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Abstract

The graph (non-)planarity game is played on the complete graph Kn between
an Enforcer and an Avoider, each of whom take one edge per round. The game
ends when the edges chosen by Avoider form a non-planar subgraph. We show that
Avoider can play for 3n − 26 turns, improving the previous bound of 3n − 28

√
n.

1 Introduction

The (non-)planarity game is a positional game between two players, Avoider and Enforcer,
played on the edges of the complete graph on n vertices. The game consists of a sequence of
rounds, in each round Enforcer occupies one previously unoccupied edge of Kn, followed by
Avoider occupying one. For clarity, let us assume that Enforcer starts the game, but this is
not crucial, our result applies even if Avoider does. Avoider seeks to avoid creating a non-
planar graph – he aims that his chosen edges should have a planar embedding. Enforcer
chooses edges that makes Avoider’s task more difficult – she tries to force Avoider’s graph
to become non-planar.

Independent of her strategy, Enforcer inevitably succeeds by round 3n − 5, when
Avoider’s graph has simply too many edges to be planar. József Balogh [1] gave a simple
strategy for Enforcer that makes Avoider fail already by turn 3n − 7. : Once Avoider
choses his first edge ab, Enforcer pairs (va, vb) for all vertices v 6= a, b, and whenever
Avoider chooses one edge of a pair, Enforcer chooses the other. This ensures that ab
cannot participate in any triangle, so contracting ab removes a single edge from Avoider’s
graph and leaves the result planar. Thus, Avoider has at most 3(n − 1)− 6 + 1 = 3n− 8
edges. From the other side, Avoider can fix an arbitrary triangulation on the n vertices
and make sure that he selects at least half of its edges during his turns; thus delaying his
defeat for at least 3

2
(n − 6) rounds.

Hefetz al. [7] gave a strategy for Avoider that allowed him to keep his graph planar
for at least 3n − 28

√
n turns. In this paper we provide a better strategy for Avoider and

obtain a result that is best possible up to an additive constant.
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Theorem 1. In the planar graph game on n vertices, Avoider can play at least 3n − 26
edges while keeping his graph planar.

Motivation and History Positional games consist of a board, which is a finite set X,
and a collection F ⊂ 2X of winning sets, which is usually assumed to be a monotone
(increasing) family. The board is often the vertices or edges of a graph; winning sets
may be spanning trees, perfect matchings, s–t connected paths, or Hamiltonian cycles.
In a Maker/Breaker positional game, the two players take turns choosing elements of X.
Maker wins by choosing all elements of some winning set, otherwise Breaker wins. The
work of Erdős and Selfridge [5] established a general condition for Breaker to win, and
stimulated much other work, notably that of Beck; see his book [3] for an excellent treatise
of positional games in a broad sense.

Hefetz et al. [6] suggest that Avoider/Enforcer games, the misère version of Maker/
Breaker games, in which Avoider’s goal is to avoid completely occupying any of the
members of F , is a similarly natural setup. One such scenario is when a Maker/Breaker
game is played on a monotone decreasing family H, for example the family of planar
graphs. This is then equivalent to playing an Avoider/Enforcer game on the complement
increasing hypergraph 2E(Kn) \H. Our targeted game of interest, the non-planarity game,
also arose this way. We denote by NPn ⊆ 2E(Kn) the family of those edge sets on n
vertices that determine a non-planar graph.

Maker/Breaker and Avoider/Enforcer games are perfect information games without
the possibility of a draw, i.e. exactly one of the players has a winning strategy (and his
identity is determined by the family F alone). For natural, well-studied graph games it
often so happens that the (in some sense) “easy” winner is Maker or Enforcer, respectively.
As discussed in the introduction, our game of interest, the non-planarity game NP is one
such instance. There are several ways suggested in the literature to “even out” such an
adventage, which then would “measure” how easy such a win is. One approach, suggested
by Chvátal and Erdős[4], to give Breaker a bias, i.e., allow him to take b > 1 edges in each
turn instead of just one. Another possibility, suggested in [8], is to randomly reduce the
board and search for the threshold probability at which Maker’s win turns into Breaker’s
win. A third way, introduced in [7], measures how fast can Maker (or Enforcer) win. The
parameters τM (F) and τE(F) are defined as the smallest number of rounds Maker and
Enforcer can win their respective games on F . The parameters are defined to be ∞ if
Breaker or Enforcer wins, respectively. In [7, 2] these parameters are studied in depth,
their value is estimated and occasionally determined for several natural graph games,
for example the games involving spanning trees, perfect matchings, Hamilton cycles, k-
colorability, or planarity.

For large n, the Maker/Breaker parameter τM(NPn) is easily seen to be bounded by
a constant independent of n, since Maker can create a K5 in a constant number of moves
on a large enough board.

In the present paper we investigate the Avoider/Enforcer parameter τE(NPn) and
obtain a result tight up to an additive constant.
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2 Avoider Strategy

In this section we detail Avoider’s strategy, which we can summarize as follows: Avoider
initially designates four anchor vertices in two pairs, a0, a1 and b0, b1. In his turns, Avoider
adds an edge to connect a remaining vertex to one anchor from each pair, or else to play
a permutation game that builds paths joining vertices that are connected to the same pair
of anchors. The resulting graph will have a planar embedding; as in Figure 1, Avoider
can embed a K4 for the anchors, then lay out the remaining vertices and their paths near
the edges of K4 that join the corresponding anchors.

a0

a1 b1

b0

Figure 1: Planar layout of Avoider’s edges

First, however, we define some more terminology and notation, so that we can state
some invariant properties of Avoider’s strategy.

Let V be the set of n − 4 non-anchor vertices. Avoider will connect each v ∈ V to
exactly two anchors ai and bj, for some i, j ∈ {0, 1} – in this case we say that v is pinned

to ij. We write u ≺ v if u is pinned to two anchors before v is pinned to two anchors.
After v is pinned to ij, Avoider may choose edges that join v to at most two other

vertices that have also been pinned to ij. We say that a vertex is active in ij if its
Avoider degree is two or three, that is, it is pinned to ij, but not yet connected to two
other neighbors.

A key idea in Avoider’s strategy is to try to play an edge incident to Enforcer’s just
chosen edge, e, unless it is already clear that the endpoints of e can never be active in the
same ij. Specifically, if Enforcer’s chosen edge e has an unpinned endpoint, Avoider will
connect it to an anchor. On the other hand, if both endpoints are pinned to the same ij,
Avoider will try to play an incident edge among the vertices currently active in ij.

In fact, this may not always be possible: An edge e = uv that Enforcer chooses is
special if and only if vertices u and v are both active in ij (for some i, j ∈ {0, 1}) during
her turn, and Avoider has no edge from u or v to another vertex active in ij to choose in
his next turn. In case u � v, Avoider directs Enforcer’s special edge from u to v.

Now, we are ready to give the components of Avoider’s strategy in responding to an
Enforcer’s choice of an edge.

1. Anchor Pairing Strategy: Enforcer chooses an edge between two anchors.
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Then Avoider answers with an edge paired with Enforcer’s choice in the following
(somewhat arbitrary) list: (a0a1, a0b0), (a1b0, a1b1), (a0b1, b0b1).

2. Pinning Strategy: Enforcer chooses an edge e that is incident to at least one un-
pinned vertex.

Then Avoider connects an unpinned endpoint u of e to an anchor.

If e was incident to an anchor, say e = uai, then Avoider’s first preference is to take
the edge between u and the pair of the anchor, namely ua1−i. Otherwise, that is,
if ua1−i is already taken by Avoider or e is not incident to an anchor, then Avoider
connects u to a0 or b0, whichever is available (selecting arbitrarily if both ua0 and
ub0 are free). Observe that by the preference list in the Pinning Strategy, for any
unpinned vertex u, one of ua0 and ub0 must be free.

3. Permutation Game Strategy: Enforcer chooses an edge uv incident to two active
vertices in ij.

Then if some edge exists from u or v to another active vertex in ij, Avoider chooses
such an edge.

Otherwise, Enforcer’s edge uv is special, and Avoider chooses an edge between two
anchors, or connects any unpinned vertex to a0 or b0, or joins two vertices active in
any i′j ′, (as in 1., 2., and 3.)

4. Enforcer chooses any other edge (such as an edge incident to a pinned but non-active
vertex, or an edge joining vertices that are not pinned to the same ij).

Then, again, Avoider chooses an edge between two anchors, or connects any un-
pinned vertex to a0 or b0, or joins two vertices active in any i′j ′.

3 Analysis

In this section we will prove that Avoider’s strategy ensures that at least 3n− 26 rounds
are played before Avoider’s graph becomes non-planar. For convenience, the moment
when Avoider has no more edges he can take according to rules 1., 2., 3., or 4. we end
the game, even though Avoider’s graph is still planar.

We call an edge of Enforcer normal if it connects two non-anchor vertices and right
after its selection Avoider selected an edge incident to it (according to 2. or 3.) Observe
that at the end of the game every Enforcer edge that connects two vertices active in the
same ij will be either normal or special.

The first lemma states that Avoider will select at least half of the edges incident to
anchors.

Lemma 2. Avoider chooses at least three of the six edges between anchors, and guarantees

that every non-anchor vertex v ∈ V becomes pinned to some ij, with i, j ∈ {0, 1}.
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Proof. Since each edge incident to an anchor is in exactly one pair of the Anchor Pairing
Strategy and the Pinning Strategy, Avoider can guarantee to obtain one edge from each
pair, no matter what Enforcer chooses.

To analyze the permutation strategy among vertices active in ij, we first bound the
number of special Enforcer edges.

Lemma 3. The special edges in the graph induced by the vertices active in ij form a

directed forest. Thus, between p vertices active in ij there can be at most p − 1 special

edges.

Proof. We claim that a vertex u has at most one special edge leaving it. Suppose that
Enforcer chooses two edges, first uv and later uw, with u � v and u � w. Then uv cannot
be special because uw was available with w already active in ij in the turn that Enforcer
chose uv. Thus, the graph of special edges is acyclic and the bound follows.

Due to our preference for anchoring to a0 and b0, we can establish a lemma that bounds
the number of normal Enforcer edges as a function of i + j.

One more bit of notation: the vertices pinned to ij can be partitioned by Avoider
degree so that there are pk with Avoider degree k, for k = 2, 3, or 4. Of these, r = p2 + p3

are active in ij.

Lemma 4. Let R be the set of vertices active in ij with |R| = r. Then the number of

normal Enforcer edges in R is at most
(

2 − (i + j)
)

r + p3.

Proof. According to the definition, for every Enforcer edge that is normal, Avoider creates
an adjacent edge. Hence we can use Avoider degrees to bound the number of normal
Enforcer edges in R, which would give at most 2p2 + 3p3 = 2r + p3 edges. This can
be sharpened for ij 6= 00 because edges va1 or vb1, for some non-anchor vertex v, are
selected by Avoider only as an answer to Enforcer selecting va0 or vb0, respectively. In
other words, these Avoider edges are not answers to a normal Enforcer edge. Thus, within
vertices pinned to ij, we have

(

2 − (i + j)
)

r + p3 normal Enforcer edges.

Lemma 5. Let P be the set of all vertices pinned to ij, so that |P | = p2 +p3 +p4. Avoider

will be able to choose at least |P | − 6− i · j + 2(i + j) edges in the subgraph induced by P .

Proof. The number of edges that Avoider chooses within P can be calculated from the
degrees as p4 + p3/2 = |P | − (p3/2 + p2). Thus, we maximize (p3/2 + p2) subject to the
constraint that Avoider has no edge to choose within P (i.e., all possible answers are
already picked up Enforcer).

Observe that every Enforcer edge connecting two vertices active in ij is either normal
or special.

In a permutation game with r = p2 + p3 vertices active in ij, there are
(

r

2

)

possible
edges, of which Enforcer has at most r − 1 special edges (Lemma 3), and at most

(

2 −
(i + j)

)

r + p3 normal edges (Lemma 4). Avoider must avoid closing paths, which rules
out p3/2 additional pairs, but he can choose any remaining edge between active vertices.
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The constraint that Avoider has no edge to choose gives these equivalent inequalities
involving p3 and p2:

(

r

2

)

≤
(

2 − (i + j)
)

r + p3 + (r − 1) +
p3

2

r(r − 1) ≤
(

6 − 2(i + j)
)

r + 3p3 − 2

r − 1 ≤
(

6 − 2(i + j)
)

+ 3p3/r − 2/r

p2 + p3/2 ≤ 7 − 2(i + j) − p3/2 + 3p3/r − 2/r.

Since path endpoints come in pairs, p3 is even and the left-hand side of the final
inequality is an integer. When r ≥ 6 or p3 = 0, the expression −p3/2 + 3p3/r − 2/r is
negative, and the right side can be reduced to ≤ 6−2(i+j). For p3 = 2 and p3 = 4, we can
thus assume p2 ≤ 3 and p2 ≤ 1, respectively. Only when p3 = 2, p2 = 2 or p3 = 4, p2 = 1
can equality be obtained in p2 + p3/2 ≤ 7− 2(i + j), and then only in the case that i = 1
and j = 1. Thus we may write p2 + p3/2 ≤ 6 + i · j − 2(i + j), which gives the expression
stated in the lemma.

Now, we can establish Theorem 1: in the (non-)planarity game on n vertices, Avoider
can play at least 3n − 26 edges while keeping his graph planar.

Proof. of Theorem 1. By Lemma 2, Avoider chooses at least 3 edges between anchors,
and exactly 2(n − 4) edges that pin each of the non-anchor vertices. At the end of the
game, if there are nij vertices pinned at ij, we have

∑

i,j∈{0,1} nij = n − 4. By Lemma 5,
the number of edges that Avoider chooses in all four permutation games is

∑

i,j∈{0,1}

nij − 6 − i · j + 2(i + j) = n − 4 − 24 − 1 + 8 = n − 21.

Thus, the total number of edges chosen by Avoider is 3 + 2(n − 4) + n − 21 = 3n − 26.
Figure 1 illustrates that Avoider’s edges have a planar embedding, which concludes

the proof.

4 Open problems

As it was pointed out by some of the participants of the 2007 GREMO workshop, the
pairing strategy idea of Balogh, mentioned in the introduction, can be carried out on two
edges, which guarantees an Enforcer win by round 3n− 8. However, there remains a gap
between the upper and lower bounds, which could be narrowed if we could show that the
number of special Enforcer edges is smaller.
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