation of the graph Γ gives a matroid automorphism. Thus,
determination of matroid automorphisms essentially will be reduced to finding the auto-
morphisms of the labeled graph Γ. We note that the hypothesis σ(b) ∈ B for some b ∈ B
could be replaced by σ(a) ∈ A for some a ∈ A. In fact, the proof of Lemma 3.1 shows any
automorphism of the matroid either fixes the sets A and B or swaps them (although we
have not yet shown that there are automorphisms that do swap these sets – see Lemma
3.6).

Lemma 3.2. Let H1 ≤ Aut(M(F4)) be those automorphisms that map E to itself and

preserve the signs of all a ∈ A. Then H1
∼= S4.

Proof. First note that S4 ≤ H1 : If σi is the map that swaps e1 and ei (for i > 1), then
each σi is a product of 7 transpositions:

σ2 = (e1e2)(f1f2)(g3g4)(a
+

13a
+

23)(a
−

13a
−

23)(a
+

14a
+

24)(a
−

14a
−

24)

σ3 = (e1e3)(f1f3)(g2g4)(a
+

12a
+

23)(a
−

12a
−

23)(a
+

14a
+

34)(a
−

14a
−

34)

σ4 = (e1e4)(f1f4)(g2g3)(a
+

12a
+

24)(a
−

12a
−

24)(a
+

13a
+

34)(a
−

13a
−

34)

Thus each σi ∈ H1 and it is clear {σ2, σ3, σ4} generate a group isomorphic to S4.
Conversely, the action of any σ ∈ H1 on E uniquely determines its action on all of

A (this follows from the incidence structure of the E component of Γ since σ preserves
the signs in A), which, in turn, uniquely determines its action on F and G (by using the
incidence structure of the F and G components of Γ, resp.). Thus, each permutation of
{e1, . . . , e4} determines a unique σ ∈ H1. Thus, H1

∼= S4.

We now examine the subgroup of Aut(M(F4)) that allows sign changes in A. The
proof is similar to the relevant portions of the proofs of Proposition 4.5(3) and Theorem
4.6(3) of [4].

Lemma 3.3. Let H2 ≤ Aut(M(F4)) be those automorphisms σ that fix E pointwise, i.e.,

if σ ∈ H2, then σ(ei) = ei for 1 ≤ i ≤ 4. Then H2
∼= Z3

2.
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Proof. Since σ is the identity on E and 4-point lines are preserved, the only allowable
permutations on A are those that swap a+

ij and a−

ij. In order to preserve the 3-point lines
in the E component of Γ, we must preserve the sign parity of each cycle in the graph.
Then Proposition 4.5(3) of [4] gives the following:

Let S be a collection of edges in the E component of Γ which have been swapped
a+

ij ↔ a−

ij by some σ ∈ H2. Then S forms a cutset in Γ.

Then H2 is generated by the three elementary vertex cutsets, which we list below:

τ1 = (a+

12a
−

12)(a
+

13a
−

13)(a
+

14a
−

14)(f1g1)(f2g2)(f3g3)(f4g4)

τ2 = (a+

12a
−

12)(a
+

23a
−

23)(a
+

24a
−

24)(f1g2)(f2g1)(f3g4)(f4g3)

τ3 = (a+

13a
−

13)(a
+

23a
−

23)(a
+

34a
−

34)(f1g3)(f2g4)(f3g1)(f4g2)

New cutsets generated by these are formed by taking the symmetric difference of
cutsets. This corresponds precisely to the group operation in the abelian group Z3

2.

Lemma 3.4. Let H be the automorphisms that map A to A and B to B, and let H3 be

the subgroup of automorphisms that map E to itself. Then

1. H3
∼= Z3

2 o S4;

2. H3 / H;

3. H/H3
∼= Z3.

Proof.

1. H3 is the automorphism group of the matroid associated with the 4-dimensional
hypercube. It follows that H3

∼= Z3
2 o S4 by Theorem 4.6(3) of [4].

2. By part (1), we have H3
∼= H2 o H1, the subgroups of Lemmas 3.2 and 3.3. We

will show that conjugation of any element of H3 remains in H3 by conjugating the
generators of H1 and H2. Now H1 is generated by σ2, σ3, σ4 from the proof of Lemma
3.2. Suppose π maps E to F (say); then πσiπ

−1 is the permutation obtained from
σi by applying the substitution rules from π. But σi fixes F and G (in addition to
E), so πσiπ

−1 must fix E (and F and G, as well).

For H2, which is generated by τ1, τ2, τ3 from the proof of Lemma 3.3, note that
πτiπ

−1 will fix E pointwise (since E is fixed pointwise by each τi).

3. Evidently, there are three cosets of H3 in H: H3, πfH3 and πgH3, where πf is any
automorphism mapping E to F and πg is any automorphism mapping E to G.
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Collecting the results of the preceding lemmas gives the next result.

Lemma 3.5. Let H be the automorphisms that map A to A and B to B. Then

H ∼=
(

Z3

2 o S4

)

o Z3.

There are automorphisms of M(F4) that swap the vectors of A and B. We give one
such automorphism now.

Lemma 3.6. Let σ be the following permutation of the 24 points of M(F4):

σ = (e1a
+

12)(e2a
−

12)(e3a
+

34)(e4a
−

34) (f1a
−

23)(f2a
+

23)(f3a
−

14)(f4a
+

14)
(g1a

+

13)(g2a
−

13)(g3a
+

24)(g4a
−

24).

Then σ ∈ Aut(M(F4)).

Proving the lemma involves showing that all of the 3- and 4-point lines are preserved
by σ. For example, the 3-point line {e3, f2, g4} is mapped to the line {a+

34, a
+

23, a
−

24} and the
4-point line {e2, e3, a

+

23, a
−

23} is mapped to {f1, f2, a
−

12, a
+

34} by σ. The induced map swaps
the 32 3-point lines (each of the 16 3-point lines of A is paired with a 3-point line of B),
while, for the 4-point lines, σ swaps 14 lines and fixes the remaining four. We leave the
remaining details (which are entirely routine) to the reader.

Before we determine the structure of the automorphism group Aut(M(F4)), we deter-
mine its size.

Lemma 3.7. |Aut(M(F4))| = 1152.

Proof. Combining Lemmas 3.5 and 3.6 allows us to map e1 to any of the 24 elements of
M(F4), i.e., Aut(M(F4)) is transitive. Let φ ∈ Aut(M(F4)). Then φ(e1), φ(e2), φ(e3) and
φ(e4) are in the same block of the partition E∪F∪G∪E ′∪F ′∪G′, so we have 24 choices for
φ(e1), 3 choices for φ(e2), 2 choices for φ(e3) and one choice for φ(e4). This gives a total of
192 automorphisms. (We can view this operation graphically by sending the E component
of Γ to one of the six components of Γ∪ Γ′, then permuting {φ(e1), φ(e2), φ(e3), φ(e4)} in
4! ways.)

Once φ has mapped the E block to some block of the partition, by Lemma 3.3, we
have 8 possible ways to arrange the 12 elements which comprise the edges of that block
(in either Γ or Γ′). These 8 choices do not affect φ(ei) for 1 ≤ i ≤ 4, so this gives a total
of 192 × 8 = 1152 automorphisms.

It remains to show that the choices made now completely determine φ. But this follows
from Lemmas 3.2 and 3.3.

Theorem 3.8. Aut(M(F4)) ∼= ((Z3
2 o S4) o Z3) o Z2.

Proof. Let φ ∈ Aut(M4)). If φ maps A to A and B to B, then φ ∈ H, where H is the
subgroup of Lemma 3.5; if φ swaps the elements of A and B, then it is clear that φ = hσ
for σ from Lemma 3.6 and for some h ∈ H, and this decomposition is unique. Thus H
is a subgroup of Aut(M(F4)) of index 2, so H / G, and Aut(M(F4)) ∼= H o {e, σ}. The
result now follows from Lemma 3.5.
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4 Geometry and matroid automorphisms

This section will develop the connections between the geometry and the matroid maps.
In particular, we will interpret the matroid operations geometrically, including the map
that swaps A and B in the matroid.

The Weyl or Coxeter groups corresponding to irreducible root systems are very well-
studied, primarily because of their deep connections to Lie algebra. For the root system
F4, this group can be decomposed in different ways (which is typical when decomposition
involves semidirect products). Following [6] (see p. 45), we have the following.

Theorem 4.1. Let W be the Weyl group of symmetries of the root system F4. Then

W ∼=
(

Z3

2 o S4

)

o S3.

The factor Z3
2 o S4 can be interpreted as the symmetry group of the root system

D4, which consists of the vectors of the form ±B, i.e., the vectors {±ei,±fj,±gk}. It is
possible to interpret this subgroup geometrically: Z3

2 o S4 is the subgroup of the group of
symmetries of a 4-dimensional hypercube (the hyperoctahedral group) formed by removing
the reflecting hyperplanes with normal vectors ±ei for 1 ≤ i ≤ 4. The remaining factor of
S3 can be interpreted as the symmetries of the Coxeter-Dynkin diagram for F4, which is
a tree with 3 vertices adjacent to a single, central vertex.

Alternatively, we can understand the root system through the D4 lattice (see [1]).
The vectors that comprise this lattice can be written as quaternions, and the lattice is
called the ‘Hurwitz integral quaternions.’ Each vector in the D4 lattice has the form
a + bi + cj + dk where a, b, c, d are either all integers or all half-integers. This lattice is
of special interest since it gives the densest lattice sphere-packing in 4 dimensions, where
each sphere is centered at a lattice point and has 24 neighbors. To obtain D4 from the
root system F4, take all integer linear combinations of the vectors in F4. Much more
information on this lattice and these connections can be found in [1].

Figure 4: Schematic representation of Coxeter group W and Aut(M(F4)).

For our purposes, note that both W and Aut(M(F4)) have 1152 elements. Every
isometry of W corresponds to a matroid automorphism; moreover, since ±w give rise to
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the same matroid automorphisms, we have a 2-to-1 map from W to Aut(M(F4)). This
relationship is exactly the same as for the root systems Bn (see [4]) and H3 (see [3]). We
view these 576 matroid automorphisms as geometric operations.

It should be clear that the matroid automorphisms that correspond to geometric op-
erations (i.e., those elements of Aut(M(F4)) in the image of the 2-to-1 map from W ) are
precisely those automorphisms that map A to A and B to B. These are the D4-lattice
preserving maps.

The 576 non-geometric matroid automorphisms correspond to swaps between the short
and long vectors of F4. There are no isometries of W that switch these vectors (since
isometries preserve the length of the vectors), but the two sets of vectors have the same
dependence structure. In fact, the vectors of A and B each form their own 24-cells, and
the matroid maps that swap these two sets of vectors can be viewed as swapping the two
‘dual’ 24-cells. Alternatively, these maps swap two dual D4-lattices, one based on ±A
and the other on ±B.

The relation between the two groups is given schematically in Figure 4. A similar
relationship exists for the root system H3. Finally, we remark that it would be interest-
ing to extend this program of analyzing matroid automorphisms to the exceptional root
systems E6, E7, and E8.
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