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Abstract

The present paper continues the work begun by Anstee, Ferguson, Griggs and
Sali on small forbidden configurations. We define a matrix to be simple if it is a
(0,1)-matrix with no repeated columns. Let F be a k× l (0,1)-matrix (the forbidden
configuration). Assume A is an m×n simple matrix which has no submatrix which
is a row and column permutation of F . We define forb(m,F ) as the largest n, which
would depend on m and F , so that such an A exists. ‘Small’ refers to the size of
k and in this paper k = 2. For p ≤ q, we set Fpq to be the 2 × (p + q) matrix
with p

[1
0

]
’s and q

[0
1

]
’s. We give new exact values: forb(m,F0,4) = b5m

2 c + 2,
forb(m,F1,4) = b11m

4 c + 1, forb(m,F1,5) = b15m
4 c + 1, forb(m,F2,4) = b10m

3 − 4
3c

and forb(m,F2,5) = 4m (For forb(m,F1,4), forb(m,F1,5) we obtain equality only for
certain classes modulo 4). In addition we provide a surprising construction which
shows forb(m,Fpq) ≥

(p+q
2 + O(1)

)
m.

Keywords: forbidden configurations, extremal set theory, (0,1)-matrices.

1 Introduction

We define a simple matrix as a (0,1)-matrix with no repeated columns (such a matrix can
be viewed as the incidence matrix of a set system). We say A has a configuration F if
there is a submatrix of A which is a row and column permutation of F . Our problems
are of the following type: given a matrix F and an m × n simple matrix A which has
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no configuration F , determine an upper bound on n which would depend on m, F . We
denote the best possible upper bound as forb(m, F ). Alternatively, forb(m, F ) is the
smallest function so that if A is any simple m × (forb(m, F ) + 1) matrix, then A must
have the configuration F .

Definition 1.1 Let Kk denote the k × 2k simple matrix of all columns on k rows and let
Kr

k denote the k ×
(

k
r

)
simple matrix of all columns with r 1’s.

Thus K1
k is a copy of the identity matrix (after row and column permutations) and K0

k

is a column of k 0’s. Also Kr
k can be viewed as the complete r-uniform hypergraph on k

vertices. The problem of Forbidden Configurations is usually focused on F = Kk and the
problem of VC-dimension. A matrix A has VC-dimension k if it has a configuration Kk

and does not have a configuration Kk+1. A number of applications of VC-dimension exist
including to Geometry (e.g.[6]) and to computational learning theory (e.g.[5]). Another
related problem area is the investigation of forbidden patterns in (0,1)-matrices. The
problem here is to determine the maximum number of 1’s in a matrix given that the 1’s
do not form a certain pattern. A pattern can be given by a (0,1)-matrix and we say a
matrix A has a pattern P if there is a submatrix B of A of the same size as P that satisfies
B ≥ P . A number of problems are solved by Füredi and Hajnal in [4] and recently Tardos
[7] has made much further progress here. These problems unfortunately appear have little
direct connection with the problem of forbidden configurations. Configurations correspond
to induced submatrices where patterns correspond to non-induced submatrices.

This paper considers particular choices of configurations F namely Fpq defined, for
p ≤ q, as

Fpq =

[

p
︷ ︸︸ ︷

1 · · ·1
0 · · ·0

q
︷ ︸︸ ︷

0 · · ·0
1 · · ·1

]

These are deceptively simple cases that demonstrate the rich structure associated with
forbidden configurations. This paper establishes exact bounds for F0,4 in Theorem 2.1,
F1,4 in Theorem 2.4, F1,5 in Theorem 2.7, F2,4 in Theorem 3.14, F2,5 in Theorem 3.9 as
well as a new asymptotic construction for Fpq in Theorem 4.1, all listed in Table 1. Exact
bounds are the Holy Grail of Extremal Set Theory. The arguments are rather intricate,
making interesting use of graph theory. Our results establish that extremal matrices
have much of their structure forced which is not typical for many forbidden configuration
results. In [1] Anstee, Griggs and Sali established that forb(m, Fpq) was linear in m with
constants depending on p, q. In [3] Anstee, Ferguson and Sali established a number of
exact bounds.

Definition 1.2 Let Mm denote an m × bm
2
c simple matrix of columns each of two 1’s

each where no row has more than one 1.

Such a matrix can be viewed as a matching on the rows.

Definition 1.3 Given two matrices A, B we use the notation A−B to denote the matrix
obtained from A by deleting columns that are also in B.
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This is equivalent to a set difference.

Definition 1.4 Let #0′s(A), #1′s(A) to denote the number of 0’s and the number of 1’s
in A respectively.

We are trying to build a set of tools that would yield exact or asymptotic results for
all F , not just Fpq. It is interesting that the constructions for the exact bounds emphasize
different characteristics than that of the asymptotically excellent general construction.
From the point of view of proofs, transitivity (Lemma 1.7) is used heavily in the exact
bounds but is not known to follow for general Fpq. Our current state of knowledge of
forb(m, Fpq) is summarized in Table 1, which contains results from [1],[3] as well as results
from this paper.

Definition 1.5 Assume A is a simple matrix with no Fpq. Let Ri denote the ith row
of A. We construct a graphlike structure D(A) considering rows as vertices and having
directed edges i→j if the number of

[
0
1

]
’s in

[
Ri

Rj

]
≤ p − 1. We have dotted edges i ····· j if

the numbers of
[

0
1

]
’s and

[
1
0

]
’s in

[
Ri

Rj

]
are each chosen from {p, p + 1, . . . , q − 1}.

We follow the proof techniques of Theorem 2.8 in [3]. A more careful analysis of the
components formed by the ‘dotted’ edges is required but much of the same structure
is demonstrated. The proof of Theorem 3.9 fills in a few gaps in the original proof of
Theorem 2.8, Claim iv) for F2,3 in [3] where some extra comments would have made
things clearer.

We begin with a series of Lemmas used in our inductive arguments.

Lemma 1.6 Deletion Lemma. Assume we are trying to show that forb(m, Fpq) ≤
cm + c′. We may assume that we cannot delete k rows (k < m) and up to ck columns
and still have the resulting matrix Am−k be simple.

Proof: Assume A is an m×n simple matrix and Am−k is an (m− k)×n′ simple matrix.
Then by induction:

n ≤ n′ + ck ≤ c(m − k) + c′ + ck = cm + c′.
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Table 1

configuration F construction bound reference

[

q
︷ ︸︸ ︷

0 · · · 0
1 · · · 1

] ⌊
(q+1)m

2

⌋

+ 2
⌊

(q+1)m
2

+ (q−3)m
2(m−2)

⌋

+ 2 [3]
[
0
1

]

2 2 [3]
[
0 0
1 1

]

m + 2 m + 2 [3]
[
0 0 0
1 1 1

]

2m + 2 2m + 2 [3]
[
0 0 0 0
1 1 1 1

]
⌊

5m
2

⌋
+ 2

⌊
5m
2

⌋
+ 2 Thm. 2.1

[
1 0 0
0 1 1

]
⌊

3m
2

⌋
+ 1

⌊
3m
2

⌋
+ 1 [1]

[
1 0 0 0
0 1 1 1

]
⌊

7m
3

⌋
+ 1

⌊
7m
3

⌋
+ 1 [3]

[
1 0 0 0 0
0 1 1 1 1

]
⌊

11m
4

⌋
+ 1

⌊
11m

4

⌋
+ 1 Thm. 2.4

[
1 0 0 0 0 0
0 1 1 1 1 1

]
⌊

15m
4

⌋
+ 1

⌊
15m

4

⌋
+ 1 Thm. 2.7

[
1 1 0 0 0
0 0 1 1 1

]
⌊

8m
3

⌋ ⌊
8m
3

⌋
[3]

[
1 1 0 0 0 0
0 0 1 1 1 1

]
⌊

10m
3

− 4
3

⌋ ⌊
10m

3
− 4

3

⌋
Thm. 3.14

[
1 1 0 0 0 0 0
0 0 1 1 1 1 1

]

4m 4m Thm. 3.9

[

p
︷ ︸︸ ︷

1 · · · 1
0 · · · 0

q
︷ ︸︸ ︷

0 · · ·0
1 · · ·1

]

(p+q
2

+ O(1))m qm − q + 2 Thm. 4.1, [3]

[

p
︷ ︸︸ ︷

1 · · · 1
0 · · · 0

p
︷ ︸︸ ︷

0 · · ·0
1 · · ·1

]

pm − p + 2 pm − p + 2 [3]

Lemma 1.7 Transitivity Lemma. If we are trying to show forb(m, Fpq) ≤ cm+ c′, we
may assume that for an m-rowed matrix A with no configuration Fpq then D(A) has
(i) For c ≥ 2(p − 1), each pair of rows is connected by exactly one edge of D(A).
(ii) For c ≥ (2(p − 1) + (q − 1))/2, the graph on the directed edges of D(A) is transitive
and contains no cycles.

Proof: For part (i), it is clear that each pair i, j is joined by some edge: i → j, i ····· j, or
j → i. Our definition of i ····· j ensures that we do not have i → j or j → i. If i → j and
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j → i then we can delete row i and the up to 2(p − 1) columns non-constant on rows i, j
and obtain a simple (m− 1)-rowed matrix. Thus we are done by the Deletion Lemma 1.6
for

2(p − 1) ≤ c, (1)

which was the assumption.
For part (ii), to show the graph on the directed edges is transitive and contains no

cycles consider the case: i → j and j → k. We have the three possibilities:

(a) i
↗
.....

j
↓
k

, (b) i
↗
↖

j
↓
k

, and (c) i
↗
↘

j
↓
k

.

For cases (a) and (b) we look at the possible entries for these three rows. The entries
above the braces indicate the number of possible columns of these types.

i
j
k

≤p−1
︷ ︸︸ ︷

0 · · ·0 0 · · ·0
1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1

≤p−1
︷ ︸︸ ︷

0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0
1 · · ·1 1 · · ·1

≤q−1
︷ ︸︸ ︷

1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0

0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1

.

(in case (b), ≤ q − 1 would have been ≤ p − 1). We can eliminate the two rows i and
j and the at most 2(p − 1) + (q − 1) columns non-constant on rows i, j, k to produce a
simple matrix Am−2. But then for

2(p − 1) + (q − 1) ≤ 2c, (2)

which was the assumption, we are done by the Deletion Lemma 1.6. Thus we may
assume A can have (c) only. It is straightforward to deduce that the graph induced by
the directed edges must therefore be transitive and have no directed cycles.

Lemma 1.8 Ordering Lemma. If we are trying to show forb(m, Fpq) ≤ cm+c′ and the
directed edges of D(A) form a transitive graph with no pair x → y and y → x, then the
components formed by the dotted edges considered as an undirected graph, can be linearly
ordered so that if the components are C1, C2, C3, . . . , then for any i < j and any vertices
x ∈ Ci and y ∈ Cj there is a directed edge x → y.

Proof: We can verify this by showing that it is impossible to have directed edges u → v,
v → w with u, w ∈ Ci and v ∈ Cj. We deduce u 6= w by hypothesis and then we can
assume there is a shortest path of dotted edges (in Ci) joining u, w. But then for some
adjacent pair of vertices x, y ∈ Ci with x ····· y and yet x → v, v → y. This contradicts
transitivity.

With respect to the components and the ordering, the following definitions are given
for canonical with respect to Ci and hence non-canonical columns. Also t-varied columns
are defined which for t ≥ 1 are called varied columns and for t = 0 are called flat columns.
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Definition 1.9 Assume that the rows of A have been ordered to respect the ordering
from the Ordering Lemma 1.8. We say that a column of A is canonical with respect to a
component Ci if it has all 1’s on components Cj with j < i and all 0’s on components Cj

with j > i (i.e. all 1’s above and all 0’s below). Any other column which is non-constant
on Ci is non-canonical.

The following definition is first used in Section 3.

Definition 1.10 For a column α of A, define n(α) = t if there are exactly t components
Ci1 , Ci2, . . . , Cit with the column non-constant on Cij for each j with 1 ≤ j ≤ t. We say α
is t-varied when n(α) = t. Define a column to be flat if it is 0-varied and define a column
to be varied if it is t-varied for t ≥ 1.

The following bound (4) is equation (2) in the Appendix of [3].

Lemma 1.11 Upper Bound Lemma. Let B be a k × n (0,1)-matrix with no column
of all 1’s and no column of all 0’s. Assume B has no pair of rows which differ in more
than t columns i.e. B has at most t disjoint configurations F0,1 on the same pair of rows.
Then

n ≤
tk

2
. (3)

If B is simple and t ≥ 4 then

n ≤
⌊

2k +
(t − 4)k(k − 1)

4(k − 2)

⌋

. (4)

Proof: Each column contributes at least k − 1 configurations F0,1 in the k rows. More
than tk/2 of such columns would give more than tk(k − 1)/2 of the F0,1 configurations
in k(k − 1)/2 pairs of rows in B. One pair of rows would then contain more than t
configurations, a contradiction yielding (3).

If B is simple then we note there are at most 2k columns which have only k − 1
configurations, namely the columns with at most one 1 and the columns with at most one
0. All other columns have at least 2(k − 2) configurations F0,1. We deduce 2k(k − 1) +
(n − 2k)2(k − 2) ≤ tk(k − 1)/2 and so we obtain (4).

Note that if we wish to forbid, for example, the configuration F0,5 in a simple k × n
matrix B, then we can use t = 8 in (4) in the Upper Bound Lemma 1.11.

2 Exact Bounds for F0,4, F1,4 and F1,5

To handle F1,4, F2,4 we need the (unsurprising) bound for F0,4 that requires some care.

Theorem 2.1 For F0,4 =

[
0 0 0 0
1 1 1 1

]

,

forb(m, F0,4) =
⌊5m

2

⌋

+ 2 for m ≥ 4.

the electronic journal of combinatorics 14 (2007), #R79 6



Proof: To prove the lower bound forb(m, F0,4) ≥ b5m
2
c + 2 we use the construction

[K0
mK1

mMmKm−1
m Km

m ] for m ≥ 4.
To prove the upper bound forb(m, F0,4) ≤ b5m

2
c + 2, we appeal to the Upper Bound

Lemma 1.11 with t = 6 to obtain forb(m, F0,4) ≤ 2+2m+ m
2

+ m
2(m−2)

which yields equality
for m even and m ≥ 6. To improve this bound by 1 in the other cases we have a general
argument for m ≥ 6 as well as specific arguments for m = 4, 5.

Assume m is odd and m ≥ 7. Let A be an m × (2m + bm+1
2

c + 2) matrix with no
configuration F0,4. We wish to arrive at a contradiction. Let ai denote the number of
columns with either i 1’s or i 0’s for i = 1, 2 and let a3 be the number of remaining
columns. Following the Upper Bound Lemma 1.11,

6

(
m

2

)

= 3m(m − 1) ≥ (m − 1)a1 + 2(m − 2)a2 + 3(m − 3)a3,

where a1 ≤ 2m.
If a1 = 2m − 1, then a2 + a3 ≤ m+1

2
+ m+1

2(m−2)
(noting that 2(m − 2) ≤ 3(m − 3) for

m ≥ 5). Thus for m ≥ 7, we have a1 + a2 + a3 ≤ b5m
2
c + 2, a contradiction as desired.

Values of a1 < 2m − 1 can be ignored since m − 1 < 2m − 4 < 3m − 9 for m ≥ 7.
If a1 = 2m we compute 3m(m − 1) = 2m(m − 1) + m+1

2
2(m − 2) + 2. Thus with

3(m−3)−2(m−2) > 2 for m ≥ 9, we deduce that either a2 = m+1
2

and a3 = 0 (this must
be the case for m ≥ 9) or possibly m = 7 and a2 = 3 and a3 = 1. Assume that we are in
such a case. Note that A = [K0

mK1
mBKm−1

m Km
m ] where B is an m× m+1

2
matrix consisting

of columns of at least two 1’s and two 0’s. We deduce that B has no configuration F0,2

otherwise A would have F0,4. We may assume without loss of generality that A has the
first column with two 1’s in the top 2 rows and 0’s below (may need to reorder and to
complement A for this but we have a2 > 0). To avoid creating a configuration F0,2, we
must have all remaining columns have 0’s in the top 2 rows. Thus we could delete the top
two rows from B and the first column and get a new matrix B ′ with the same properties.
By an inductive argument we can assume B ′ has at most b (m−2)−1

2
c columns and then B

has at most bm−1
2

c columns, a contradiction.
To verify equality for m = 4, 5 requires finite checking. We can follow the above

argument for m = 4 when a1 = 8 and for m = 5 when a1 = 10. For m = 4, we can
verify a1 = 8. For m = 5, we may also have a1 = 9 and a2 = 4 and so assume this is
so. Consider a new graph formed only by the columns with two 1’s (think of the rows as
vertices and the columns as edges). We can find a copy of F0,4 and hence a contradiction
if two edges are incident on a row r unless the column of one 1 on row r is not present in
A. We can assume there are at least two edges (by complementing A if necessary). Thus
either we have two (not three) edges incident on row r and up to one additional edge
disjoint from these two edges (which means the column of one 1 on row r is not present
in A) or precisely two disjoint edges. In the former case there is only no way to add a
column of three 1’s. In the latter case a column with three 1’s must have exactly one 1
in the pair of rows of each edge and a 1 in the remaining row. But now there is no way
to have two such columns with three 1’s. Either case yields a contradiction.

We now have verified the bound for all cases.
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We now present new exact bounds for F1,4, F1,5 which focus on somewhat different
issues. Obtaining the exact bound for all m eludes us for F1,5.

Lemma 2.2 Let m be given. For m 6≡ 3(mod 4) and m ≥ 4 we have

forb(m, F1,4) ≥
⌊11m

4

⌋

+ 1.

For m ≡ 3(mod 4), we have

forb(m, F1,4) ≥
⌊11m

4

⌋

.

Proof: We provide a construction for Am, a simple m × b11m
4
c + 1 matrix which avoids

the configuration F1,4 for m ≥ 4 and m 6≡ 3(mod 4). The following construction creates
a simple matrix A with no F1,4 under the assumption that the smaller matrices have no
F1,4 so that the number of columns in A is the sum of the number of columns of Aa and
Ab minus 1. Assume a + b = m.

Am =

















Aa −








0 1
0 1
...

...
0 1








1′s

0′s Ab −








0 1
0 1
...

...
0 1








0 1 1
0 1 1
...

...
...

0 1 1
0 0 1
0 0 1
...

...
...

0 0 1

















. (5)

We can construct A4, A5, A6 as Ak = [K0
k K1

k Mk Kk−1
k Kk

k ] (see Definitions 1.1, 1.2).
Am can be constructed using (5) with b ∈ {4, 5, 6} and a = m − b ≡ 0(mod 4). For
m ≡ 3(mod 4), we choose A3 = K3 and we can take b = 3 and a = m − b ≡ 0(mod 4).

Hence, we have forb(m, F1,4) ≥ b11m
4
c + 1 for m ≥ 4 and m 6≡ 3(mod 4) and

forb(m, F1,4) ≥ b11m
4
c for m ≡ 3(mod 4).

We show forb(m, F1,4) ≤ 11m
4

+ 1 by induction. It is easily verified for m = 1, 2, 3, 4.
Assume m ≥ 5 and proceed by induction. Let A be a simple m × n matrix with no
configuration F1,4. We wish to show n ≤ 11m

4
+ 1.

We construct the structure D(A) of Definition 1.5.

Lemma 2.3 Our structure D(A) can be assumed to have the following properties.
(i) Each pair of rows is connected by exactly one edge, directed or dotted.
(ii) The graph on the directed edges is transitive and contains no cycles.
(iii) All components of the graph on the dotted edges are cliques of size at least 4.

Proof: In view of our bound 11m
4

+ 1 i.e. c = 11/4 with p = 1, q = 4, we have (i) and (ii)
by the Transitivity Lemma 1.7.
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As before, the components induced by the dotted edges can be ordered by the Ordering
Lemma 1.8. Reorder the rows of A (relabelling vertices of D(A)) to respect that order.
With p = 1, we have that for two rows x, y with x ∈ Ci and y ∈ Cj and i < j (in
the ordering), then x → y and so there is no submatrix x

y

[
0
1

]
as indicated on rows x, y.

We note that if there is a column non-constant on a component Ci, then such a column
is forced to be canonical with respect to Ci (see Definition 1.9). Thus if we consider a
component Ci on k vertices and let A′′ be the submatrix of A given by the k rows of
Ci there is no repeated non-constant column. Thus a column of A is either 1-varied or
is flat (a flat column can have different values on different components) with 1’s above
0’s. For a given component Ci on k vertices, consider the matrix A′ formed from A by
deleting the k rows corresponding to Ci. If two columns of A′ are identical then they
arise from two columns of A for which either: one of the columns is non-constant on Ci

or the two columns are both flat and have all 1’s on components above Ci and all 0’s on
components below and one column is all 0’s on Ci and one is all 1’s on Ci. Thus if we
have a component Ci on k vertices with h columns non-constant on Ci, then we can delete
the k rows and ≤ h + 1 columns to obtain a simple (m− k)-rowed matrix (deleting the h
columns non-constant on Ci and possibly one extra column constant on Ci and all 1’s on
components above Ci and all 0’s on components if that column is present) and so by the
Deletion Lemma 1.6 we are done if

h + 1

k
≤

11

4
. (6)

From this we can assume there are no components of size 1,2,3 since h ≤ 2k − 2 for any
k-rowed component.

It remains to show that each component in the graph of dotted edges is a clique.
Assume that C is a not a clique (in the dotted edge graph). We consider two cases.
Case 1. There is no pair of rows (i, j) of C which has the configuration F0,7.

Assume the component has k vertices and consider the k-rowed matrix formed from
the possible non-constant columns on these k rows. Let h be the number of columns non-
constant on C. Using the Upper Bound Lemma 1.11 with t = 6, the maximum number
of columns non-constant on the component is at most

⌊

2k +
2k(k − 1)

4(k − 2)

⌋

.

But then for k ≥ 6 and by (6), we are done. For k = 4 and k = 5 we must make more
detailed arguments to eliminate the possibility h = 11 for k = 4 and the possibility h = 13
for k = 5.

For k = 4 we deduce from the Upper Bound Lemma 1.11 proof that in order to have
11 non-constant columns we would need [K1

4 K3
4 ] and hence the component is a clique,

a contradiction. For k = 5 we deduce that in order to have 13 non-constant columns
we would need [K1

5 K4
5 ] and three columns each with either two or three 1’s or we have

nine columns chosen from [K1
5 K4

5 ] and four columns each with either two or three 1’s. In
either case, the component is a clique, a contradiction.
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Case 2. The rows of C contain the configuration F0,7.
Let i, j be two rows of C with the submatrix i

j

[
1
0

]
. We deduce that we do not have i ·····j

and so we may assume i → j and we have the submatrix i
j

[
1111111
0000000

]
. But now it is true

that for every other row s we have either i → s or s → j since there will either be four 0’s
in row s below the seven 1’s yielding i → s or four 1’s in row s below the seven 0’s yielding
s → j. Take the shortest path of dotted edges joining i, j say i = v1, v2, v3, ..., vr = j and
with va and va+1 joined by dotted edges for 1 ≤ a ≤ r − 1. Since either v1 → va or
va → vr, we deduce that r ≥ 4. One can verify using transitivity and the minimality of
the path that vs → vt if s + 1 < t. As a sample note that with r ≥ 4 then r − 1 6= 2 and
so either v1 → vr−1 or vr−1 → v1 (the path was a shortest path). The latter is forbidden
by v1 → vr and vr−1

····· vr and transitivity. Now we can write down the 2r − 2 possible
non-constant columns on the r rows v1, v2, . . . , vr:













a1
1 a0

2 a1
2 a0

3 a1
3 · · · a0

r−1 a1
r−1 a0

r

v1 0 1 1 1 1 · · · 1 1 1
v2 1 0 0 1 1 · · · 1 1 1
v3 0 0 1 0 0 · · · 1 1 1
v4 0 0 0 0 1 · · · 1 1 1

...
...

...
...

...
...

...
...

vr−1 0 0 0 0 0 · · · 0 0 1
vr 0 0 0 0 0 · · · 0 1 0













where ad
k refers to the number of columns with a 0 in row vk and a d in row vk+1 with 1’s

above and 0’s below. We verify using vs
····· vs+1 in the ordered set of rows v1, v2, . . . , vr

that
1 ≤ a1

s−1 + a0
s+1 + a1

s+1 ≤ 3 and 1 ≤ a1
s ≤ 3.

We may add up the inequalities a1
s−1 + a0

s+1 + a1
s+1 ≤ 3 to obtain

a1
1 + 2a1

2 + 2a1
3 + · · · 2a1

n−2 + a1
n−1 + a0

2 + a0
3 + · · ·+ a0

r ≤ 3(r − 1).

But using a1
s ≥ 1 for all possible s, yields

a1
1 + a1

2 + a1
3 + · · ·a1

r−2 + a1
r−1 + a0

2 + a0
3 + · · ·+ a0

r ≤ 2(r − 1) + 2.

Thus we can delete r − 1 rows and 2(r − 1) + 2 columns and obtain a simple matrix
which satisfies the Deletion Lemma 1.6 for r ≥ 4 meaning no such pair i, j exists. This
contradiction and the contradiction for Case 1 forces all components to be cliques and of
size at least 4, establishing (iii).

Theorem 2.4 For F1,4 =

[
1 0 0 0 0
0 1 1 1 1

]

, and for m 6≡ 3(mod 4) and m ≥ 4 we have

forb(m, F1,4) =
⌊11m

4

⌋

+ 1, (7)

the electronic journal of combinatorics 14 (2007), #R79 10



and for m ≡ 3(mod 4), we have

forb(m, F1,4) =
⌊11m

4

⌋

. (8)

Proof: In view of Lemma 2.2, we need only establish upper bounds for forb(m, F1,4).
Our proof first handles the cases for m 6≡ 3(mod 4) and then proves the bound for
m ≡ 3(mod 4). We begin by establishing the bound (7) for all m ≥ 3. By Lemma 2.3,
we know that the components of D(A) can be assumed to be cliques of size at least 4.

If a component of k vertices (k ≥ 4) is a clique, then in any pair of rows of the clique,
there is no configuration F0,4. We apply Theorem 2.1 to obtain the maximum number of
columns non-constant on the clique as b2k + k

2
c. Now with

max
{1

k

(⌊
2k +

k

2
+ 1

⌋)

: k ≥ 4
}

≤
11

4
,

we may use (6) to establish the bound. This proves (7) for all m.
We now establish (8) for m ≡ 3(mod 4) by induction on m using (7). We verify the

base case that for m = 3, that forb(3, F1,4) = 8 = b11·3
4
c. Now assume m ≡ 3(mod 4)

and m ≥ 7. When applying induction for m′ < m and m′ 6≡ 3(mod 4), we can only

use forb(m′, F1,4) ≤
⌊

11m′

4

⌋

+ 1 from (7) which complicates the induction. Adapting

the argument of the Deletion Lemma 1.6, we cannot delete k rows and up to 11
4
k − 1

columns from A and obtain a simple matrix with no F1,4. Adapting the argument of
the Transitivity Lemma 1.7 we must have 2(p − 1) ≤ 11

4
− 1 to establish the appropriate

version of (1) and we must have 2(p−1)+(q−1) ≤ 2( 11
4
)−1 to establish the appropriate

version of (2). Both are true and so we can establish the conclusions of the Transitivity
Lemma 1.7. The Ordering Lemma 1.8 follows as before. Reorder the rows of A to respect
this order.

We now consider the components. If there is only one component then the result
follows from the Upper Bound Lemma 1.11 with t = 6. In this case we obtain n ≤

b2m + 2m(m−1)
4(m−2)

c ≤
⌊

11m
4

⌋

for m ≥ 7 which is assumed above. If there are two or more

components with one of size a, then we deduce we must have a decomposition as in
(5) with a + b = m. If a ≡ 3(mod 4), we have b ≡ 0(mod 4) and obtain the bound
⌊

11a
4

⌋
− 2 +

(⌊
11b
4

⌋
+ 1

)
− 2 + 3 which yields the desired bound

⌊
11m

4

⌋

. If a ≡ 2(mod 4),

we have b ≡ 1(mod 4) and obtain the bound
(⌊

11a
4

⌋
+ 1

)
− 2 +

(⌊
11b
4

⌋
+ 1

)
− 2 + 3 which

yields the desired bound
⌊

11m
4

⌋

. The remaining two congruences for a follow in the same

way.

It would be nice to apply the above arguments in Theorem 3.9 or in Theorem 3.14 to
show that components are cliques. We cannot do so because we are using the stronger
bound (4) from the Upper Bound Lemma 1.11 rather than (3) as is used in those theorems.
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Lemma 2.5 For F1,5 =

[
1 0 0 0 0 0
0 1 1 1 1 1

]

,

forb(m, F1,5) ≥
⌊15m

4

⌋

+ 1 for m ≡ 0(mod 4) and m ≥ 4.

Proof: We provide a construction for Am, a simple m × b15m
4
c + 1 matrix which avoids

the configuration F1,5 for m ≥ 4 and m ≡ 0(mod 4). We can take A4 = K4. Am can be
constructed inductively as follows where m − k ≡ 0(mod 4):

Am =








Am−4 −






1
...
1




 1′s

0′s A4








. (9)

Hence, we have forb(m, F1,5) ≥ b15m
4
c + 1 for m ≥ 4 and m ≡ 0(mod 4).

We can construct suitable A5, A6, A7 as base cases and then use the construction (9)
but these constructions unfortunately miss the bound by a small constant (up to 3). The
analysis for the cases m 6≡ 0(mod 4) will require too much detail for this paper but would
follow in the spirit of the argument for Theorem 2.4 for the case m ≡ 3(mod 4).

We now show forb(m, F1,5) ≤
15m

4
+ 1 following the proof of Theorem 2.4. It is easily

verified for m = 1, 2, 3, 4. Assume m ≥ 5 and proceed by induction. Let A be a simple
m × n matrix with no configuration F1,5. We wish to show n ≤ 15m

4
+ 1.

Lemma 2.6 Our structure D(A) can be assumed to have the following properties.
(i) Each pair of rows is connected by exactly one edge, directed or dotted.
(ii) The graph on the directed edges is transitive and contains no cycles.
(iii) All components of the graph on the dotted edges are cliques of size at least 5.

Proof: In view of our bound 15m
4

+ 1 i.e. c = 15/4 with p = 1, q = 5, we have (i) and (ii)
by the Transitivity Lemma 1.7. As before, the components induced by the dotted edges
form components can be ordered by the Ordering Lemma 1.8. Reorder the rows of A to
respect that order. We proceed as in the proof of Lemma 2.3. With p = 1, we have that
for two rows x, y with x ∈ Ci and y ∈ Cj and i < j (in the ordering), then x → y and
so there is no submatrix x

y

[
0
1

]
as indicated on rows x, y. If we have a component Ci on

k vertices with h columns non-constant on Ci, then we can delete the k rows and h + 1
columns (one extra column may be required since there may be two columns, one with
all 0’s on Ci or all 1’s on Ci each canonical with respect to Ci (using Definition 1.9) and
have a simple (m − k)-rowed matrix and so by the Deletion Lemma 1.6 we are done if

h + 1

k
≤

15

4
. (10)

From this we can assume there are no components of size 1,2,3,4 using h ≤ 2k − 2.
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We wish to show that each component C on 5 or more vertices is a clique. Assume
that C is a not a clique (in the dotted edge graph)
Case 1. In the component C there is no pair of rows i, j which has the configuration
F0,9.

Note this is possible and still have i → j. Assume the component has k vertices and
consider the k-rowed matrix formed from the possible non-constant columns on these k
rows. Assume that any pair of rows i, j has at most 8 configurations

[
0
1

]
and so by the

Upper Bound Lemma 1.11, the maximum number of columns non-constant on C is
⌊

2k +
4k(k − 1)

4(k − 2)

⌋

.

But then for k ≥ 5 and by (10), we deduce that such a C does not occur and so Case 1
does not occur.
Case 2. In the component C there are two rows i, j which have at least 9 columns with
the configuration i

j

[
1
0

]
.

We deduce that we do not have i ····· j and so we may assume i → j and we have the
submatrix i

j

[
111111111
000000000

]
. But now it is true that for every other row s we have either i → s

or s → j since there will either be five 0’s in row s below the nine 1’s yielding i → s or five
1’s in row s below the nine 0’s yielding s → j. Following Lemma 2.3 we take the shortest
path of dotted edges joining i, j: i = v1, v2, v2, ..., vr = j and consider the 2r − 2 possible
non-constant columns on the r rows v1, v2, . . . , vr. Then we can delete r − 1 rows and
3(r − 1) + 2 columns and obtain a simple matrix which satisfies the Deletion Lemma 1.6
for r ≥ 4 meaning no such pair i, j exists and so Case 2 does not occur.

Thus components of size at least 5 are cliques. This establishes (iii).

Theorem 2.7 For F1,5 =

[
1 0 0 0 0 0
0 1 1 1 1 1

]

,

forb(m, F1,5) ≤
⌊15m

4

⌋

+ 1 with equality for m ≥ 4 and m ≡ 0(mod 4).

Proof: In view of Lemmas 2.5, 2.6, we need only establish the upper bound with the
graph on dotted edges from D(A) consisting of cliques of size at least 5. If a component
of k vertices (k ≥ 5) is a clique, then there are at most 8 configurations

[
0
1

]
in any

pair of rows and so by the Upper Bound Lemma 1.11, the maximum number of columns
non-constant on the clique is b2k + 4k(k−1

4(k−2)
c. Using

max
k : k≥5

1

k

⌊

2k +
4k(k − 1)

4(k − 2)
+ 1

⌋

≤
15

4
,

we establish the bound using (10).

It is frustrating that some of these arguments fail for F1,q for larger q. The argu-
ment given does not immediately show components are cliques for q ≥ 6. Our general
construction in the final section has clique components.
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3 Exact Bounds for F2,5 and F2,4

We begin with exact bounds for F2,5 followed by F2,4, the latter case being more difficult.
Both arguments are rather delicate, perhaps because there are a number of constructions
achieving the bounds.

Lemma 3.1 For F2,5 =

[
1 1 0 0 0 0 0
0 0 1 1 1 1 1

]

,

forb(m, F2,5) ≥ 4m for m = 4, 8 and m ≥ 11.

Proof: We provide constructions for Am, a simple m × 4m matrix which avoids the
configuration F2,5 for the specified values of m. We can take A4 = K4. Am can be
constructed inductively from Am−4 using

Am =














Am−4 1′s 1′s

0 1
...

...
0 1

0′s

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

1 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 1 0 1 0 1 0

1 1
1 1
1 1
1 1














. (11)

We need constructions for Am when m ≡ 1, 2, 3(mod 4). For two matrices A, B we
use the notation A − B given in Definition 1.3. If a + b + c = m, b ≥ 3, we can construct
Am recursively as follows:

Am =




















Aa −






0 1
...

...
0 1




 1′s 1′s 1′s 0′s 1′s

1 1 1 0
...

...
...

...
1 1 1 0

0′s 1′s K1
b Kb−1

b K1
b Kb−1

b

1 1 0 0
...

...
...

...
1 1 0 0

0′s Ac −






0 1
...

...
0 1




 0′s 0′s 0′s 1′s

1 0 0 0
...

...
...

...
1 0 0 0




















. (12)

Hence, we have forb(m, F2,5) ≥ 4m for m = 4, 8 and m ≥ 11 (e.g. using a = c = 4).
We show forb(m, F2,5) ≤ 4m by induction. It is true for m = 1, 2, 3, 4. Assume m ≥ 5

and proceed by induction. Let A be a simple m × n matrix with no configuration F2,5.
We wish to show n ≤ 4m.
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Lemma 3.2 Our structure D(A) can be assumed to have the following properties.
(i) Each pair of rows is connected by exactly one edge, directed or dotted.
(ii) The graph on the directed edges is transitive and contains no cycles.
(iii) All components of the graph on the dotted edges are cliques or possibly a three vertex
component of two dotted edges.

Proof: We construct D(A) and, in view of our bound of 4m, we have the following
properties (i) and (ii) by the Transitivity Lemma 1.7 with c = 4 and p = 2, q = 5.
Property (iii) is more work.

Assuming that there exists a component which is not a clique, there must be three
rows i, j, k with i −→ j, k ····· j, k ····· i (hence i, j, k are in the same component). Let us
analyze this in detail. The possible entries for these rows are

i
j
k

≤1
︷ ︸︸ ︷

0 · · · 0 0 · · ·0
1 · · · 1 1 · · ·1
0 · · ·0
︸ ︷︷ ︸

a

1 · · · 1
︸ ︷︷ ︸

b

≤4
︷ ︸︸ ︷

0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0
1 · · ·1
︸ ︷︷ ︸

c

1 · · ·1
︸ ︷︷ ︸

d

≤4
︷ ︸︸ ︷

1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1
0 · · ·0
︸ ︷︷ ︸

e

0 · · ·0
︸ ︷︷ ︸

f

0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1

.

The total number of non-constant columns in these three rows is given by α = a+ b+ c+
d+ e+ f . Based on the edge k ····· i we have 2 ≤ b+ c ≤ 4, 2 ≤ e+ f ≤ 4 and based on the
edge k ····· j we have 2 ≤ a + f ≤ 4, 2 ≤ c + d ≤ 4, and based on the edge i → j we have
a + b ≤ 1. We deduce that α ≤ 9. We note that we could eliminate rows j and k and the
α columns and the resulting matrix would be simple. Thus by our Deletion Lemma 1.6,
we may assume α ≥ 9. Thus, the only possibility is α = 9 implying

a + b = 1, c + d = 4 and e + f = 4.

By our Deletion Lemma 1.6, removing a row must force removing 5 or more columns
in order to have the resulting matrix to be simple. If we wish to remove row i, then we can
force the resulting (m− 1)-rowed matrix to be simple by deleting the columns associated
with e and b and (c or d) and (a or f). Thus, a + b + e + min{c, d} ≥ 5, yielding

e + min{c, d} ≥ 4.

Removing row j and the following combination of columns d and a and (e or f) and
(b or c) results in a simple matrix. Thus, a + b + d + min{e, f} ≥ 5 yielding

d + min{e, f} ≥ 4.

Removing row k and the following combination of columns d and e and (a or b) and (c
or f) results in a simple matrix. Thus, d+e+min{a, b}+min{c, f} ≥ 5 and min{a, b} = 0
yielding

d + e + min{c, f} ≥ 5.

We note c + d = 4 implies min{c, d} ≤ 2 and similarly min{e, f} ≤ 2. In addition,
b + c ≥ 2 and a + f ≥ 2. The only feasible solution is to have c = d = e = f = 2 and
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either a = 1 or b = 1. Thus if i, j, k did induce a component of size 3 then we can use this
information for this ‘special’ component.

We now consider the components in the graph formed by the dotted edges. We first
note that any components of size k = 1, 2, 3 must be a clique of dotted edges or our special
component of two dotted edges on three vertices that was analyzed above. Suppose we
have a component, not a clique, with 4 or more vertices. There must be at least two
vertices at distance two. Assume the two vertices i,j have a shortest path i, k, j of dotted
edges joining them. There must be a directed edge connecting i and j. Since the two are
interchangeable, the following configuration takes place:

i
↗
.....

j
·

·.
·

·

k

Let l be any other vertex of the component and on the four rows we have the situation
below. We will arrive at a contradiction.

i
j
k
l

0
1

0 or 1
L

00
00
11
C

11
00
11
D

11
00
00
E

11
11
00
F

0 · · · 0
0 · · · 0
0 · · · 0

G

1 · · · 1
1 · · · 1
1 · · · 1

H

The matrices C, D, E, F are size 1×2 and L is size 1×1 and G, H are 1-rowed matrices.
We note that if #1′s(G) + #0′s(H) ≤ 3, using Definition 1.4, then we could delete the
3 rows i, j, k and the up to 12 columns non-constant on rows i, j, k, l to obtain a simple
matrix, violating the Deletion Lemma 1.6. We conclude

#1′s(G) + #0′s(H) ≥ 4. (13)

We now establish that the following five cases do not occur.
Case 1. The edges i ····· l, j ····· l, k ····· l are all present.

Applying our previous result to the triple (i, j, l), we deduce #1′s(CG) = 2 and
#0′s(FH) = 2. But then by (13), #1′s(G) = 2 and #0′s(H) = 2 and hence #1′s(F ) = 2
and #0′s(C) = 2. Using k ····· l, we deduce that #0′s(LCDH) ≤ 4 and so #0′s(LD) = 0
and so #0′s(D) = 0. Similarly #1′s(LEFG) ≤ 2 and then #0′s(E) = 2. Now we could
delete row i and the up to three columns in L, E and still preserve a simple matrix. Thus
Case 1 does not occur.

Case 2. The edges i ····· l, j ····· l, k → l are all present.
Using k → l, we have #1′s(EFG) ≤ 1 and in particular #1′s(F ) ≤ 1. But by the

same logic at the beginning of Case 1, we obtain #1′s(F ) = 2, a contradiction. Thus
Case 2 does not occur.

Case 3. The edges i → l, k ····· l are both present.
Using i → l, we have #1′s(LCG) ≤ 1 and so by (13), #0′s(H) ≥ 3. Now using the

previous argument on the triple (i, l, k), we deduce that #0′s(DH) = 2, a contradiction.
Thus Case 3 does not occur.
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Case 4. The edges i → l, j ····· l, k → l are all present.
Using i → l, we have #1′s(LCG) ≤ 1 and so by (13), #0′s(H) ≥ 3. Using k → l,

we have #1′s(EFG) ≤ 1. Using j ····· l, we have #0′s(LF ) ≤ 1. Note that this yields
#1′s(F ) ≤ 1 and #0′s(F ) ≤ 1 and so #1′s(F ) = 1 and #0′s(F ) = 1. Now #0′s(LF ) ≤ 1
implies #0′s(L) = 0 and hence #1′s(L) = 1. Now #1′s(LEFG) ≤ 1 implies #1′s(G) = 0
which implies #0′s(H) ≥ 4 by (13) which then forces #0′s(LFH) ≥ 5 which contradicts
that j ····· l. Thus Case 4 does not occur.

Case 5. The edges i ····· l, l → j, k ····· l, are all present.
This case is covered by Case 3 by using the fact that A does not have the configuration

F2,5 if and only if Ac (the (0,1)-complement of A) does not have the configuration F c
2,5

where F2,5 and F c
2,5 are the same configurations. Thus Case 5 does not occur.

We are going to show that either we have the three directed edges i → l, j → l, k → l
or the three directed edges l → i, l → j, l → k. We use the five cases above in our
argument.

If l → i, we will have l → j based on transitivity. Case 3 (with the roles of i and l
interchanged) eliminates l ····· k and transitivity forces that k → l cannot happen since we
do not have k → i. Thus we must have l → k (by property (i) ) which means all edges
from l are directed.

If l ····· i then transitivity ensures j → l does not happen since that would have forced
i → l. Cases 1 and 2 eliminate having l ····· j. The remaining possibility is l → j which then
prevents having k → l. Case 4 eliminates the possibility of l → k and Case 5 eliminates
the possibility k ····· l. Transitivity does not allow k → l and so the case l ····· i cannot occur.

If i → l then transitivity forces l → k to not occur. Case 3 eliminates the possibility
of having l ····· k. Now, if k → l, then because transitivity would forbid l → j and Case 4
would forbid l ····· j we would have j → l and so all edges from i, j, k are directed into l.

As promised, we have shown for any other vertex l of the same component that there
are no dotted edges joining l to i, j, k for any vertex l in the same component. This
contradicts that i, j, k is in a component (of the graph of dotted edges) with other vertices.
We have established property (iii).

We will now describe a general argument used in the proofs of Theorem 3.9 and Theo-
rem 3.14 for the forbidden configurations F2,q for q = 4, 5. Assume we are considering an
m×n simple matrix A with no configuration F2,q. Assume that the properties (i),(ii),(iii)
of Lemma 3.2 (or Lemma 3.11) hold and that we have reordered the rows of A by the
order from the Ordering Lemma 1.8. Let m′ denote the number of components and let ck

be the number of components which have k vertices.
We are going to establish bounds for the number of columns in A by separately con-

sidering varied columns (t-varied for t ≥ 1) and the flat columns (0-varied) defined in
Definition 1.10. The following are two easy bounds that prepare us for the more careful
bounds of Claims 3.5 and 3.7.

Claim 3.3 Let q = 4 or 5. The number of varied columns of A is at most
∑

Ci: |Ci|≥2

(q − 1)|Ci| = (q − 1)(m − c1).

the electronic journal of combinatorics 14 (2007), #R79 17



Proof: Consider a component Ci with |Ci| vertices. For |Ci| ≥ 2 and the component
being a clique, the presence of dotted edges means we avoid the configuration F0,q on the
clique. By the Upper Bound Lemma 1.11 with t = 2(q − 1) in (3), there can be no more
than (q − 1)|Ci| columns which are non-constant on these |Ci| rows. In fact, if |Ci| = 1,
then there are no such columns. There are m − c1 rows of A in components of size at
least 2. In the cases F2,q for q = 4, 5 it is possible there are components of size 3 which
are not cliques but special arguments bound the number of columns non-constant on such
a component as 9 if q = 5 and as 7 if q = 4. In both cases the bounds are less than
(q − 1)|Ci|. Note that

∑

i:|Ci|≥2 |Ci| = m − c1. Thus the total number of varied columns
is at most ∑

Ci: |Ci|≥2

(q − 1)|Ci| = (q − 1)(m − c1).

Claim 3.4 The number of flat columns is at most 2m′.

Proof: We note that in view of the component ordering from the Ordering Lemma 1.8,
the flat columns of A avoid the submatrix

[
0 0
1 1

]
. There are at most m′ + 1 columns with

no submatrix
[

0
1

]
. corresponding to the flat columns which have all 1’s on some initial set

(possible empty) of components C1, C2, . . . , Ci and all 0’s on the remaining components
Ci+1, Ci+2, . . . , Cm′. If we have a flat column of A with a pair i < j of components where
the column is 0’s on Ci and 1’s on Cj, then there is a pair (k, k + 1) with the column
having 0’s on the rows of component Ck and 1’s on the rows of component Ck+1. There
are only m′ − 1 pairs k, k + 1 and so at most m′ − 1 flat columns of A which have the
submatrix

[
0
1

]
. Thus A has at most 2m′ flat columns.

Given that any column is either varied or flat, we can use Claims 3.3 and 3.4 to deduce:

n ≤ (q − 1)(m − c1) + 2m′ = 2c1 +
∑

k≥2

(
(q − 1)k + 2

)
ck. (14)

We now proceed to more carefully analyze the number of columns and show we have
overcounted in Claims 3.3 and 3.4.

We first improve on Claim 3.3. Define

vi,t = number of t-varied columns non-constant on Ci.

We deduce that the number of varied columns is

∑

i

∑

t≥1

1

t
vi,t. (15)

For a component Ci we define ri to be

ri = (q − 1)|Ci| −
∑

t

1

t
vi,t,
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or more usefully

ri =

(

(q − 1)|Ci| −
∑

t≥1

vi,t

)

+
∑

t≥1

t − 1

t
vi,t = r

(1)
i + r

(2)
i , (16)

where

r
(1)
i =

(

(q − 1)|Ci| −
∑

t≥1

vi,t

)

(17)

and (using the notation n(α) from Definition 1.10),

r
(2)
i (α) =

n(α) − 1

n(α)
and r

(2)
i =

∑

α

n(α) − 1

n(α)
(18)

where we are summing over columns α which are non-constant on Ci. Note that the
expression r

(1)
i counts the difference between (q − 1)|Ci| (which is the maximum number

of columns non-constant on Ci) and the actual number. Also note that r
(2)
i can be

computed column by column. Define

r =
m′

∑

i=1

ri.

Using (15), we deduce the following.

Claim 3.5 Let q = 4 or 5. The number of varied columns of A is at most

∑

Ci: |Ci|≥2

(q − 1)|Ci| − r = (q − 1)(m − c1) − r.

The value of Claim 3.5 is that we can estimate r by estimating ri, component by
component and column by column and we will do so using (16).

The bound on the number of flat columns in Claim 3.4 can be sharpened by noticing
that varied columns can interfere by containing a 0 on a row of component Ck and a 1 on
a row of component Ck+1 for some k. Given a varied column which is non-constant on
Ci, then it is either canonical with respect to Ci or it has at least one 0 in a component
above Ci or at least one 1 in a component below Ci. Thus for any non-canonical column,
there exists a k such that the column contains a 0 on a row of component Ck and a 1
on a row of component Ck+1. In particular, among the columns of A which are equal to
a given non-constant |Ci| × 1 column α on Ci, at most one is canonical with respect to
Ci and the rest are non-canonical with respect to Ci. This idea drives Claim 3.7 that
follows. Non-canonical varied columns will drive down the bound for the number of flat
columns. Note that t-varied columns for t ≥ 2 are always non-canonical with respect to
any component.

As noted in Claim 3.4, there are at most m′ + 1 flat columns which do not contain
the submatrix

[
0
1

]
and there are at most m′−1 flat columns which contain the submatrix

the electronic journal of combinatorics 14 (2007), #R79 19



[
0
1

]
, each containing for some index k, all 0’s on component Ck and all 1’s on Ck+1. Other

columns, in particular non-canonical columns, may interfere with this count because for
each k and each choice of row a in Ck and each choice of row b in Ck+1 there is at most
one column in A with a 0 on row a and a 1 on row b by the Ordering Lemma 1.8. Let α
be a non-canonical varied column of A. Define s′(α) to be the sum over all i of the sum
over all pairs of entries (a, b), where a is a row of Ci and b is a row of Ci+1 and α has a 0
on row a and a 1 on row b, of the value 1

|Ci||Ci+1|
. Define s′ as the sum over non-canonical

varied columns α:
s′ =

∑

α

s′(α).

Claim 3.6 The number of flat columns is at most 2m′ − ds′e .

Proof: As noted in Claim 3.4, the number of flat columns which do not contain the
submatrix

[
0
1

]
(respecting the row order) is at most m′+1. For each k with 1 ≤ k ≤ m′−1,

the total number of row pairs (a, b) where a is a row of Ck and b is a row of Ck+1 is
|Ck||Ck+1|. Thus ds′e provides a lower bound for the number of indices k, 1 ≤ k ≤ m′−1,
for which some varied column has a 0 on some row of Ck and a 1 on some row of Ck+1 and
hence for which no flat column has all 0’s on component Ck and all 1’s on Ck+1. Thus
the number of flat columns which contain

[
0
1

]
is at most m′ − 1 − ds′e.

One could be more precise since if we have a varied column with even one pair of
entries with a 0 in a component Ci and 1 in Ci+1 then there is no flat column which has
such a pair of entries (or vice-versa) and so we can reduce the bound on the number of
flat columns which contain

[
0
1

]
by 1. We don’t attempt this here.

We wish to compute an estimate for s′, component by component, and so we compute
s =

∑m′

i=1 si where si is defined below. First define

cmax = max
k : 1≤k≤m′

|Ck|.

For a component Ci, and for each non-canonical column α, that is non-constant on
Ci, we compute a number si(α) by one of the two expressions below:

If α is t-varied for t ≥ 2, and also non-constant on other components then set

si(α) =
1

2c2
max

. (19)

If α is 1-varied (only non-constant on Ci), then set

si(α) =
1

|Ci|
. (20)

We then define si =
∑

α si(α) where the sum is over all non-canonical varied columns

α that are non-constant on Ci and define s =
∑m′

i=1 si.

the electronic journal of combinatorics 14 (2007), #R79 20



Claim 3.7 The number of flat columns is at most 2m′ − dse. We have s ≤ s′.

Proof: We show s ≤ s′ and use Claim 3.6. Consider a non-canonical varied column
α of A. First assume α is t-varied for some t ≥ 2 and in particular is non-constant on
Ci1 , C12

, . . . , Cit. Consider Cij and Cij+1
for 1 ≤ j ≤ t−1. If ij +1 = ij+1, then there is at

least one pair of rows (a, b) with a in Cij and b in Cij+1
so that the column has a 0 in row

a and a 1 in row b. This yields a contribution to s′(α) of 1/(|Cij ||Cij+1
|). If ij + 1 < ij+1,

then there will be some index k with ij ≤ k < ij+1 where a in Ck and b in Ck+1 so that
α has a 0 in row a and a 1 in row b. This yields a contribution to s′(α) of 1/(|Ck||Ck+1|)

where 1/(|Ck||Ck+1|) ≥ 1/c2
max. We deduce that s′(α) ≥ n(α)−1

c2max
. We now check that

∑

j : 1≤j≤t

sij (α) = t ·
1

2c2
max

≤
t − 1

c2
max

≤ s′(α),

using t/2 ≤ t − 1 for t ≥ 2.
Second, assume α is 1-varied and non-constant on Ci and so constant on other com-

ponents. You might note that if there is only one component, then every varied column
is canonical and so s = 0. If α is all 0’s on Ci−1 then we have a 0 on any row of Ci−1 and
a 1 on some row of Ci (α is non-constant on Ci) and so s′(α) ≥ 1

|Ci|
. We can do the same

if Ci+1 is all 1’s. If neither of these cases occur then, given that α is non-canonical, α has
an index j so that α is all 0’s on Cj and all 1’s on Cj+1 yielding s′(α) ≥ 1. In any case,
si(α) ≤ s′(α).

Summing over all non-canonical varied columns α, We deduce that s < s′.

This count for si could result in s < s′ but the intent of defining the si’s is to allow us
to consider the components (and columns) separately in our proof. We note the following:

Remark 3.8 A non-canonical column α non-constant on Ci always has si(α) > 0.

Note that s ≤ s′ ≤ ds′e ≤ m′ − 1.
We have refined (14) using Claims 3.5, 3.6 into

n ≤ (q − 1)(m − c1) + 2m′ − (r + s) = 2c1 − (r + s) +
∑

k≥2

(
(q − 1)k + 2

)
ck. (21)

Our proofs of Theorems 3.9 and 3.14 show that r + s is large enough to obtain the
exact bound for n.

Theorem 3.9 For F2,5 =

[
1 1 0 0 0 0 0
0 0 1 1 1 1 1

]

,

forb(m, F2,5) ≤ 4m with equality for m = 4, 8 and m ≥ 11
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Proof: In view of Lemma 3.1 we need only establish the upper bound and in view of
Lemma 3.2 we may assume all components are cliques or the special component on 3
vertices. As indicated, we use the Ordering Lemma 1.8 to order the components and then
follow the general argument given above.

Using Claims 3.5 and 3.7 together, A has a maximum of 4(m − c1) + 2m′ − (r + s)
columns. From (14) we note

4(m − c1) + 2m′ = 2c1 +
∑

k≥2

(4k + 2)ck = 2c1 + 10c2 + 14c3 + 18c4 + · · · (22)

We will show below that
r + s ≥

∑

k≥2

2ck. (23)

But then by (21)

n ≤ 2c1 +
∑

k≥2

(4k + 2)ck −
∑

k≥2

2ck = 2c1 + 4
∑

k≥2

kck ≤ 4m. (24)

We will verify (23) by showing that each component Ci with |Ci| ≥ 2 has ri + si ≥ 2.
Consider a non-canonical column α which is non-constant on Ci. If the column is t-varied,
for t ≥ 2 then

(i) si(α) > 0, r
(2)
i (α) =

t − 1

t
≥

1

2
.

If the column is 1-varied,

(ii) si(α) =
1

|Ci|
, r

(2)
i (α) = 0.

These follow from (19) and (20). Assume Ci is a component of size k ≥ 2. The Upper
Bound Lemma 1.11 ensures that there are at most 4k columns non-constant on Ci. We
consider three cases and in each case we verify that ri + si ≥ 2.

Case 1. The number of columns non-constant on Ci is ≤ 4k − 2.
This includes the case of the special component on 3 rows. We have r

(1)
i ≥ 2 by (17)

and so ri + si ≥ 2. (Note that for m ≡ 0(mod 4), each component in our construction
from (11) has this property.)

Case 2. The number of columns non-constant on Ci is 4k − 1.
In this case, r

(1)
i ≥ 1 by (17). We must carefully consider the maximum number of

distinct non-constant columns on these k rows using the argument of the Upper Bound
Lemma 1.11. For k ≤ 3, the non-constant columns all have either exactly one 1 or exactly
one 0 or both when k = 2. Then there are at most 2k distinct such columns. The
remaining 2k − 1 columns must be non-canonical. Each such non-canonical column α is
either t-varied for t ≥ 2 and so r

(2)
i (α) ≥ 1

2
or is 1-varied and so si(α) ≥ 1

k
from which

we have r
(2)
i (α) + si(α) ≥ 1

k
. Summing over the 2k − 1 columns yields r

(2)
i + si ≥ 2 since

(2k − 1) 1
k
≥ 1 (for k ≥ 2) and so r

(1)
i + r

(2)
i + si = ri + si ≥ 2.
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For k ≥ 4, it is possible to have a non-constant column with at least two 1’s and
0’s on the rows of the component and such a column contributes at least 2(k − 2)

[
0
1

]

configurations compared with k− 1 for a column with just one 1 or just one 0. For k ≥ 6
there is at most one such column (2(2(k − 2)) > 3(k − 1) for k ≥ 6) and for k = 5 there
are at most two such columns (3(2(k − 2)) > 4(k − 1) for k = 5) and for k = 4 there are
at most three such columns (4(2(k − 2)) > 5(k − 1) for k = 4). Thus there are at most
2k + 3 distinct columns and these can be canonical with respect to Ci. There remain
at least 2k − 4 non-canonical columns. Now each of the at least 2k − 4 non-canonical
columns α have, as above, r

(2)
i (α) + si(α) ≥ 1

k
and so summing over the 2k − 4 columns

α we have r
(2)
i + si ≥ 1 (since (2k − 4) 1

k
≥ 1 for k ≥ 4) and then, using r

(1)
i ≥ 1, we have

r
(1)
i + r

(2)
i + si = ri + si ≥ 2.

Case 3. The number of columns non-constant on Ci is 4k.
In this case we know by the argument of the Upper Bound Lemma 1.11 that the non-

constant columns will have either exactly one 1 or exactly one 0 (or both for k = 2) on
the rows of Ci. There are at most 2k distinct such columns on the component (only 2 for
k = 2) and so at most 2k canonical columns with respect to Ci and so at least 2k columns

must be non-canonical. Each such column α has r
(2)
i (α) + si(α) ≥ 1

k
and so r

(2)
i + si ≥ 2

by considering the 2k columns α. Thus ri + si ≥ 2. Note that the component of size b in
the construction (12) is covered by Case 3.

We have verified that ri + si ≥ 2 for any component and thus we have verified (23).
This completes our proof.

We now consider F2,4 and first obtain the analogues of Lemmas 3.1 and 3.2.

Lemma 3.10 For F2,4 =

[
1 1 0 0 0 0
0 0 1 1 1 1

]

,

forb(m, F2,4) ≥

⌊
10m

3
−

4

3

⌋

.

with equality for all m 6= 2.

Proof: We provide a construction for Am, a simple matrix which avoids F2,4. We may
take A1 = K1, A3 = K3.

We can construct Am with no configuration F2,4 using

Am =












Am−k 1′s 1′s 0′s

1
...
1

0′s K1
k Kk−1

k K1
k

1
...
1












. (25)
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We note that for k = 3, if Am−3 achieves the bound, then Am also achieves the bound
(having 10 more columns). For m = 5, we use (25) with k = 4 to get a 5 × 15 matrix A5

with b10·5
3

− 4
3
c = 15. The rest of the cases can be constructed using (25) with k = 3.

We do not expect uniqueness since for m = 4 we may alternatively take A4 to be

A4 =






K1

4 K3
4

0 1 0 1
0 1 0 1
1 0 0 1
1 0 0 1







.

Let A be a simple m×n matrix with no configuration F2,4. We wish to show n ≤ 10m
3
− 4

3

from which the bound follows. This is true for m = 1, 2, 3 and m = 4 by some easy case
checking. We may assume it is impossible to delete k rows and at most 10k

3
columns and

still have a simple matrix Am−k by the Deletion Lemma 1.6.
We construct D(A) as before.

Lemma 3.11 Our structure D(A) can be assumed to have the following properties.
(i) Each pair of rows is connected by exactly one edge, directed or dotted.
(ii) The graph on the directed edges is transitive and contains no cycles.
(iii) All components of the graph on the dotted edges are cliques or possibly a three vertex
component of two dotted edges.

Proof: With p = 2, q = 4 and c = 10/3, we may appeal to Lemma 1.7 to deduce the
properties (i),(ii). We now tackle the components of dotted edges. Assuming that there
exists a component which is not a clique, there must be three rows i, j, k with i −→ j,
k ····· j, k ····· i (hence i, j, k are in the same component). Let us analyze this in detail. The
possible entries for these rows are are

i
j
k

≤1
︷ ︸︸ ︷

0 · · · 0 0 · · ·0
1 · · · 1 1 · · ·1
0 · · ·0
︸ ︷︷ ︸

a

1 · · · 1
︸ ︷︷ ︸

b

≤3
︷ ︸︸ ︷

0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0
1 · · ·1
︸ ︷︷ ︸

c

1 · · ·1
︸ ︷︷ ︸

d

≤3
︷ ︸︸ ︷

1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1
0 · · ·0
︸ ︷︷ ︸

e

0 · · ·0
︸ ︷︷ ︸

f

0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1

.

The total number of non-constant columns in these three rows is α = a+b+c+d+e+f .
Based on the three edges present we can see that α ≤ 7. If α ≤ 6 we are allowed to
eliminate rows j and k and at most 6 columns to obtain a simple matrix but 6

2
≤ 10

3
and

so, by the Deletion Lemma 1.6 this does not occur. Hence α = 7 implying a + b = 1,
c + d = 3 and e + f = 3.

Removing a row must force removing 4 or more columns by the Deletion Lemma 1.6.
If we wish to remove row i , then we can force the resulting (m − 1)-rowed matrix to be
simple by deleting the columns associated with e and b and (c or d) and (a or f). Thus,
a + b + e + min{c, d} ≥ 4, yielding

e + min{c, d} ≥ 3.
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Removing row j and the following combination of columns d and a and (e or f) and
(b or c) results in a simple matrix. Thus, a + b + d + min{e, f} ≥ 4 yielding

d + min{e, f} ≥ 3.

Removing row k and the following combination of columns d and e and (a or b) and (c
or f) results in a simple matrix. Thus, f +c+min{a, b}+min{d, e} ≥ 4 and min{a, b} = 0
yielding

f + c + min{d, e} ≥ 4.

We note c+d = 3 implies min{c, d} ≤ 1 and similarly e+f = 3 implies min{e, f} ≤ 1.
Therefore, e ≥ 2, d ≥ 2, c ≤ 1 and f ≤ 1.

If min{d, e} = 3 ≥ 2, then d = e = 3 and c = f = 0 which yields f + c + min{d, e} =
3 � 4, a contradiction. On the other hand, if min{d, e} = 2 then f + c ≥ 2 which forces
c = f = 1 and d = e = 2.

We now consider the components in the graph formed by the dotted edges. We first
note that any components of size k = 1, 2, 3 must be a clique of dotted edges or our special
component of two dotted edges on three vertices whose columns were analyzed above.

Suppose we have a component, not a clique, with 4 or more vertices. There must be
at least two vertices at distance two. Assume the two vertices i,j have a shortest path
i, k, j of dotted edges joining them. There must be a directed edge connecting i and j.
Since the two are interchangeable, the following configuration takes place:

i
↗
.....

j
·

·.
·

·

k

Let l be any other vertex of the component and on the four rows we have the situation
below. We will arrive at a contradiction.

i
j
k
l

0
1

0 or 1
L

0
0
1
C

11
00
11
D

11
00
00
E

1
1
0
F

0 · · ·0
0 · · ·0
0 · · ·0

G

1 · · ·1
1 · · ·1
1 · · ·1

H

(26)

where L, C, F are 1×1 matrices, D, E are 1×2 matrices and G, H are 1-rowed matrices.
We note that if #1′s(G) + #0′s(H) ≤ 3 then we could delete the 3 rows i, j, k and the up
to 10 columns non-constant on rows i, j, k, l to obtain a simple matrix and so violate the
Deletion Lemma 1.6. We conclude

#1′s(G) + #0′s(H) ≥ 4 (27)

We show that the following four cases do not occur.
Case 1. i ····· l, j ····· l are both present.

Using our previous result for the triple (i, j, l), we deduce #1′s(CG) = 1 and
#0′s(FH) = 1. But then #1′s(G) + #0′s(H) ≤ 2 contradicting (27). Thus Case 1 does
not occur.
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Case 2. i ····· l, l → j, l → k are all present.
We note that in (26) with triple (i, j, k) replaced by the triple(l, k, i), the number of

columns with a 0 in row i and a 1 in row k is at most 2. Also the number of columns
with a 1 in row i, a 1 in row j and a 0 in row k is 1. We deduce #1′s(LG) ≤ 2 and
#0′s(DH) = 1. But then #1′s(G) + #0′s(H) ≤ 3 which contradicts (27). Thus Case 2
does not occur.

Case 3. l → j, l ····· k are both present.
Considering the triple (l, j, k), we discover that #1′s(EG) = 2 and #0′s(LH) ≤ 1.

But then we would have #1′s(G) + #0′s(H) ≤ 3 which contradicts (27). Thus Case 3
does not occur.

Case 4. i → l, l . . . k cannot both occur.
Considering the triple (i, l, k), we discover that #1′s(LG) ≤ 1 and #0′s(DH) = 2.

Thus, #1′s(G) + #0′s(H) ≤ 3 which contradicts (27). Thus Case 4 does not occur.

We now consider the components in the graph formed by the dotted edges. We wish
to show that any components of size at least 4 must be a complete clique of dotted edges.
Suppose our component above is not a clique with a triple (i, j, k) with structure i → j,
i ····· k, j ····· k and where l is any other vertex of the same component. Following a similar
argument used in Lemma 3.2, we show, using the four cases, that either i → l, j → l and
k → l or l → i, l → j and l → k. This cannot be true for all choices of l and based on
this contradiction the component has to be a clique.

If l → i, transitivity will force l → j. Also by transitivity, k → l cannot exist since it
would force k → i which would violate property (i). Case 3 eliminates l ····· k and thus we
must have l → k in which case all edges from l are directed to i, j, k.

If l·····i then j → l may not happen based on transitivity. Case 1 eliminates having l ·····j.
The remaining possibility is l → j which then prevents having k → l from happening.
Case 2 now eliminates l → k and Case 3 eliminates l ····· k. So this cannot occur.

If i → l then transitivity forces l → k not to occur. Case 4 eliminates the possibility
of having l ····· k. Now, if k → l, then transitivity forbids l → j. Case 2 already covers
l ····· j and thus we have j → l. All edges are directed into l.

As promised, we have shown for any other vertex l of the same component that there
are no dotted edges joining l to i, j, k for any vertex l in the same component. This
contradicts that i, j, k is in a component with any other vertices. We have established
property (iii).

By the Ordering Lemma 1.8 there is a linear ordering of the components
C1, C2, C3, . . . so that for i, j with i < j we have for all x ∈ Ci and y ∈ Cj there is
the directed edge x → y. Reorder the rows of A to respect this linear order of compo-
nents. In obtaining the bound for F2,4 we follow the proof outline of Theorem 3.9 but
with some refinements in the consideration of r + s. We believe the greater number of
extremal constructions is responsible for the more delicate proof.

We add an additional idea that was not necessary to prove Theorem 3.9.

Definition 3.12 If there is a non-canonical 1-varied column which is non-constant on
Ci and the column has either a 0 on Cj (and hence all 0’s if j 6= i) and all 1’s on Cj+1 or
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all 0’s on Cj and a 1 on Cj+1 (and hence all 1’s if j + 1 6= i) then we say that component
Ci uses (Cj, Cj+1).

Claim 3.13 If component Ci uses (Cj, Cj+1) then no other component uses (Cj, Cj+1).

Proof: This is readily seen for j, j + 1 6= i. If j = i or j + 1 = i then one verifes that no
other component uses (Cj, Cj+1). In particular if i = j and Ci uses (Cj, Cj+1) then there
is a 1-varied column α non-constant on Ci = Cj and a row a of Ci = Cj with α having
a 0 on row a and 1’s on rows of Cj+1. If Cj+1 uses (Cj, Cj+1) then there is a 1-varied
column β non-constant on Cj+1 and a row b of Cj+1 with β having a 1 on row b and all
0’s on Cj = Ci. This creates the submatrix

[
0 0
1 1

]
on rows a, b. This contradiction proves

the claim.
We will use the fact that at most m′ − 1 pairs (Cj, Cj+1) can be used. It remains true

that up to |Ci| non-canonical 1-varied columns non-constant on Ci can each use the same
(Cj, Cj+1) (where j = i or j + 1 = i) such as outlined by the following two possibilities
each of |Ci| columns where we only give the two components of interest (you can imagine
the remaining entries filled with 1’s above and 0’s below):

Ci−1

Ci







1′s
0′s

K1
|Ci|

0′s







or
Ci

Ci+1







1′s

K
|Ci|−1
|Ci|

1′s
0′s







.

Theorem 3.14 For F2,4 =

[
1 1 0 0 0 0
0 0 1 1 1 1

]

,

forb(m, F2,4) ≤

⌊
10m

3
−

4

3

⌋

. (28)

with equality for all m 6= 2.

Proof: In view of Lemma 3.10 we need only establish the upper bound and in view of
Lemma 3.11 we may assume all components are cliques. We follow the proof of Theo-
rem 3.9 and use the Ordering Lemma 1.8 to order the components.

Using Claims 3.5 and 3.7 together, A has a maximum of 3(m − c1) + 2m′ − (r + s)
columns. Using (14) we note

3(m − c1) + 2m′ = 2c1 +
∑

k≥2

(3k + 2)ck = 2c1 +
∑

k≥2

10k

3
ck +

∑

k≥2

(2 −
k

3
)ck. (29)

We will show below that

r + s ≥
∑

k≥2

(2 −
k

3
)ck + δ (30)
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with δ ≥ 0 where, in addition if c1 = 0, we have

δ >







1 if m ≡ 0(mod 3)
1
3

if m ≡ 1(mod 3)
2
3

if m ≡ 2(mod 3)
(31)

This would mean

n ≤ 2c1 +
∑

k≥2

10k

3
ck +

∑

k≥2

(2 −
k

3
)ck −

∑

k≥2

(2 −
k

3
)ck − δ ≤

10m

3
− δ −

4

3
c1 (32)

Thus checking cases yields

n ≤

⌊
10m

3
−

4

3

⌋

, (33)

if either c1 ≥ 1 or (31) is true.
Following the proof of Theorem 3.9, our argument considers five cases and establishes

inequalities on ri + si in each case. For every component Ci with |Ci| ≥ 2 we show that
ri + si ≥ 2 − (|Ci|/3). This is sufficient to prove (30) if either c1 ≥ 1 or we only had
to show that δ = 0. If c1 = 0, we need (31) to establish (28). We can often find a
component Ci with ri + si > 2 − |Ci|/3 + ε where ε corresponds to δ when we replace m
by |Ci| which becomes helpful for our proof. We also obtain stronger inequalities in the
case of a component that uses no pair (Ck, Ck+1). We note that there are only m′ − 1
pairs (Cj, Cj+1) which can be used and for components that use no pair (Cj, Cj+1) we are
able to get stronger inequalities and results, enabling us to prove (30). Our most difficult
cases arise with all components of size 3.

Note that in the case that Ci is a clique and has 3|Ci| columns non-constant on Ci,
then by the proof of the Upper Bound Lemma 1.11, we deduce that all such columns have
either exactly one 0 on Ci or exactly one 1 on Ci. Of course for |Ci| = 2 or 3, this is
trivially true.

Case 1. |Ci| = 2.
The maximum number of distinct non-constant columns on this component is 2. If

at most 3 columns are non-constant then r
(1)
i ≥ 3. If there are 4 non-constant columns,

then r
(1)
i = 2 and also two columns are non-canonical. A non-canonical column α is either

t-varied for t ≥ 2 and hence r
(2)
i (α) ≥ 1

2
and si(α) > 0 or α is 1-varied and si(α) ≥ 1

2
and

in addition some pair (Cj, Cj+1) is used. Summing over the two non-canonical columns

and adding in r
(1)
i , we obtain ri + si ≥ 3. If there are 5 non-constant columns, then

r
(1)
i = 1 and also three columns are non-canonical. As above, each such column α has

either r
(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

2
and some pair (Cj, Cj+1) is used. Summing

over the three non-canonical columns and adding in r
(1)
i , we obtain ri + si ≥ 5/2.

If there are 6 non-constant columns, then four columns must be non-canonical. As
above, each such column α has either r

(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

2
and some pair

(Cj, Cj+1) is used. Summing over the four non-canonical columns we obtain ri + si ≥ 2
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and we will only have equality if si = 2 and Ci will have used two pairs (Cj, Cj+1) and
(Ck, Ck+1).

In summary, we have ri +si ≥ 2−|Ci|/3+2/3 = 2 with ri +si > 2 if no pair (Cj, Cj+1)
is used.

Case 2. |Ci| = 3 and Ci is a special component.

Such a component has 7 columns which are non-constant on Ci, yielding r
(1)
i = 2,

and also two non-canonical columns in (26) since d = e = 2. Each non-canonical column

α has either r
(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

3
and some pair (Cj, Cj+1) is used.

Summing over the two non-canonical columns and adding in r
(1)
i , we obtain ri + si ≥

8
3

>
2 − |Ci|/3 + 1 = 2.

Case 3. |Ci| = 3 and Ci is a clique.
We note that there are 8 possible columns on 3 rows of which exactly 6 columns are

non-constant. If there are at most 6 columns of A canonical with respect to Ci, then
r
(1)
i ≥ 3. If there are 7 columns non-constant on Ci (yielding r

(1)
i = 2), then there must

be one non-canonical column α and it has either r
(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

3

and some pair (Cj, Cj+1) is used. Now r
(2)
i = r

(2)
i (α) and si = si(α). Adding in r

(1)
i ,

we obtain ri + si ≥
7
3

> 2 − |Ci|/3 + 1 = 2. If there are 8 columns non-constant on Ci

(yielding r
(1)
i = 1), then there must be two non-canonical columns. Each such column

α has either r
(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

3
and some pair (Cj, Cj+1) is used.

Summing over the two non-canonical columns and adding in r
(1)
i , we obtain ri + si ≥

5
3
.

Moreover ri + si > 2 unless we have used some pair (Cj, Cj+1).
If there are 9 columns non-constant on Ci, then there must be 3 non-canonical columns.

Each such column α has either r
(2)
i (α) ≥ 1

2
and si(α) > 0 or si(α) ≥ 1

3
and some pair

(Cj, Cj+1) is used. Summing over the three non-canonical columns we obtain ri + si ≥ 1.
Several cases have ri + si ≤ 2 and we see that ri + si > 3/2 unless Ci has used some pair
(Cj, Cj+1).

Summarizing we have ri + si ≥ 2− |Ci|/3 = 1 in all cases and moreover the only cases
with ri + si ≤ 2 − |Ci|/3 + 1 = 2 are the following four cases: either ri = 3/2, si > 0
or ri = 1, si > 1/3, or ri = 1/2, si > 2/3, or ri = 0, si = 1. Note that the only case
not using any pair (Cj, Cj+1) is to have ri = 3/2, si > 0. Also note that the cases with
ri + si < 2 − |Ci|/3 + 1 = 2 and having ri > 0 must occur with t-varied columns (with
t ≥ 2) which are non-constant on Ci and so non-constant on some other components Cj

which forces rj > 0.

Case 4. |Ci| = 4, 5, 6.

If there are at most 3|Ci| − 2 columns of A non-constant on Ci, then r
(1)
i ≥ 2 so

ri + si ≥ 2.
If there are 3|Ci| − 1 columns of A non-constant on Ci then r

(1)
i = 1 and if there is a

non-canonical column this forces ri+si > 1. To show that there is a non-canonical column,
we use Theorem 2.1 and compute forb(4, F0,4) = 12, forb(5, F0,4) = 14, forb(6, F0,4) = 17.
If we had 3|Ci|−1 distinct non-constant columns on |Ci| rows, then we could add the two
constant columns to get a simple |Ci| × (3|Ci| + 1) matrix with no F0,4, a contradiction
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for these values.
If there are 3|Ci| columns of A non-constant on Ci, then the columns either have

exactly one 1 or exactly one 0 and so there must be |Ci| non-canonical columns and each

such column α either is t-varied for t ≥ 2 and so has r
(2)
i (α) ≥ 1/2 and si(α) or α is

1-varied si(α) ≤ 1/|Ci| and some pair (Cj, Cj+1) is used by Ci.
Summarizing, in all cases, ri + si ≥ 1 > 2 − |Ci|/3. For |Ci| = 4, this yields ri + si ≥

2− |Ci|/3 + 1/3 = 1. For |Ci| = 5, this yields ri + si ≥ 2− |Ci|/3+ 2/3 = 1. For |Ci| = 6,
this yields ri + si ≥ 2− |Ci|/3+1 = 1. Moreover in each of these three situations, we will
have strict inequality if no pair (Cj, Cj+1) is used.

Case 5. |Ci| ≥ 7.
We note that 2 − |Ci|/3 + 1 < 0. Moreover it easy to show that ri + si ≥ 1 since

either there are at most 3|Ci| − 1 columns of A non-constant on Ci and so r
(1)
i ≥ 1 or

there are 3|Ci| such columns and we can use the argument of Case 4. Summarizing,
ri + si > 2 − |Ci| + 1.

We have verified for any component Ci of size at least 2 that ri + si ≥ 2 − (|Ci|/3)
with strict inequality if no pair is used. This establishes the bulk of (30) if we are only
required to show δ = 0. We do not have to verify (31) for c1 ≥ 1. If there is a component
Ci with:

ri + si > 2 − |Ci| −







1 if |Ci| ≡ 0(mod 3)
1
3

if |Ci| ≡ 1(mod 3)
2
3

if |Ci| ≡ 2(mod 3)
(34)

then we can use this to establish (31) in some cases. Note that in general |Ci| 6≡ m(mod 3)
so our arguments consider the possibilities for m modulo 3.

Now (34) is true for |Ci| ≥ 7 or Ci is a special component on 3 rows. Also, if Ci uses
no pair, then (34) is true for |Ci| = 2, 4, 5, or 6. If |Ci| = 2, 4, 5, or 6 and Ci uses some
pair (Cj, Cj+1), then we get (34) with > replaced by the weaker inequality ≥ but this is
still useful.

For m ≡ 1(mod 3) there is either a component Ci with |Ci| ≡ 1(mod 3) or two
components Ci, Cj with |Ci|, |Cj| ≡ 2(mod 3). This, and (34) establishes (31) without the
strict inequality but then we use the fact that some component uses no pair (Cj, Cj+1)
and this gives us (31) with strict inequality.

For m ≡ 2(mod 3) there is either a component Ci with |Ci| ≡ 2(mod 3) or two
components Ci, Cj with |Ci|, |Cj| ≡ 1(mod 3). This, and (34) establishes (31) without the
strict inequality but then we use the fact that some component uses no pair (Cj, Cj+1)
and this gives us (31) with strict inequality.

The case m ≡ 0(mod 3) is trickier. We would be done if there is a component Ci

with |Ci| ≡ 1(mod 3) and a component Cj with |Cj| ≡ 2(mod 3), obtaining (31) from our
case analysis without the strict inequality but again we use the fact that some component
uses no pair (Cj, Cj+1) to obtain (31) with strict inequality. Similar arguments work for
three components of size ≡ 1(mod 3) or three components of size ≡ 2(mod 3) or indeed
a component of size 6 or greater or a special component of size 3.
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We may now assume all components are cliques of size 3 and each component C has 9
varied columns non-constant on C. Since some component Ci uses no pair (Cj, Cj+1), we
deduce for that component ri = 3/2, si > 0 (or we are done by our summary of Case 3).
Thus there must be other components Cj with rj > 0 since we obtained ri = 3/2 from three
t-varied columns (with t ≥ 2) each non-constant on Ci. If we have another component
Cj with rj = 3/2 and sj > 0, then ri + si + rj + sj > 3 which establishes (31) using that
we already have rl + sl ≥ 2− |Cl|/3 for all l. Similarly if we have two components Cj, Cl

with rj = 1/2, sj > 2/3 and rl = 1, sl > 1/3, then we have ri + rj + rl = 3, si + sj + sl > 1
yielding

∑

t∈{i,j,l}(rt + st) > 1 +
∑

t∈{i,j,l}(2 − |Ct|/3) = 4 and hence establishing (31).

(This is not a hypothetical case; one can construct a 9 × 28 simple matrix with no F2,4

with three components of size 3, the first having ri = 1/2, si > 2/3, the middle component
with ri = 3/2, si > 0 and the last component with rl = 1, sl > 1/3). Similar arguments
establish the remaining cases such as 3 components Cj, Ck, Cl with rj = rk = rl = 1/2
and sj > 2/3, sk > 2/3, and sl > 2/3. We have ri + rj + rk + rl = 3, si + sj + sk + sl > 2
yielding

∑

t∈{i,j,k,l}(rt + st) > 1 +
∑

t∈{i,j,k,l}(2 − |Ct|/3) = 5 and hence establishing (31).

Thus (30) is confirmed and our proof is complete.

Examining the cases of equality in the proof leads to a variety of constructions achiev-
ing the bound. Note that a component Ci of size 3 with si = 1 fits easily into such a
construction.

4 General Construction

We now consider the general Fpq with l = q − p. The following construction may be
close to best possible for l ≥ 8 and shows that forb(m, Fpq) is Ω((p+q

2
+ O(1))m). Choose

k = bl/2c + 1. We construct Dk as a k × k(k + 1) matrix:

Dk =
[
K1

k K2
k Kk−2

k Kk−1
k

]

This has k(k + 1) columns if k ≥ 5 and hence if l ≥ 8. Note that a pair of rows of
K1

k has one copy of F1,1 and K2
k has Fk−2,k−2. Thus Dk has F2(k−1),2(k−1) = F2b l

2
c,2b l

2
c but

no configuration F2b l
2
c,2b l

2
c+1. Following the construction idea in Theorem 3.6 in [2] for

matrices with no submatrix
[

0
1

0
1

0
1
· · · 0

1

]
(row and column order matter when discussing

a submatrix), we form the following matrices where individual 1 × 1 entries have been
replaced by appropriate k × k matrices in an interesting way. Assume m ≡ 0(mod k).
Each Bi will be of size m × (m − k).
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Bi =





















Kk−1
k

1′s Kk−1
k 1′s

1′s 1′s
. . .

... 1′s
. . . Kk−1

k
...

...
. . . 1′s 0′s 0′s · · · 0′s

1′s
... 1′s K1

k 0′s · · · 0′s

1′s
... 0′s K1

k · · · 0′s
. . .

...
...

...
. . .

...
0′s 1′s 0′s 0′s · · · K1

k





















︸ ︷︷ ︸

i − 1

.

Following the arguments in [2], we can check that each Bi has, for any pair of rows
i, j with i < j, at most one column with i

j

[
0
1

]
. Thus [B1 B2 · · · Bp−1] has no submatrix

of p copies of i
j

[
0
1

]
.

We now form a simple m-rowed matrix A as below with no Fpq. of size m × (bl/2c +
2 + (p − 1) + 1/(bl/2c + 1))m − (p − 1)(bl/2c + 1) + 1. We use the notation that 1 is a
column of k 1’s and 0 is a column of k 0’s:

A =










Dk 1′s
Dk

. . .

Dk

0′s Dk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

B1 B2 · · · Bp−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 · · · 1 0

1 1 1 · · · 0 0
...

...
...

...
...

1 1 0 · · · 0 0

1 0 0 · · · 0 0










.

The number of columns containing the Dk’s is (m/k) times k(k + 1) which is (bl/2c+
2)m. The number of columns from the Bi’s is (p − 1)(m − k) which is (p − 1)m − (p −
1)(bl/2c+ 1). There are 1 + m/k final columns which is 1

(bl/2c+1)
m + 1. Our construction

is seen to have Θ(
(
p + q)/2 + O(1)

)
m) = columns. We are using O(1) for fixed p, q as

m → ∞.

Theorem 4.1 Assume 1 ≤ p < q are given with q − p = l ≥ 8. Then
forb(m, Fpq) ≥ (bl/2c + 1 + p + 1/(bl/2c + 1))m − (p − 1)(bl/2c + 1) + 1.

Proof: We have indicated how the number of columns in A is computed. We need to
show that A has no Fpq. Consider two rows i, j of A with i < j. If i, j are in the same
block of k = b l

2
c + 1 rows, then inside the first (b l

2
c + 1)m columns of A, one only looks

inside a copy of Dk which has F2(k−1),2(k−1) = F2b l
2
c,2b l

2
c but no configuration F2b l

2
c,2b l

2
c+1.

But in [B1 B2 · · · Bp−1], there is no submatrix of p copies of
[

0
1

]
and so rows i, j of A do

not have the configuration F0,p+2bl/2c and so A has no Fpq.
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If i, j are from different blocks then there are many copies of the submatrix i
j

[
1
0

]

but the only copies of i
j

[
0
1

]
are in [B1 B2 · · · Bp−1] which does not have p copies of the

submatrix i
j

[
0
1

]
. Thus there is no configuration Fpq.

The proofs in this paper provided motivation for the construction. Note that the
‘components’ are each a consecutive set of k rows and they are arranged with transitivity
holding as in Lemma 1.8 (we have no proof that transitivity holds in general).

One can also use the construction with small values of l by making alternative choices
for Dk. For l = 0, the choice of k = 1 and D1 to have no columns yields a known optimal
solution [3]. For l = 1, a natural choice would be k = 2 and D2 = K1

2 . For l = 2, we
might take k = 3 and D3 = [K1

3K
2
3 ]. For l = 3, we might take k = 4 and D4 = [K1

4M4K
3
4 ].

One can continue to propose the appropriate choices for larger l but perhaps this should
wait until some optimal bounds are proven.
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