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Abstract

The number of tree-rooted maps, that is, rooted planar maps with a distin-
guished spanning tree, of size n is CnCn+1 where Cn = 1

n+1

(

2n
n

)

is the n
t
h Catalan

number. We present a (long awaited) simple bijection which explains this result.
Then, we prove that our bijection is isomorphic to a former recursive construction
on shuffles of parenthesis systems due to Cori, Dulucq and Viennot.

1 Introduction

In the late sixties, Mullin published an enumerative result concerning planar maps on
which a spanning tree is distinguished [3]. He proved that the number of rooted pla-
nar maps with a distinguished spanning tree, or tree-rooted maps for short, of size n is
CnCn+1 where Cn = 1

n+1

(

2n

n

)

is the nth Catalan number. This means that tree-rooted
maps of size n are in one-to-one correspondence with pairs of plane trees of size n and
n+1 respectively. But although Mullin asked for a bijective explanation of this result, no
natural mapping was found between tree-rooted maps and pairs of trees. Twenty years
later, Cori, Dulucq and Viennot exhibited one such mapping while working on Baxter
permutations [1]. More precisely, they established a bijection between pairs of trees and
shuffles of two parenthesis systems, that is, words on the alphabet a, a, b, b, such that the
subword consisting of the letters a, a and the subword consisting of the letters b, b are
parenthesis systems. It is known that tree-rooted maps are in one-to-one correspondence
with shuffles of two parenthesis systems [3, 6], hence the bijection of Cori et al. somehow
answers Mullin’s question. But this answer is quite unsatisfying in the world of maps.
Indeed, the bijection of Cori et al. is recursively defined on the set of prefixes of shuffles
of parenthesis systems and it was not understood how this bijection could be interpreted
on maps. The purpose of this paper is to fill this gap. This is done by defining a natural,
non-recursive, bijection between tree-rooted maps of size n and pairs made of a tree of
size n and a non-crossing partition of size n+ 1. The description of this bijection and the
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corresponding proofs occupy the first half of this paper. Then, we show that our bijection
is isomorphic to the construction of Cori et al. via the encoding of tree-rooted maps by
shuffles of parenthesis systems.

Tree-rooted maps, or alternatively shuffles of parenthesis systems, are in one-to-one
correspondence with square lattice walks confined in the quarter plane (we describe this
correspondence in the next section). Therefore, our bijection can also be seen as a way
of counting these walks. Some years ago, Guy, Krattenthaler and Sagan worked on walks
in the plane [2] and exhibited a number of nice bijections. However, they advertised the
result of Cori et al. as being considerably harder to prove bijectively. We believe that the
encoding in terms of tree-rooted maps makes this result more natural.

The outline of this paper is as follows. In Section 2, we recall some definitions and
preliminary results on tree-rooted maps. In Section 3, we present our bijection between
tree-rooted maps of size n and pairs consisting of a tree and a non-crossing partition of
size n and n+1 respectively. This simple bijection explains why the number of tree-rooted
maps of size n is CnCn+1. In Section 4, we prove that our bijection is isomorphic to the
construction of Cori et al.

Our study requires us to introduce a large number of mappings; we refer the reader
to Figure 18 which summarizes our notations.

2 Preliminary results

We begin by some preliminary definitions on planar maps. A planar map, or map for
short, is a two-cell embedding of a connected planar graph into the oriented sphere con-
sidered up to orientation preserving homeomorphisms of the sphere. Loops and multiple
edges are allowed. A rooted map is a map together with a half-edge called the root. A
rooted map is represented in Figure 1. The vertex (resp. the face) incident to the root is
called the root-vertex (resp. root-face). When representing maps in the plane, the root-
face is usually taken as the infinite face and the root is represented as an arrow pointing
on the root-vertex (see Figure 1). Unless explicitly mentioned, all the maps considered in
this paper are rooted.

A planted plane tree, or tree for short, is a rooted map with a single face. A vertex v
is an ancestor of another vertex v′ in a tree T if v is on the (unique) path in T from v′ to
the root-vertex of T . When v is the first vertex encountered on that path, it is the father
of v′. A leaf is a vertex which is not a father. Given a rooted map M , a submap of M
is a spanning tree if it is a tree containing all vertices of M . (The spanning tree inherit
its root from the map.) We now define the main object of this study, namely tree-rooted
maps. A tree-rooted map is a rooted map together with a distinguished spanning tree.
Tree-rooted maps shall be denoted by symbols like MT where it is implicitly assumed
that M is the underlying map and T the spanning tree. Graphically, the distinguished

the electronic journal of combinatorics 14 (2007), #R9 2



spanning tree will be represented by thick lines (see Figure 5). The size of a map, a tree,
a tree-rooted map, is the number of edges.

Figure 1: A rooted map.

A number of classical bijections on trees are defined by following the border of the
tree. Doing the tour of the tree means following its border in counterclockwise direction
starting and finishing at the root (see Figure 4). Observe that the tour of the tree induces
a linear order, the order of appearance, on the vertex set and on the edge set of the
tree. For tree-rooted maps, the tour of the spanning tree T also induces a linear order on
half-edges not in T (any of them is encountered once during a tour of T ). We shall say
that a vertex, an edge, a half-edge precedes another one around T .

Our constructions lead us to consider oriented maps, that is, maps in which all edges
are oriented. If an edge e is oriented from u to v, the vertex u is called the origin and v

the end. The half-edge incident to the origin (resp. end) is called the tail (resp. head).
The root of an oriented map will always be considered and represented as a head.

endorigin
tail head

Figure 2: Half-edges and endpoints.

We now recall a well-known correspondence between tree-rooted maps and shuffles of
two parenthesis systems [3, 6]. We derive from it the enumerative result mentioned above:
the number of tree-rooted maps of size n (i.e. with n edges) is CnCn+1. For this purpose,
we introduce some notations on words. A word w on a set A (called the alphabet) is a
finite sequence of elements (letters) in A. The length of w (that is, the number of letters in
w) is denoted |w| and, for a in A, the number of occurrences of a in w is denoted |w|a. A
word w on the two-letter alphabet {a, a} is a parenthesis system if |w|a = |w|a and for all
prefixes w′, |w′|a ≥ |w′|a. For instance, aaaaaa is a parenthesis system. A shuffle of two
parenthesis systems, or parenthesis-shuffle for short, is a word on the alphabet {a, a, b, b}
such that the subword of w consisting of letters in {a, a} and the subword consisting of
letters in {b, b} are parenthesis systems. For instance abababaaba is a parenthesis-shuffle.

Parenthesis-shuffles can also be seen as walks in the quarter plane. Consider walks
made of steps North, South, East, West, confined in the quadrant x ≥ 0, y ≥ 0. The
parenthesis-shuffles of size n are in one-to-one correspondence with walks of length 2n
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starting and returning at the origin. This correspondence is obtained by considering
each letter a (resp. a, b, b) as a North (resp. South, East, West) step. For instance,
we represented the walk corresponding to abbabaabbaab in Figure 3. The fact that the
subword of w consisting of letters in {a, a} (resp. {b, b}) is a parenthesis system implies
that the walk stays in the half-plane y ≥ 0 (resp. x ≥ 0) and returns at y = 0 (resp.
x = 0).

x

y

Figure 3: A walk in the quarter plane.

The size of a parenthesis system, or a parenthesis-shuffle, is half its length. For in-
stance, the parenthesis-shuffle abababaaba has size 5. It is well known that the number
of parenthesis systems of size n is the nth Catalan number Cn = 1

n+1

(

2n

n

)

. From this, a
simple calculation proves that the number of parenthesis-shuffles of size n is Sn = CnCn+1.
Indeed, there are

(

2n

2k

)

ways to shuffle a parenthesis system of size k (on {a, a}) with a

parenthesis system of size n− k (on {b, b}). And summing on k gives the result:

Sn =

n
∑

k=0

(

2n

2k

)

CkCn−k =
(2n)!

(n+ 1)!2

n
∑

k=0

(

n+ 1

k

)(

n + 1

n− k

)

=
(2n)!

(n+ 1)!2

(

2n+ 2

n

)

= CnCn+1.

Note, however, that this calculation involves the Chu-Vandermonde identity.

It remains to show that tree-rooted maps of size n are in one-to-one correspondence
with parenthesis-shuffles of size n. We first recall a very classical bijection between trees
and parenthesis systems. This correspondence is obtained by making the tour of the tree.
Doing so and writing a the first time we follow an edge and a the second time we follow
that edge (in the opposite direction) we obtain a parenthesis system. This parenthesis
system is indicated for the tree of Figure 4. Conversely, any parenthesis system can be
seen as a code for constructing a tree.

Now, consider a tree-rooted map. During the tour of the spanning tree we cross edges of
the map that are not in the spanning tree. In fact, each edge not in the spanning tree will
be crossed twice (once at each half-edge). Hence, making the tour of the spanning tree
and writing a the first time we follow an edge of the tree, a the second time, b the first time
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Figure 4: A tree and the associated parenthesis system.

we cross an edge not in the tree and b the second time, we obtain a parenthesis-shuffle.
We shall denote by Ξ this mapping from tree-rooted maps to parenthesis-shuffles. We
applied the mapping Ξ to the tree-rooted map of Figure 5.

babaababaabaabbabbababbaaaabba
Ξ

Figure 5: A tree-rooted map and the associated parenthesis-shuffle.

The reverse mapping can be described as follows: given a parenthesis-shuffle w we first
create the tree corresponding to the subword of w consisting of letters a, a (this will give
the spanning tree) then we glue to this tree a head for each letter b and a tail for each
letter b̄. There is only one way to connect heads to tails so that the result is a planar
map (that is, no edges intersect). Note that, if the map M has size n, the corresponding
parenthesis-shuffle w has size n since |w|a is the number of edges in the tree and |w|b is
the number of edges not in the tree.
This encoding due to Walsh and Lehman [6] establishes a one-to-one correspondence be-
tween tree-rooted maps of size n and parenthesis-shuffles of size n. Hence, there are
CnCn+1 tree-rooted maps of size n.

Such an elegant enumerative result is intriguing for combinatorists since Catalan num-
bers have very nice combinatorial interpretations. We have just seen that these numbers
count parenthesis systems and trees. In fact, Catalan numbers appear in many other con-
texts (see for instance Ex. 6.19 of [5] where 66 combinatorial interpretations are listed).
We now give another classical combinatorial interpretation of Catalan numbers, namely
non-crossing partitions. A non-crossing partition is an equivalence relation ∼ on a lin-
early ordered set S such that no elements a < b < c < d of S satisfy a ∼ c, b ∼ d and
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a � b. The equivalence classes of non-crossing partitions are called parts. Non-crossing
partitions have been extensively studied (see [4] and references therein).

Non-crossing partitions can be represented as cell decompositions of the half-plane.
If the set S is {s1, . . . , sn} with s1 < s2 < · · · < sn, we associate with si the vertex of
coordinates (i, 0) and with each part we associate a connected region of the lower half-
plane y ≤ 0 incident to the vertices of that part. The existence of a cell decomposition
with no intersection between cells is precisely the definition of non-crossing partitions. A
non-crossing partition of size 8 is represented in Figure 6. The only non-trivial parts of
this non-crossing partition are {1, 4, 5} and {6, 8}.

Non-crossing partitions of size n (i.e. on a set of size n) are in one-to-one corre-
spondence with trees of size n. One way of seeing this is to draw the dual of the cell-
representation of the partition, that is, to draw a vertex in each part and each anti-part
(connected cells complementary to parts in the half-plane decomposition) and connect
vertices corresponding to adjacent cells by an edge. The root is chosen in the infinite cell
as indicated in Figure 6. In the sequel, this mapping between non-crossing partitions and
trees is denoted Υ. It is a bijection between non-crossing partitions of size n and trees of
size n. It proves that the number of non-crossing partitions of size n is Cn.

Υ6 7 81 2 3 4 5

Figure 6: A non-crossing partition and the associated tree.

3 Bijective decomposition of tree-rooted maps

We begin with the presentation of our bijection between tree-rooted maps and pairs con-
sisting of a tree and a non-crossing partition. This bijection has two steps: first we orient
the edges of the map and then we disconnect its vertices.

Map orientation: Let MT be a tree-rooted map. We denote by ~MT the oriented map
obtained by orienting the edges of M according to the following rules:
• edges in the tree T are oriented from the root to the leaves,
• edges not in the tree T are oriented in such a way that their head precedes their tail
around T .
As always in this paper, the root is considered as a head.

In the sequel, the mapping MT 7→ ~MT is denoted δ. We applied this mapping to the
tree-rooted map of Figure 7. Note that any vertex of ~MT is incident to at least one head
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δ

Figure 7: A tree-rooted map MT and the corresponding oriented map ~MT .

(since the spanning tree is oriented from the root to the leaves).

Vertex explosion: We replace each vertex v of the oriented map ~MT by as many ver-
tices as heads incident to v and we suppress some adjacency relations between half-edges
incident to v according to the rule represented in Figure 8. That is, each tail t becomes
adjacent to exactly one head which is the first head encountered in counterclockwise di-
rection around v starting from t.

Figure 8: Local rule for suppressing the adjacency relations.

We shall prove (Lemma 11) that this suppression of some adjacency relations in ~MT

produces a tree denoted ϕ0( ~M
T ). Observe that this tree has the same number of edges,

say n, as the original map M . Hence, its vertex set S has size n + 1. This set is linearly
ordered by the order of appearance around the tree ϕ0( ~M

T ). We define an equivalence

relation ϕ1( ~M
T ) on S: two vertices are equivalent if they come from the same vertex of

~MT . We will prove (Lemma 12) that the equivalence relation ϕ1( ~M
T ) is a non-crossing

partition on the set S. The mapping ~MT 7→ (ϕ0( ~M
T ), ϕ1( ~M

T )) is called the vertex ex-
plosion process and is denoted ϕ.

Therefore, with any tree-rooted map MT of size n we associate a tree ϕ0( ~M
T ) of size

n and a non-crossing partition ϕ1( ~M
T ) of size n + 1. The following theorem states that

this correspondence is one-to-one.

Theorem 1 Let Φ be the mapping associating the ordered pair (ϕ0( ~M
T ), ϕ1( ~M

T )) with
the tree-rooted map MT . This mapping is a bijection between the set of tree-rooted maps
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of size n and the Cartesian product of the set of trees of size n and the set of non-crossing
partitions of size n + 1.
It follows that the number of tree-rooted maps of size n is CnCn+1.

Graphically, the bijection Φ is best represented by keeping track of the underlying
non-crossing partition during the vertex explosion process. This is done by creating for
each vertex of M a connected cell representing the corresponding part of the non-crossing
partition. The graphical representation of the vertex explosion process ϕ becomes as
indicated in Figure 9. For instance, we applied the mapping ϕ to the oriented map of
Figure 10.

Figure 9: The vertex explosion process and a part of the non-crossing partition.

1 2 3 4 5 6 97 8

1

2

3

7
6

5

8

9

4

Figure 10: The vertex explosion process ϕ.
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The rest of this section is devoted to the proof of Theorem 1. We first give a charac-
terization of the set of oriented maps, called tree-oriented maps, associated to tree-rooted
maps by the mapping δ. We also define the reverse mapping γ. Then we prove that the
vertex explosion process ϕ is a bijection between tree-oriented maps (of size n) and pairs
made of a tree and a non-crossing partition (of size n and n+ 1 respectively).

3.1 Tree-rooted maps and tree-oriented maps

In this subsection, we consider certain orientations of maps called tree-orientations (Def-

inition 2). We prove that the mapping δ : MT 7→ ~MT restricted to any given map M

induces a bijection between spanning trees and tree-orientations of M . The key property
explaining why the mapping δ is injective is that during a tour of a spanning tree T , the
tails of edges in T are encountered before their heads whereas it is the contrary for the
edges not in T . Using this property we will define a procedure γ for recovering spanning
trees from tree-orientations of M (Definition 5). We will prove that δ and γ are reverse
mappings that establish a one-to-one correspondence between tree-rooted maps and tree-
oriented maps (Proposition 3).

We begin with some definitions concerning cycles and paths in oriented maps. A
simple cycle (resp. simple path) is directed if all its edges are oriented consistently. A
simple cycle defines two regions of the sphere. The interior region (resp. exterior region)
of a directed cycle is the region situated at its left (resp. right) as indicated in Figure 11.
We call positive cycle a directed cycle having the root in its exterior region. Graphically,
positive cycles appear as counterclockwise directed cycles when the map is projected on
the plane with the root in the infinite face.

Exterior regionInterior
region

Figure 11: Interior and exterior regions of a directed cycle.

Definition 2 A tree-orientation of a map is an orientation without a positive cycle such
that any vertex can be reached from the root by a directed path. A tree-oriented map is a
map with a tree-orientation.

We will prove that the images of tree-rooted maps by the mapping δ are tree-oriented
maps. More precisely, we have the following proposition.
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Proposition 3 For any given map M , the mapping δ : MT 7→ ~MT induces a bijection
between spanning trees and tree-orientations of M .

We first prove the following lemma.

Lemma 4 For all tree-rooted maps MT , the map ~MT is tree-oriented.

Proof: For any vertex v, there is a path in T from the root to v. This path is oriented
from the root to v in ~MT . It remains to prove that there is no positive cycle. Suppose the
contrary and consider a positive cycle C. By definition, the root is in the exterior region
of C. Since C is a cycle there are edges of C which are not in T . Consider the first such
edge e encountered during the tour of T . When we first cross e we enter for the first time
the interior region of C. Given the orientation of C, the half-edge of e that we first cross
is its tail (see Figure 12). But, by definition of ~MT , the half-edge of e that we first cross
should be its head. This gives a contradiction.

�

C
e

The tree T

The tour of T

Figure 12: Entering the cycle C.

We now define a procedure γ constructing a spanning tree T on a tree-oriented map ~M .

Algorithm 5

Procedure γ:

1. At the beginning, the submap T is consists only of the root and root-vertex.

2. We make the tour of T (starting from the root) and apply the following rule.
When the tail of an edge e is encountered and its head has not been encountered
yet, we add e to T (together with its end).
Then we continue the tour of T , that is, if e is in T we follow its border, otherwise
we cross e.

3. We stop when arriving at the root and return the submap T .

We now prove the correctness of the procedure γ.

Lemma 6 The mapping γ is well defined (terminates) on tree-oriented maps and returns
a spanning tree.
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Proof:

• At any stage of the procedure, the submap T is a tree.
Suppose not, and consider the first time an edge e creating a cycle is added to T . We
denote by T0 the tree T just before that time. The edge e is added to T0 when its tail t
is encountered. At that time, its head h has not been encountered but is incident to T0

(since adding e creates a cycle). We know that, when e is added, the border of T0 from
the root to t has been followed but not the border of T0 from t to the root. Moreover, the
head h lies after t around T0 (since h has not been encountered yet). Observe that the
right border of any edge of T0 has been followed (just after this edge was added to T0).
Thus, the border of T0 from t to h is made of the left borders of some edges e1, e2, . . . , ek.
Hence, these edges form a directed path from h to t and e, e1, e2, . . . , ek form a directed
cycle C. Since h lies after t around T0, the root is in the exterior region of C (see Figure
13). Therefore, the cycle C is positive which is impossible.

e

. .
.

The tree T0

e1
e2

ek

h t

The tour of T

Figure 13: The submap T remains a tree.

• The procedure γ terminates.
The set T remains a tree connected to the root. Hence, it is impossible to follow the same
border of the same edge twice without encountering the root.
• At the end of the procedure γ, the tree T is spanning.
At the end of the procedure, the whole border of T has been followed. Hence, any half-edge
incident to T has been encountered. Now, suppose that a vertex v is not in T and consider
a directed path from the root to v. (This path exists by definition of tree-orientations.)
There is an edge of this path with its origin in T and its end out of T . Therefore, its tail
is incident to T but not its head. Thus, it should have been added to T (with its end)
when its tail was encountered. This is a contradiction.

�

We continue the proof of Proposition 3. We proved that the mapping δ associates a
tree-orientation of a map to any spanning tree of that map (Lemma 4). We proved that
the mapping γ associates a spanning tree of a map to any tree-orientation of that map
(Lemma 6). It remains to prove that δ ◦ γ and γ ◦ δ are identity mappings.

Lemma 7 Let ~M be a tree-oriented map and T be the spanning tree constructed by the
procedure γ. The edges in T are oriented from the root to the leaves and the edges not in
T are oriented in such a way that their heads precede their tails around T .
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Proof:

• Edges in T are oriented from the root to the leaves. An edge e is added to T when its
tail is encountered. At that time the end of e is not in T or adding e would create a cycle.
The property follows by induction.
• Edges not in T are oriented in such a way that their head precedes their tail around T .
If an edge breaks this rule it should have been added to T when its tail was encountered.

�

Corollary 8 The mapping δ ◦ γ is the identity mapping on tree-oriented maps.

Proof: Let ~M be a tree-oriented map and T be the tree constructed by the procedure γ.
By Lemma 7, the edges in T are oriented from the root to the leaves and the edges not in
T are oriented in such a way that their head precedes their tail around T . By definition
of δ, this is also the case in δ ◦ γ( ~M). Thus, δ ◦ γ is the identity mapping on tree-oriented
maps.

�

Lemma 9 The mapping γ ◦ δ is the identity mapping on tree-rooted maps.

Proof: Let MT be a tree-rooted map. Suppose the spanning tree T ′ constructed by the
procedure γ(δ(MT )) differs from T . We consider the order of edges induced by the tour
of T . Let e be the smallest edge in the symmetric difference of T and T ′. The tours of
T and T ′ must coincide until a half-edge h of e is encountered. We distinguish the head
and the tail of e according to its orientation in δ(MT ). If e is in T , its tail is encountered
before its head around T (by definition of δ(MT )). In this case, h is a tail. If e is not
in T ′, its head is encountered before its tail around T ′ (by Lemma 7). In this case, h is
a head. Therefore, e cannot be in T \ T ′. Similarly, e cannot be in T ′ \ T since e being
in T ′ implies that h is a head and e not being in T implies that h is a tail. We obtain a
contradiction.

�

This completes the proof of Proposition 3: tree-oriented maps are in one-to-one cor-
respondence with tree-rooted maps.

�

3.2 The vertex explosion process on tree-oriented maps

This subsection is devoted to the proof of the following proposition.

Proposition 10 The mapping ϕ : ~M 7→ (ϕ0( ~M), ϕ1( ~M)) is a bijection between tree-
oriented maps of size n and ordered pairs consisting of a tree of size n and a non-crossing
partition of size n+ 1.
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We start with a lemma concerning the mapping ϕ0.

Lemma 11 The image of any tree-oriented map ~M by ϕ0 is a tree (oriented from the
root to the leaves).

Proof: Let ~M be a tree-oriented map. Any vertex is incident to at least one head (there
is a directed path from the root to any vertex), hence the mapping ϕ0 is well defined. The

image ϕ0( ~M) has the same number of edges, say n, as ~M . The map ~M has n + 1 heads

(one per edge plus one for the root). Since any vertex in ϕ0( ~M) is incident to exactly one

head, the image ϕ0( ~M) has n+ 1 vertices. Thus, it is sufficient to prove that ϕ0( ~M) has
no cycle (connectivity then follows).

Suppose ϕ0( ~M) contains a simple cycle C. Since any vertex in C is incident to exactly

one head, the edges of C are oriented consistently. We identify the edges of ~M and the
edges of ϕ0( ~M). The edges of C form a cycle in ~M but this cycle might not be simple.

We consider a directed path P in ~M from the root to a vertex v (of ~M) incident with an
edge of C. We suppose (without loss of generality) that v is the only vertex of P incident
with an edge of C. Let h be the head in P incident with v and t′ be the first tail in C

following h in counterclockwise direction around v. We can construct a directed simple
cycle C ′ (in ~M) made of edges in C and containing t′ (see Figure 14). Let h′ be the head

of C ′ incident with v. Since C ′ is a directed cycle of the tree-oriented map ~M , it contains
the root in its interior region. Since v is the only vertex of P incident with an edge in
C ′, the head h is in the interior region of C ′. Therefore, in counterclockwise direction
around v we have h, h′ and t′ (and possibly some other half-edges). We consider the tail t

following h in the cycle C (considered as a directed simple cycle of ϕ0( ~M)). By the choice
of t′ we know that t is between t′ and h in counterclockwise direction around v (t and
t′ may be distinct or not). Hence, in counterclockwise direction around v we have h, h′

and t. Hence, h′ is not the first head encountered in counterclockwise direction around v
starting from t. Therefore, by definition of the vertex explosion process, h′ and t are not
adjacent in ϕ0( ~M). We reach a contradiction.

�

v

t′
C ′

t

h′
P

h

Figure 14: The cycle C ′ in ~M .

We now study the properties of the mapping ϕ1. Two consecutive half-edges around
a vertex define a corner. A vertex has as many corners as incident half-edges. Let T be
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a tree and v be a vertex of T . The first corner of the vertex v is the first corner of v
encountered around T . If the tree is oriented from the root to the leaves, the first corner
of v is at the right of the head incident to v as shown in Figure 15.

v first corner of v

Figure 15: The first corner of a vertex.

We compare the vertices of the tree ϕ0( ~M) according to their order of appearance around
this tree. We write u < v if u precedes v (i.e. the first corner of u precedes the first corner
of v) around the tree.

Lemma 12 For any tree-oriented map ~M , the equivalence relation ϕ1( ~M) on the set

of vertices of the tree ϕ0( ~M) ordered by their order of appearance around this tree is a
non-crossing partition.

Proof: The proof relies on the graphical representation of the equivalence relation ∼=
ϕ1( ~M) given by Figure 9. During the vertex explosion process, we associate a connected

cell Cv with each vertex v of ~M , that is, with each equivalence class of the relation ∼.
The cell Cv can be chosen to be incident only with the first corners of the vertices in its
class but not otherwise incident with the tree. Moreover the cells can be chosen so that
they do not intersect.
Suppose v1 < v2 < v3 < v4, v1 ∼ v3 and v2 ∼ v4. One can draw a path from the first
corner of v1 to the first corner of v3 staying in a cell C and a path from the first corner of
v2 to the first corner of v4 staying in a cell C ′. It is clear that these two paths intersect
(see Figure 16). Thus C = C ′ and v1 ∼ v2.

�

v4

v3

v2

v1

Figure 16: The two paths intersect.
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We have proved that the application ϕ : ~M 7→ (ϕ0( ~M), ϕ1( ~M)) associates a tree of
size n and a non-crossing partition of size n + 1 with any tree-oriented map of size n.
Conversely, we define the mapping ψ.

Definition 13 Let T be a tree of size n and ∼ be a non-crossing partition on a linearly
ordered set S of size n + 1. We identify S with the set of vertices of T ordered by the
order of appearance around T . We construct the oriented map ψ(T,∼) as follows. First
we orient the tree T from the root to the leaves. With each part {v1, v2, . . . , vk} of the
partition, we associate a simply connected cell incident to the first corner of vi, i = 1 . . . k
but not otherwise incident with T . Since ∼ is a non-crossing partition, these cells can be
chosen without intersections. Then we contract each cell into a vertex in such a way no
edges of T intersect.

We first prove the following lemma.

Lemma 14 For any tree T of size n and any non-crossing partition ∼ of size n+ 1, the
oriented map ψ(T,∼) is tree-oriented.

Proof: Every vertex of ~M = ψ(T,∼) is connected to the root by a directed path (since
it is the case in T ). It remains to show that there is no positive cycle.

Let C be a positive cycle of ~M and e an edge of C. We consider the directed path P of
T from the root to e (the root and e included). By definition, the root is in the exterior
region of C. Let h be the last head of P contained in the exterior region of C and t the
tail following h in P (the tail t exists since the last edge e of P is in C). By definition,
the tail t is either in C or in its interior region. Let v be the end of h (i.e the origin

of t) in ~M and h′ the head of C incident with v (see Figure 17). In counterclockwise
direction around v, we have h, t and h′ (and possibly some other half-edges). The vertex
v is obtained by contracting a cell Cv of the partition ∼ corresponding to some vertices of
T . Each of these vertices is incident to one head in T , hence h and h′ were incident to two
distinct vertices, say v1 and v2, of T . The cell Cv is incident to the first corner of v1 which
is situated between h and t in counterclockwise direction around v1. Therefore, after the
cell Cv is contracted, the half-edges of v2 are situated between h and t in counterclockwise
direction around v. Thus, in counterclockwise direction around v, we have h, h′ and t

(and possibly some other half-edges). We obtain a contradiction.
�

v

Ch′

t
P h

Figure 17: The map ~M = ψ(T,∼) has no positive cycle.
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We now conclude the proof of Theorem 1.
• Let ~M be a tree-oriented map. We know from Lemma 11 that T = ϕ0( ~M) is a tree
oriented from the root to the leaves. Moreover, we know from Lemma 12 that the partition
∼= ϕ0( ~M) of the vertex set of T is non-crossing. Let u be a vertex of T . Let {v1, . . . , vk}

be a part of the partition ∼ corresponding to a vertex v of ~M . The cell Cv associated to v
during the vertex explosion process is incident to the corner of vi, i = 1 . . . k at the right
of the head incident with vi (see Figure 9). Since T is oriented from the root to the leaves,

this corner is the first corner of vi. Therefore, by definition of ψ, we have ψ ◦ϕ( ~M) = ~M .
Thus, ψ ◦ ϕ is the identity mapping on tree-oriented maps.
• Let T be a tree of size n and ∼ be a non-crossing partition on a linearly ordered set S
of size n + 1. We know from Lemma 14 that ~M = ψ(T,∼) is a tree-oriented map. We
think of the tree T as being oriented from the root to the leaves and we identify the set
S with the vertex set of T . Let v be a vertex of ~M corresponding to the part {v1, . . . , vk}
of the partition ∼. The vertex v is obtained by contracting a cell Cv incident with the
first corner of vi, i = 1 . . . k, that is, the corner at the right of the head hi incident with
vi. Therefore, if t is a tail incident with vi in T , then, hi is the first head encountered
in counterclockwise direction around v starting from t (in ~M). Given the definition of
the vertex explosion process, the adjacency relations between the half-edges incident with
v that are preserved by the vertex explosion process are exactly the adjacency relations
in the tree T . Thus, the trees ϕ0( ~M) and T are the same. Moreover, the part of the

partition ϕ1( ~M) associated to the vertex v is {v1, . . . , vk}. Thus, the partitions ϕ1( ~M)
and ∼ are the same. Hence, ϕ ◦ ψ is the identity mapping on pairs made of a tree of size
n and a non-crossing partition of size n + 1.
Thus, the mapping ϕ is a bijection between tree-oriented maps of size n and pairs made
of a tree of size n and a non-crossing partition of size n + 1. This completes the proof of
Proposition 10 and Theorem 1.

�

4 Correspondence with a bijection due to Cori, Du-

lucq and Viennot

In this section, we prove that our bijection Φ is isomorphic to a former bijection due to
Cori, Dulucq and Viennot defined on parenthesis-shuffles [1]. We know that tree-rooted
maps are in one-to-one correspondence with parenthesis-shuffles by the mapping Ξ defined
in Section 2. Our bijection Φ : MT 7→ (ϕ0( ~M

T ), ϕ1( ~M
T )) associates with any tree-rooted

map MT of size n, a tree ϕ0( ~M
T ) of size n and a non-crossing partition ϕ1( ~M

T ) of size
n+1. The bijection Λ : w 7→ (λ′

0(w), λ′1(w)) of Cori et al. associates with any parenthesis-
shuffle w of size n, a tree λ′

0(w) of size n and a binary tree λ′

1(w) of size n + 1. We shall
prove that these two bijections are isomorphic via the encoding of tree-rooted maps by
parenthesis-shuffles. That is, we shall prove that there exist two independent bijections
Ω and Θ such that, if w = Ξ(MT ), then ϕ0( ~M

T ) = Ω(λ′0(w)) and ϕ1( ~M
T ) = Θ(λ′

1(w)).
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In fact, we have adjusted some definitions from [1] so that Ω is the identity mapping on
trees. This situation is represented in Figure 18.

Tree-rooted maps

Parenthesis-shuffles

Ξ

w

MT

Φ

δ

γ ψ~MT

Tree-oriented maps

Trees × Non-crossing partitions

ϕ0( ~M
T ), ϕ1( ~M

T )

Id Θ

λ′0(w), λ′1(w)

ϕ

Λ
Trees × Binary trees

Figure 18: The bijection diagram.

4.1 The bijection Λ of Cori, Dulucq and Viennot

We begin with a presentation of the bijection Λ of Cori et al. For the sake of simplicity,
the presentation given here is not completely identical to the one of the original article
[1]. But, whenever our definitions differ there is an obvious equivalence via a composition
with a simple, well-known bijection. The interested reader can look for more details in
the original article. In this article, Cori et al. defined recursively two mappings λ0 and λ1

on the set of prefix-shuffles. A prefix-shuffle is a word w on the alphabet {a, a, b, b} such
that, for all prefixes w′ of w, we have |w′|a ≥ |w′|a and |w′|b ≥ |w′|b. Note that the set of
prefix-shuffles is the set of prefixes of parenthesis-shuffles. The mappings λ0 and λ1 both
eventually return trees. In the original paper [1], the trees returned by λ0 and λ1 were
called the leaf code and the tree code respectively.

We first define the mapping λ0. It involves the mapping σ that associates the tree
σ(T1, T2) represented in Figure 19 with the ordered pair of trees (T1, T2).

T2

T1

T1 T2
σ

Figure 19: The mapping σ on ordered pairs of trees.

We consider the alphabet U = {u, v} and the infinite alphabet T consisting of all
trees. A word s on the alphabet U∪T is a tree-sequence if s = ut1u . . . ti−1utivti+1 . . . tkv

where 1 ≤ i ≤ k and t1, . . . , tk are trees. The mapping λ0 associates tree-sequences with
prefix-shuffles.
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Definition 15 The mapping λ0 is recursively defined on prefix-shuffles by the following
rules:

• If w = ε is the empty word, λ0(w) is the tree-sequence uτv where τ is the tree reduced
to a root and a vertex.

τ :

• If w = w′a, the tree-sequence λ0(w) is obtained from λ0(w
′) by replacing the last

occurrence of u by uτv.

• If w = w′b, the tree-sequence λ0(w) is obtained from λ0(w
′) by replacing the first

occurrence of v by uτv.

• If w = w′a, we consider the first occurrence of v in λ0(w
′) and the trees T1 and T2

directly preceding and following it. The tree-sequence λ0(w) is obtained from λ0(w
′)

by replacing the subword T1vT2 by the tree σ(T1, T2).

• If w = w′b, we consider the last occurrence of u in λ0(w
′) and the trees T1 and T2

directly preceding and following it. The tree-sequence λ0(w) is obtained from λ0(w
′)

by replacing the subword T1uT2 by the tree σ(T1, T2).

We applied the mapping λ0 to the word w = baaaba. The different steps are repre-
sented in Figure 20.

b a a a b au v uu v u u v v u u v u u v v u v v u v

Figure 20: The mapping λ0 applied to the prefix-shuffle w = baaaba.

It is easily seen by induction that the number of v (resp. u) in λ0(w) is |w|a − |w|a +1
(resp. |w|b−|w|b +1). Hence, the mapping λ0 is well defined on prefix-shuffles. Moreover,
the first letter u and last letter v are never replaced by anything. Observe also (by
induction) that the letters u always precede the letters v in λ0(w). Thus, λ0(w) is indeed
a tree-sequence. If w is a parenthesis-shuffle, there is exactly one letter u and one letter
v in λ0(w), hence λ0(w) is a three letter word uTv.

Definition 16 The mapping λ′

0 associates with a parenthesis-shuffle w the unique tree T
in the tree-sequence λ0(w) = uTv.

Observe that, for any prefix-shuffle w, the total number of edges in the trees t1, . . . , tk
of the tree-sequence λ0(w) = ut1u . . . ti−1utivti+1 . . . tkv is |w|a + |w|b. Hence, if w is
parenthesis-shuffle of size n, the tree λ′

0(w) has size n.
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We now define the mapping λ1 which associates binary trees with prefix-shuffles. A
binary tree is a (planted plane) tree for which each vertex is either a node of degree 3 or
a leaf of degree 1. The size of a binary tree is defined as the number of its nodes. It is
well-known that binary trees of size n (i.e. with n nodes) are in one-to-one correspondence
with trees of size n (i.e. with n edges).

In a binary tree, the two sons of a node are called left son and right son. In counter-
clockwise order around a node we find the father (or the root), the left son and the right
son (see Figure 21). A left leaf (resp. right leaf ) is a leaf which is a left son (resp. right
son). As before, we compare vertices according to their order of appearance around the
tree and we shall talk about the first and last leaf. Moreover, a leaf will be either active
or inactive. Graphically, active leaves will be represented by circles and inactive ones by
squares.

father

right sonleft son

Figure 21: Left and right son of a node

Definition 17 The mapping λ1 is recursively defined on prefix-shuffles by the following
rules:

• If w = ε is the empty word, λ1(w) is the binary tree B1 consisting of a root, a node
and two active leaves.

B1 :

• If w = w′a, the tree λ1(w) is obtained from λ1(w
′) by replacing the last active left

leaf by B1.
a

• If w = w′b, the tree λ1(w) is obtained from λ1(w
′) by replacing the first active right

leaf by B1.
b

• If w = w′a, the tree λ1(w) is obtained from λ1(w
′) by inactivating the first active

right leaf.
a
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• If w = w′b, the tree λ1(w) is obtained from λ1(w
′) by inactivating the last active left

leaf.
b

We applied the mapping λ1 to the word w = baaaba. The different steps are repre-
sented in Figure 22.

b aaaab

Figure 22: The mapping λ1 on the word w = baaaba.

It is easily seen by induction that the number of active right leaves (resp. left leaves)
in λ1(w) is |w|a − |w|a + 1 (resp. |w|b − |w|b + 1). Hence, the mapping λ1 is well defined
on prefix-shuffles. Observe that the binary tree λ1(w) has |w|a + |w|b + 1 nodes. Observe
also (by induction) that active left leaves always precede active right leaves in λ1(w).
Moreover, if w is a parenthesis-shuffle, only the first left leaf and the last right leaf are
active (since they can never be inactivated).

Definition 18 The mapping λ′

1 associates with a parenthesis-shuffle w of size n the bi-
nary tree of size n+ 1 obtained from λ1(w) by inactivating the two active leaves.

We now make some informal remarks explaining why the mapping w 7→ (λ0(w), λ1(w))
is injective. It is, of course, possible to decide from (λ0(w), λ1(w)) if w is the empty word.
Indeed, w is the empty word iff λ1(w) = B1 (equivalently iff λ0(w) = τ). Otherwise, the
remarks below show that the last letter α of w = w′α can be determined as well as λ0(w

′)
and λ1(w

′). So any prefix-shuffle w can be entirely recovered from (λ0(w), λ1(w)).

Remarks:

• For any prefix-shuffle w, the number of letters u (resp. v) in the tree-sequence λ0(w)
is equal to the number of active left leaves (resp. right leaves) in the binary tree λ1(w).
Furthermore, it can be shown by induction that the size of the tree ti lying between the
ith and i + 1th letters u, v in λ0(w) is the number of inactive leaves lying between the ith

and i+ 1th active leaves in λ1(w).
• The three following statements are equivalent:
- the word w is not empty and the last letter α of w = w′α is in {a, b},
- there is a sequence uτv in λ0(w),
- there is an active left leaf and an active right leaf which are siblings.
In this case, λ1(w

′) is obtained from λ1(w) by deleting the two actives leaves and making
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the father an active leaf `. Moreover, α = a (resp. α = b) if ` is a left leaf (resp. right
leaf) in λ1(w

′) in which case λ0(w
′) is obtained from λ0(w) by replacing the subword uτv

by u (resp. v).
• If the last letter α of w = w′α is in {a, b}, we know from the above remark that the
tree T lying between the last letter u and the first letter v in the tree-sequence λ0(w) has
size k > 0. Since k > 0, the tree T admits a (unique) preimage (T1, T2) by the mapping
σ. Let k′ be the size of the tree T1. Then k′ < k. We know that there are k inactive
leaves lying between the last active left leaf and the first active right leaf in λ1(w). The
binary tree λ1(w

′) is obtained from λ1(w) by activating the k′ + 1th leaf ` encountered
when following the border of the tree starting from the last active left leaf. Moreover,
α = a (resp. α = b) if ` is a right leaf (resp. left leaf), in which case the tree-sequence
λ0(w

′) is obtained from λ0(w) by replacing T by T1vT2 (resp. T1uT2).

From these remarks, we see that the mapping w 7→ (λ0(w), λ1(w)) is injective. It can
be shown, with the same ideas, that it is bijective on the set of pairs consisting of a tree-
sequence S and a binary tree B with active and inactive leaves satisfying the following
conditions:
- the active left leaves precede the active right leaves in B,
- the number of active left leaves (resp. right leaves) in B is the same as the number of u
(resp. v) in S,
- the number of inactive leaves lying between the ith and i + 1th active leaves in B is the
size of the tree lying between the ith and i+ 1th letters u, v in S.

We now define the mapping Λ of Cori et al. on parenthesis-shuffles.

Definition 19 The mapping w 7→ (λ′

0(w), λ′1(w)) defined on parenthesis-shuffles is de-
noted Λ.

We know that Λ associates with a parenthesis-shuffle of size n a pair consisting of a tree
of size n and a binary tree of size n + 1. The remarks above should convince the reader
that the mapping Λ is a bijection between these two sets of objects.

4.2 The bijections Φ and Λ are isomorphic

We now return to our business and prove that the bijection Λ of Cori et al. and our
bijection Φ are isomorphic. Before stating precisely this result, we define a (non-classical)
bijection θ between binary trees and trees. By composition, this allows us to define a
bijection Θ between binary trees and non-crossing partitions.

Let e be an edge of a binary tree. The edge e is said to be branching if one of its
vertices is a right son and the other is a left son or the root-vertex. Intuitively, this means
that the edge e is non-parallel to its parent-edge. For instance, the branching edges of
the binary tree in Figure 23 are indicated by thick lines.
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Definition 20 Let B be a binary tree. The tree θ(B) is obtained by contracting every
non-branching edge. The non-crossing partition Θ(B) is the image of θ(B) by the mapping
Υ−1 (see Figure 6).

We applied the mapping Θ to the binary tree of Figure 23.

Υ−1

Θ

θ

Figure 23: The mappings θ and Θ.

The mapping Θ is a bijection between binary trees of size n (n nodes) and trees of
size n (n edges). The proof is omitted here since we will not use this property.
We now state the main result of this section.

Theorem 21 Let MT be a tree-rooted map and w = Ξ(MT ) its associated parenthesis-

shuffle. Let ϕ0( ~M
T ) and ϕ1( ~M

T ) be the tree and the non-crossing partition obtained from
MT by the mapping Φ. Let λ′

0(w) and λ′

1(w) be the tree and binary tree obtained from w

by the mapping Λ. Then ϕ0( ~M
T ) = λ′0(w) and ϕ1( ~M

T ) = Θ(λ′

1(w)).

This relation between the mappings Λ and Φ is represented by Figure 18. As an il-
lustration, we applied the mapping Φ to the tree-rooted map MT of Figure 24 and we
applied the mapping Λ to w = Ξ(MT ) = baaaba. The rest of this section is devoted to
the proof of Theorem 21.

4.3 Prefix-maps

The mappings λ′

0 and λ′1 are defined on parenthesis-shuffles from the more general map-

pings λ0 and λ1 defined on prefix-shuffles. In order to relate ϕ0( ~M
T ) and λ′0(w) (resp.

ϕ1( ~M
T ) and λ′1(w)) we need to define the prefix-maps which are in one-to-one correspon-

dence with prefix-shuffles. As we will see, prefix-maps are tree-oriented maps together
with some dangling heads in the root-face. In Subsections 4.4 and 4.5 we shall extend the
mappings ϕ0 and ϕ1 defined in Section 3 to prefix-maps.

For any prefix-shuffle w we denote by wa (resp. wb) the subword of w consisting of the
letters a, a (resp. b, b). The words wa and wb are prefixes of parenthesis systems. We say
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ΘId

Φ

Λ
baaaba

Ξ

Figure 24: The isomorphism between Λ and Φ.

that an occurrence of a letter c = a, b is paired with an occurrence of c if the subword of wc

lying between these two letters is a parenthesis system. There are |w|a − |w|a non-paired
letters a and |w|b − |w|b non-paired letters b in w. We denote by w+

a the parenthesis
system obtained from wa by adding |w|a − |w|a letters a at the end of this word.

Let w be a prefix-shuffle. We define Tw as the tree associated to the parenthesis system
w+

a , that is, Tw is such that, making the tour of Tw and writing a the first time we follow
an edge and a the second time, we obtain w+

a . We orient the edges of Tw from the root to
the leaves. Then, we add half-edges to Tw by looking at the position of the letters b and b
in w. More precisely, we read the word w and while making the tour of T according to the
letters a, a, we insert heads for the letters b and tails for the letters b. If an occurrence of
b and an occurrence of b are paired in w we connect the corresponding head and tail. We
obtain an oriented map together with some heads called dangling heads corresponding to
non-paired letters b of w. In the tree Tw, the edges corresponding to non-paired letters
a are called active while the others are called inactive. The prefix-map associated with
w, denoted by Mw, is the oriented map (with dangling heads and active edges) obtained.
For instance, the prefix-map associated with babaababaab has been represented in Figure
25 (the active edges are dashed).

Observe that Tw is a spanning tree of the prefix-map Mw. The orientation of Mw is the
tree-orientation associated to the spanning tree Tw by the mapping δ defined in Section
3. In particular, when w is a parenthesis-shuffle, the prefix-map Mw is a map (i.e. it has
no active edge and no dangling head except for the root) which is tree-oriented. More

precisely, if w = Ξ(MT ), the tree-oriented map Mw is ~MT ≡ δ(MT ).

Let w be a prefix-shuffle. The heads of active edges in the prefix map Mw are called
rooting heads, and their ends are called rooting vertices. By convention, the root is con-
sidered as a rooting head. As before, we compare active edges (resp. rooting vertices,

the electronic journal of combinatorics 14 (2007), #R9 23



the last active edge

the root

the last dangling head

Figure 25: The prefix-map associated to babaababaab.

dangling heads) of Mw according to their order of appearance around Tw. By convention,
the root is considered as the first rooting head.

Let w+ be the word w followed by |w|a − |w|a letters a. We obtain w+ by making
the tour of the tree Tw and writing a the first time we follow an edge of the tree, a the
second time, b when we cross a head not in the tree and b when we cross a tail not in
the tree. Each prefix of w+ corresponds to a given time in this journey. In particular,
w corresponds to a given corner c of a vertex v. The |w|a − |w|a letters a at the end
of w+ correspond to the left border of active edges followed from c to the root. Thus,
the active edges are the edges on the directed path of Tw from the root to v. Note that
an active edge precedes another one if it appears before on the path from the root to v.
Therefore, v is the last rooting vertex and c is the corner at the left of the last rooting
head. Moreover, active edges are directed from a rooting vertex to the next one (for the
appearance order). In particular, the next-to-last rooting vertex (if it exists) is the origin
of the last active edge.

We now explore the relation between Mw and Mwα when α is a letter in {a, a, b, b}.

Lemma 22 Let c be the corner at the left of the last rooting head of Mw.

• Mwa is obtained from Mw by adding an edge e in the corner c. It is oriented from
this corner to a vertex not present in Mw. The edge e is the last active edge of Mwa.

• Mwb is obtained from Mw by adding a dangling head h in the corner c. The head h
is the last dangling head of Mwb.

• Mwa is obtained from Mw by inactivating the last active edge e. The origin of e
becomes the last rooting vertex.

• Mwb is obtained from Mw by adding a tail in the corner c and connecting it to the
last dangling head.

In any case, the appearance order on the edges, half-edges and vertices present in Mw is
the same in Mwα.
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Proof: As mentioned above, the corner c is the corner reached when the word w is written
during the tour of Tw in Mw.
• Case α = a. The letter a added to w is not paired. Therefore, it corresponds to a new
active edge e added to Tw. This new edge is added in the corner c. The edge e is oriented
from c to a new vertex (since it is leaf of Twa). All active edges of Mw are encountered
before c around the spanning tree Tw. Therefore, e is the last active edge of Mwa.
• Case α = b. The letter b added to w is not paired. Therefore, it corresponds to a new
dangling head h. This new head is added in the corner c. All dangling heads of Mw are
encountered before c around the spanning tree Tw. Therefore, h is the last dangling head
of Mwb.
• Case α = a. The last letter a of w is paired with the letter a added to w. This last
letter a corresponds to the last active edge. Therefore, the last active edge e of Mw is
inactivated. We know that the next-to-last rooting vertex of Mw is the origin v of the
last active edge e. Therefore, v becomes the last rooting vertex.
• Case α = b. The last letter b of w is paired with the letter b added to w. This last letter
b corresponds to the last dangling head h′. Hence, Mwb is obtained from Mw by adding a
tail h in the corner c and connecting it to h′.

�

This completes our study of prefix-maps. We are now ready to extend the mappings ϕ0

and ϕ1 to prefix maps and to prove Theorem 21.

4.4 The trees ϕ0( ~M
T ) and λ′0(w) are the same

In this subsection, we prove that, when w = Ξ(MT ), the trees ϕ0( ~M
T ) and λ′0(w) are the

same.

Let w be a prefix-shuffle and Mw the corresponding prefix-map. Note that any vertex
ofMw is incident to at least one head. The prefix-forest of w, denoted by Fw, is obtained by
deleting the tails of active edges and then applying the vertex explosion process of Figure
9 (we forget about the cells corresponding to the parts of the non-crossing partition). We
will prove that the prefix-forest is indeed a forest (i.e. a collection of trees) in Proposition
23. For instance, we represented the prefix-forest of w = babaababaab in Figure 26.

Note that, if w = Ξ(MT ) is a parenthesis-shuffle, the prefix-map Mw is ~MT and no

edge is active. Thus, in this case, the prefix-forest Fw is the tree ϕ0( ~M
T ). We now prove

a relation between the prefix-forest Fw and the tree-sequence λ0(w).

Proposition 23 Let w be a prefix-shuffle. Let h1 < · · · < hk be the dangling heads and
h′1 < · · · < h′l be the rooting heads of the prefix-map Mw (linearly ordered by the appearance
order). The prefix-forest Fw is a collection of k + l trees t1, . . . , tk, t

′

1, . . . , t
′

l. The root of
the tree ti, i = 1, . . . , k is hi and the root of the tree t′i, i = 1, . . . , l is h′i. Moreover, the
tree-sequence λ0(w) is ut1u . . . utkut

′

lv . . . vt
′

1v .
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t′1

t′2

t′3

t1

Figure 26: The prefix-forest Fw (on the right).

Proof: We use Lemma 22 and prove the property by induction on the length of w.
If w is the empty word, the prefix-map Mw is the tree τ reduced to a vertex and a root.
Hence, the prefix-forest Fw is reduced to a single tree τ = t′1. The tree-sequence λ0(w

′)
is equal to uτv thus the property is satisfied. If w′ = wα, we suppose the lemma true for
w, we write λ0(w) = ut1u . . . utkut

′

lv . . . vt
′

1v and study separately the four possible cases.
• Case α = a. The prefix-map Mwa is obtained from Mw by adding an edge e incident to
the last rooting vertex. The edge e is the last active edge of Mwa. It is oriented toward
a new vertex v not present in Mw. The tail of e is deleted in the construction of Fwa and
its head h = h′l+1

is only incident to v. Therefore, Fwa is obtained from Fw by adding the
tree τ = t′l+1

(the tree reduced to a root and a vertex) rooted on the last rooting head h.
By definition, λ0(wa) = ut1u . . . utkuτvt

′

lv . . . vt
′

1v, so we observe that the property is
satisfied by wa.
• Case α = b. The prefix-map Mwb is obtained from Mw by adding a dangling head
h = hk+1 in the corner at the left of the last rooting head h′

l. Therefore, during the vertex
explosion process h ”steals” the tree t′l rooted on h′l in Fw (see Figure 27). That is, in Fwb

the tree rooted on h′l is reduced to a vertex and the tree rooted on h is t′l. The head h is
the last dangling head of Mwb.
By definition, λ0(wb) = ut1u . . . utkut

′

luτvt
′

l−1
. . . vt′1v, so we observe that the property is

satisfied by wb.
• Case α = a. The prefix-map Mwa is obtained from Mw by inactivating the last active
edge e. The origin v of e is the next-to-last rooting vertex of Mw. Moreover, e is the first
edge encountered in clockwise order around v starting from h′

l−1. In Fwa, the head h′l is
part of the edge e which links the tree t′l to the tree t′l−1

rooted on h′l−1
(see Figure 28).

Therefore, the tree rooted on h′l−1
in Fwa is t = σ(t′l, t

′

l−1
).

By definition, λ0(wa) = ut1u . . . utkutvt
′

l−2
. . . vt′1v, so we observe that the property is

satisfied by wa.
• Case α = b. The prefix-map Mwb is obtained from Mw by adding a tail in the corner
at the left of the last rooting head h′l and connecting it to the last dangling head hk. In
Fwb, the head hk is part of an edge e which links the tree tk to the tree t′l rooted on h′l.
Therefore, the tree rooted on h′l in Fwb is t = σ(tk, t

′

l). The illustration would be the same
as Figure 28 except h′l−1

, h′l, t
′

l−1
, t′l would be replaced by h′l, hk, t

′

l, tk respectively.
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vertex explosion

t′l

t′lh

vertex explosion

In Fw:

In Fwb: h

h′l

b

h′l h′l

h′l

Figure 27: The case α = b.

h′l−1

h′l−1

In Fw: h′l

In Fwa:

h′l

v

h′l−1

a

h′l−1

v

vertex explosion

vertex explosion
e

t′l−1

t′l

t

Figure 28: The case α = a.

By definition, λ0(wb) = ut1u . . . tk−1utvt
′

l−1
v . . . vt′1v, so we observe that the property is

satisfied by wb.
�

As mentioned above, when w is a parenthesis-shuffle w = Ξ(MT ), the prefix-map Mw

is the tree-oriented map ~MT and the prefix-forest Fw is the tree ϕ0( ~M
T ). Therefore,

Proposition 23 implies that the tree-sequence λ0(w) is equal to uϕ0( ~M
T )v. Thus, the

trees λ′0(w) and ϕ0( ~M
T ) are the same.

�
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4.5 The partitions ϕ1( ~M
T ) and Θ ◦ λ′1(w) are the same

In this subsection, we prove that, when w = Ξ(MT ), the non-crossing partition ϕ1( ~M
T )

is the image of the binary tree λ′

1(w) by the mapping Θ defined in Definition 20.

Let MT be a tree-rooted map. The partition-tree of MT is the tree P = Υ ◦ ϕ1( ~M
T )

(the mapping Υ is represented in Figure 6). Observe that the tree P can be drawn directly
on the map obtained after the vertex explosion process of Figure 9. To do so, one keeps
the cells corresponding to the vertices of MT (these cells are glued to the first corner of

the vertices of the tree ϕ0( ~M
T )). Then, one draws a vertex in each face of MT and in

each cell corresponding to a vertex of MT : this gives the vertices of P . The edges of P
join vertices in adjacent cells and faces. The tree is rooted canonically. In particular, the
root-vertex of P lies in the root-face of MT . This construction is illustrated in Figure 29.

P

Figure 29: The partition-tree of a tree-rooted map.

We want to extend this construction to prefix-maps. We need some extra vocabulary.
Consider a prefix-shuffle w and the corresponding prefix map Mw. We denote by MF

w the
map obtained after the vertex explosion process when one keeps the cells corresponding
to the vertices of Mw. A face of MF

w is said white if it corresponds to a face of Mw and
black if it corresponds to a vertex of Mw. For instance, the map MF

w in Figure 30 has
2 white faces and 4 black faces. The edges of MF

w that correspond to edges of Mw are
called regular. The edges of MF

w that separate black and white faces are called permeable.
The map MF

w inherits the root of Mw. In particular, it has the same root-face. The map
MF

w has k = |w|b − |w|b dangling heads which are all in the root-face. We can compare
these heads according to their order of appearance around the root-face, that is, when
following its border in counterclockwise direction starting from the root. We denote by
h1, . . . , hk the heads of MF

w encountered in this order around the root-face.

We define the partition-tree Pw of the prefix-map Mw as follows. (We shall prove
later that the partition-tree is indeed a tree.) We draw a vertex in each face of MF

w .
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the root

h1

h2

Figure 30: The prefix-map associated to w = baabbbaa and the map MF
w .

The vertex v0 drawn in the root-face is called the exterior vertex. We draw k additional
vertices v1, . . . , vk in the root-face, each associated to a dangling head (vi is associated to
hi). These are the vertices of Pw. The edges of Pw are the duals of permeable edges. We
need to be more precise. If e is a permeable edge that is not incident to the root-face, its
dual joins the vertices drawn in the incident black and white faces. If e is a permeable
edge incident to the root-face and a black face f , its dual joins the vertex drawn in f

to vi if hi is the last dangling head encountered before e around the root-face, or to v0

if no dangling head precedes e. Note that the partition-tree Pw can be drawn in such a
way that no edge of Pw intersects another. For instance, the partition-tree associated to
w = baabbbaa is shown in Figure 31.

Moreover the vertices of the partition-tree have a color and an activity. The vertices
of Pw corresponding to white and black faces of MF

w are called white and black vertices
respectively. The active white vertices are v0, . . . , vk. The active black vertices are the
vertices corresponding to rooting vertices of Mw (see Subsection 4.3 where the notion of
rooting vertex is introduced). The other vertices are said to be inactive.

It remains to define the root of the partition-tree. Consider the first edge e followed
around the root-face of MF

w . It is a permeable edge. Its dual e∗ in Pw joins the exterior
vertex v0 to the vertex drawn in the black face corresponding to the root-vertex of Mw.
The root of Pw is incident to v0 and follows e∗ in counterclockwise direction around v0.
This root is indicated in Figure 31.

h2

h1

v1

v2

v0

e∗

Figure 31: The partition-tree Pw (thick lines) drawn on MF
w (w = baabbbaa).
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Observe that, when w = Ξ(MT ) is a parenthesis-shuffle, the map Mw = ~MT has no dan-

gling heads and the partition-tree Pw is Υ ◦ ϕ1( ~M
T ).

We now relate the partition-tree Pw to the binary tree λ1(w).

Proposition 24 For all prefix-shuffles w, the partition-tree Pw is equal to θ◦λ1(w) where
λ1(w) is the binary tree defined in Definition 17 and θ is the mapping defined in Definition
20.

Proposition 24 implies that for any parenthesis-shuffle w = Ξ(MT ) we have Pw =

θ ◦ λ′1(w). Given that Pw = Υ ◦ ϕ1( ~M
T ), we obtain ϕ1( ~M

T ) = Θ ◦ λ′

1(w).

The rest of this subsection is devoted to the proof of Proposition 24. We first describe
a recursive construction of the partition-tree Pw. That is, we describe how to obtain Pwα

from Pw when α is a letter in {a, a, b, b} (Lemma 25). Then we describe a recursive con-
struction of θ◦λ1(w) (Lemma 26). We conclude the proof by induction on the length of w.

4.5.1 Recursive construction of the partition-tree Pw

The recursive description of the partition-tree requires us to define an order on active
vertices. Let w be a prefix-shuffle and Mw be the associated prefix-map. The rooting
vertices of Mw can be compared by their order of appearance around the spanning tree
Tw of Mw. The active black vertices inherit their order from the rooting vertices. The
black vertex of Pw corresponding to the root-vertex of Mw is the first element for this
order. We can also compare the dangling heads h1, . . . , hk of Mw according to their order
of appearance around Tw. This order is the same as the order of appearance around the
root-face of MF

w . Indeed, the order of appearance around the root-face of MF
w is also the

order of appearance around the root-face of Mw. Furthermore, the deletion of an edge of
Mw not in Tw does not modify this order. By deleting all the edges not in Tw we obtain
the appearance order around Tw. The active white vertices inherit their order from the
dangling heads. The exterior vertex v0 is considered the first element. That is, vi precedes
vj for 0 ≤ i ≤ j ≤ k.

Let v be a vertex of a tree which is not a leaf. The son of v following (resp. preceding)
the father of v (or the root if v is the root-vertex) in counterclockwise direction around v
is called leftmost son (resp. rightmost son); see Figure 32.

We are now ready to describe the relation between the partition-tree Pw and the
partition-tree Pwα when α is a letter in {a, a, b, b}.

Lemma 25 The partition-tree Pw is a tree. Moreover,

• the partition-tree Pwa is obtained from Pw by adding a new leaf which becomes the
last active black vertex. This leaf is the leftmost son of the last active white vertex,
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father

v

rightmost sonleftmost son . . .

Figure 32: A vertex and its leftmost and rightmost sons.

• the partition-tree Pwb is obtained from Pw by adding a new leaf which becomes the
last active white vertex. This leaf is the rightmost son of the last active black vertex,

• the partition-tree Pwa is obtained from Pw by inactivating the last active black vertex,

• the partition-tree Pwb is obtained from Pw by inactivating the last active white vertex.

To illustrate this lemma we have represented the evolution of a partition-tree in Figure
33. Active vertices are represented by circles and inactive ones by squares. The white
(resp. black) active vertices are denoted v0, v1, . . . (resp. r1, r2, . . .).

a
v2v2

v1

v0

v1

a b

v0

v1

r3

v0

v2

r3

v1
r1

r1 r1

v0

r3
b

v0

r2

v1

r3
r1

r2r2

r2r2

r1

Figure 33: Evolution of the partition-tree from w = baabb to w = baabbbaab.

Before we embark on the proof, we need to define a correspondence E (resp. V )
between the heads of Mw and the edges (resp. vertices distinct from v0) of Pw. The
correspondences E and V are represented in Figure 34.
Consider a head h of Mw and its end v in MF

w . The edge following h in counterclockwise
direction around v is a permeable edge. The dual of this edge in the partition-tree Pw is
denoted E(h). The correspondence E between heads of Mw and edges of Pw is one-to-one.
The edge E(h) is incident to a white and to a black vertex. If h is in the tree Tw (in
particular, if h is the root), we define V (h) as the black vertex incident to E(h). Else
V (h) is the white vertex incident to E(h). The correspondence V is a bijection between
heads of Mw and vertices of Pw distinct from v0. Indeed, black vertices of Pw correspond
to vertices of Mw which are in one-to-one correspondence with heads in Tw, white vertices
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distinct from v0, . . . , vk correspond to faces of Mw which are in one-to-one correspondence
with heads not in Tw (a face f is associated with the head we cross when we first enter f
during the tour of Tw), and the vertices v1, . . . , vk are in one-to-one correspondence with
the dangling heads h1, . . . , hk.

h”

h′

h

h” not in Tw

h′ not in Tw

h in Tw
V (h′)

E(h′)

Toward v0

V (h”)

E(h”)

E(h)

V (h)

Figure 34: Left: a typical vertex of the prefix map Mw incident with three heads: h in
Tw and h′ , h′′ not in Tw. Right: the correspondence E (resp. V ) between heads of Mw

and edges (resp. vertices) of Pw.

Proof: We prove the lemma by induction on the length of w. If w is the empty word,
Pw is a tree. Suppose now, by induction hypothesis, that Pw is a tree. We first show the
following property: for any head h of Mw, the edge E(h) links V (h) to its father in Pw.
The mapping V ◦E−1 is a bijection from the edges of Pw to the vertices of Pw distinct from
its root-vertex v0. Moreover an edge e of Pw is always incident to the vertex V ◦ E−1(e)
in Pw. Since Pw is a tree, the only possibility is that any edge e of Pw links the vertex
V ◦ E−1(e) to its father in Pw.

We are now ready to study separately the different cases α = a, a, b, b. We use Lemma
22 and denote by c the corner of Mw at the left of the last rooting head of Mw.
• Case α = a.
- The prefix-map Mwa is obtained from Mw by adding a new edge e in the corner c oriented
away from c. Let h be the head of e and s its end. The vertex s is the last rooting vertex
in Mwa. The partition-tree Pwa is obtained from Pw by adding the edge E(h) and the
black vertex V (h) to Pw (see Figure 35). By definition, the vertex V (h) is the last active
black vertex in Pwa.
- By definition, the corner c is situated after any dangling head around Tw. Hence, it is
situated after any dangling head around the root-face of MF

w . Therefore, the edge E(h)
joins V (h) to the last active white vertex vk. Moreover, since V (h) is only incident to
E(h) and Pw is a tree, we check that Pwa is a tree and V (h) a leaf.
- It remains to show that V (h) is the leftmost son of vk. By definition, the permeable
edges that have their dual incident to vk are situated between hk (or the root h0 of MF

w

if k = 0) and c around the root-face of MF
w . The dual of the first of these permeable

edge is E(hk) and the dual of the last of them is E(h). If k 6= 0, we know that E(hk)
links vk = V (hk) to its father in Pw. Therefore, V (h) is the leftmost son of vk. If k = 0,
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we know (by definition) that the root of Pw follows E(h0) in counterclockwise direction
around v0. Therefore, V (h) is the leftmost son of v0.

vk

E(h)

V (h)

h
MF

w

E(hk)

Making the tour of the root-face

last dangling head hk (or the root)

Figure 35: The new vertex V (h) is the leftmost son of vk.

• Case α = b.
We denote by h and v the last rooting head and vertex.
- The prefix-map Mwb is obtained from Mw by adding a dangling head hk+1 in the corner
c. It is the last dangling head of Mwb. The partition-tree Pwb is obtained by adding the
vertex vk+1 = V (hk+1) and the edge E(hk+1) to Pw (see Figure 36). By definition, vk+1 is
the last active white vertex of Pwb.
- The dangling head hk+1 is incident to v in Mwb. Hence, the edge E(hk+1) joins vk+1 to
the last active black vertex V (h) of Pw. Moreover, since vk+1 is only incident to E(hk+1)
and Pw is a tree, Pwb is a tree and vk+1 a leaf.
- It remains to prove that vk+1 is the rightmost son of V (h). By definition, E(hk+1)
and E(h) are respectively the dual of the permeable edges preceding and following the
head h in counterclockwise direction around its end. Therefore, E(h) follows E(hk+1) in
counterclockwise direction around V (h). Given that E(h) links V (h) to its father, vk+1 is
the rightmost son of V (h).

vk+1

E(hk+1)

h

hk+1

E(h)
V (h)

Figure 36: The new vertex vk+1 is the rightmost son of V (h).

• Case α = a.
The prefix-map Mwa is obtained from Mw by inactivating the last active edge e. Thus,
Pwa is obtained from Pw by inactivating the last active black vertex.
• Case α = b.
The prefix-map Mwb is obtained from Mw by adding a tail in the corner c and connecting
it to the last dangling head hk. This creates a new face of Mw (hence of MF

w ) and lowers
by one the number of dangling heads. The last active white vertex vk is trapped in the
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new face of Mwb. Hence, Pwb is obtained from Pw by inactivating the last active black
vertex vk. �

4.5.2 Recursive construction of the tree θ ◦ λ1(w).

We continue the proof of Proposition 24. We now describe the relation between the trees
θ ◦ λ1(w) and θ ◦ λ1(wα) when α is a letter in {a, a, b, b} (the mapping λ1 is defined in
Definition 17).

We first need to define a correspondence between the leaves of a binary tree B and
the vertices of the tree θ(B). An edge of B is said left (resp. right) if it links a node to
its left son (resp. right son). We consider a leaf l of B. If l is a left (resp. right) leaf,
the path from l to the root begins with a non-empty sequence of left (resp. right) edges.
By definition, only the last edge e(l) of this sequence is branching except if l is the first
left leaf in which case no edge is branching. We associate the first left leaf of B with the
root-vertex of θ(B) and we associate any other leaf l with the son of the branching edge
e(l) in θ(B). This correspondence is one-to-one. For instance, the leaves l1, . . . , l6 of the
binary tree B in Figure 37 are associated with the vertices v1, . . . , v6 of the tree θ(B).

θ

l5

l6

v2

v3

v5

v6

v4

l4

l1 l2
l3

v1

Figure 37: Correspondence between leaves of B and vertices of θ(B).

Consider a prefix-shuffle w. In the binary tree λ1(w), leaves are either active or inac-
tive. We say that a vertex of θ ◦ λ1(w) is left, right, active or inactive, if the associated
leaf of λ1(w) is so. Moreover, the leaves of the binary tree λ1(w) can be compared by
their order of appearance around this tree. The vertices of θ ◦ λ1(w) inherit this order.
For instance, the root-vertex of θ ◦λ1(w) is the first active left vertex (recall that the first
left leaf of λ1(w) is always active).

Our final lemma is the counterpart of Lemma 25.

Lemma 26 Let T be the tree θ ◦ λ1(w) and Tα = θ ◦ λ1(wα) for α in {a, b, a, b}.

• The tree Ta is obtained from T by adding a new leaf which becomes the first active
right vertex. This leaf is the leftmost son of the last active left vertex.

• The tree Tb is obtained from T by adding a new leaf which becomes the last active
left vertex. This leaf is the rightmost son of the first right vertex.
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• The tree Ta is obtained from T by inactivating the first active right vertex.

• The tree Tb is obtained from T by inactivating the last active left vertex.

Proof: We study separately the four cases α = a, b, a, b.
• Case α = a. By definition of the mapping λ1 (Definition 17), the binary tree λ1(wa) is
obtained from λ1(w) by replacing the last active left leaf l by a node with two leaves ll
and lr. The left leaf ll replaces l as the last left leaf. The right leaf lr becomes the first
right leaf. The edge from l to lr is branching. The other branching edges are unchanged.
Therefore, Ta is obtained from T by adding a new leaf. This leaf is associated with lr
hence becomes the first active right vertex. The father of this leaf was associated with
l in T and is associated with ll in Ta. Therefore, it was and remains the last active left
vertex. It is easily seen that the new leaf becomes its leftmost son.
• The case α = b is symmetric to the case α = a. We do not detail it.
• Case α = a. The binary tree λ1(wa) is obtained from λ1(w) by inactivating the first
active right leaf. Therefore, Ta is obtained from T by inactivating the first active right
vertex.
• The case α = b is symmetric to the case α = a.

�

4.5.3 Recursive proof of Proposition 24.

We want to show that, for any prefix-shuffle w, the partition-tree Pw is the tree θ ◦λ1(w).
We show by induction the following more precise property: for any prefix-shuffle w,
- the partition-tree Pw is equal to θ ◦ λ1(w) ,
- the active and inactive vertices of Pw and θ ◦ λ1(w) are the same,
- the white (resp. black) vertices of Pw correspond to left (resp. right) vertices of θ◦λ1(w),
- the order on white (resp. black) vertices of Pw is equal (resp. inverse) to the order on
left (resp. right) vertices of θ ◦ λ1(w).

Suppose that w is the empty word. The partition-tree Pw has one edge, an active
white vertex which is its root-vertex and an active black vertex. Similarly, θ ◦ λ1(w) has
one edge, an active left vertex which is its root-vertex and an active right vertex. Hence,
we check that the property is true.

In view of Lemma 25 and Lemma 26, it is clear that the property is true by induction
on the set of prefix-shuffles.

�

This concludes the proof of Proposition 24 and Theorem 21.
�
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