A note on palindromic δ -vectors for certain rational polytopes

Matthew H. J. Fiset and Alexander M. Kasprzyk^{*}

Department of Mathematics and Statistics University of New Brunswick Fredericton, NB, Canada u0a35@unb.ca, kasprzyk@unb.ca

Submitted: May 19, 2008; Accepted: Jun 1, 2008; Published: Jun 6, 2008 Mathematics Subject Classifications: 05A15, 11H06

Abstract

Let P be a convex polytope containing the origin, whose dual is a lattice polytope. Hibi's Palindromic Theorem tells us that if P is also a lattice polytope then the Ehrhart δ -vector of P is palindromic. Perhaps less well-known is that a similar result holds when P is rational. We present an elementary lattice-point proof of this fact.

1 Introduction

A rational polytope $P \subset \mathbb{R}^n$ is the convex hull of finitely many points in \mathbb{Q}^n . We shall assume that P is of maximum dimension, so that dim P = n. Throughout let k denote the smallest positive integer for which the dilation kP of P is a *lattice polytope* (i.e. the vertices of kP lie in \mathbb{Z}^n).

A quasi-polynomial is a function defined on \mathbb{Z} of the form:

$$q(m) = c_n(m)m^n + c_{n-1}(m)m^{n-1} + \ldots + c_0(m),$$

where the c_i are periodic coefficient functions in m. It is known ([Ehr62]) that for a rational polytope P, the number of lattice points in mP, where $m \in \mathbb{Z}_{\geq 0}$, is given by a quasi-polynomial of degree $n = \dim P$ called the *Ehrhart quasi-polynomial*; we denote this by $L_P(m) := |mP \cap \mathbb{Z}^n|$. The minimum period common to the cyclic coefficients c_i of L_P divides k (for further details see [BSW08]).

^{*}The first author was funded by an NSERC USRA grant. The second author is funded by an ACEnet research fellowship.

Stanley proved in [Sta80] that the generating function for L_P can be written as a rational function:

Ehr_P(t) :=
$$\sum_{m>0} L_P(m) t^m = \frac{\delta_0 + \delta_1 t + \ldots + \delta_{k(n+1)-1} t^{k(n+1)-1}}{(1-t^k)^{n+1}},$$

whose coefficients δ_i are non-negative. For an elementary proof of this and other relevant results, see [BS07] and [BR07]. We call $(\delta_0, \delta_1, \ldots, \delta_{k(n+1)-1})$ the *(Ehrhart)* δ -vector of P.

The dual polyhedron of P is given by $P^{\vee} := \{u \in \mathbb{R}^n \mid \langle u, v \rangle \leq 1 \text{ for all } v \in P\}$. If the origin lies in the interior of P then P^{\vee} is a rational polytope containing the origin, and $P = (P^{\vee})^{\vee}$. We restrict our attention to those P containing the origin for which P^{\vee} is a lattice polytope.

We give an elementary lattice-point proof that, with the above restriction, the δ -vector is palindromic (i.e. $\delta_i = \delta_{k(n+1)-1-i}$). When P is reflexive, meaning that P is also a lattice polytope (equivalently, k = 1), this result is known as *Hibi's Palindromic Theorem* [Hib91]. It can be regarded as a consequence of a theorem of Stanley's concerning the more general theory of Gorenstein rings; see [Sta78].

2 The main result

Let P be a rational polytope and consider the Ehrhart quasi-polynomial L_P . There exist k polynomials $L_{P,r}$ of degree n in l such that when m = lk + r (where $l, r \in \mathbb{Z}_{\geq 0}$ and $0 \leq r < k$) we have that $L_P(m) = L_{P,r}(l)$. The generating function for each $L_{P,r}$ is given by:

$$\operatorname{Ehr}_{P,r}(t) := \sum_{l \ge 0} L_{P,r}(l)t^{l} = \frac{\delta_{0,r} + \delta_{1,r}t + \dots + \delta_{n,r}t^{n}}{(1-t)^{n+1}},$$
(2.1)

for some $\delta_{i,r} \in \mathbb{Z}$.

Theorem 2.1. Let P be a rational n-tope containing the origin, whose dual P^{\vee} is a lattice polytope. Let k be the smallest positive integer such that kP is a lattice polytope. Then:

$$\delta_{i,r} = \delta_{n-i,k-r-1}.$$

Proof. By Ehrhart–Macdonald reciprocity ([Ehr67, Mac71]) we have that:

$$L_P(-lk - r) = (-1)^n L_{P^{\circ}}(lk + r),$$

where $L_{P^{\circ}}$ enumerates lattice points in the strict interior of dilations of P. The lefthand side equals $L_P(-(l+1)k + (k-r)) = L_{P,k-r}(-(l+1))$. We shall show that the right-hand side is equal to $(-1)^n L_P(lk + r - 1) = (-1)^n L_{P,r-1}(l)$.

Let $H_u := \{v \in \mathbb{R}^n \mid \langle u, v \rangle = 1\}$ be a bounding hyperplane of P, where $u \in \text{vert } P^{\vee}$. By assumption, $u \in \mathbb{Z}^n$ and so the lattice points in \mathbb{Z}^n lie at integer heights relative to H_u ; i.e. given $u' \in \mathbb{Z}^n$ there exists some $c \in \mathbb{Z}$ such that $u' \in \{v \in \mathbb{R}^n \mid \langle u, v \rangle = c\}$. In particular, there do not exist lattice points at non-integral heights. Since:

$$P = \bigcap_{u \in \operatorname{vert} P^{\vee}} H_u^-,$$

where H_u^- is the half-space defined by H_u and the origin, we see that $(mP^\circ) \cap \mathbb{Z}^n = ((m-1)P) \cap \mathbb{Z}^n$. This gives us the desired equality.

We have that $L_{P,k-r}(-(l+1)) = (-1)^n L_{P,r-1}(l)$. By considering the expansion of (2.1) we obtain:

$$\sum_{i=0}^{n} \delta_{i,k-r} \binom{-(l+1)+n-i}{n} = L_{P,k-r}(-(l+1))$$
$$= (-1)^n L_{P,r-1}(l) = (-1)^n \sum_{i=0}^{n} \delta_{i,r-1} \binom{l+n-i}{n}.$$

But $\binom{-(l+1)+n-i}{n} = (-1)^n \binom{l+n-i}{n}$, and since $\binom{l}{n}, \binom{l+1}{n}, \ldots, \binom{l+n}{n}$ form a basis for the vector space of polynomials in l of degree at most n, we have that $\delta_{i,k-r} = \delta_{n-i,r-1}$.

Corollary 2.2. The δ -vector of P is palindromic.

Proof. This is immediate once we observe that:

$$\operatorname{Ehr}_{P}(t) = \operatorname{Ehr}_{P,0}(t^{k}) + t\operatorname{Ehr}_{P,1}(t^{k}) + \ldots + t^{k-1}\operatorname{Ehr}_{P,k-1}(t^{k}).$$

3 Concluding remarks

The crucial observation in the proof of Theorem 2.1 is that $(mP^{\circ}) \cap \mathbb{Z}^n = ((m-1)P) \cap \mathbb{Z}^n$. In fact, a consequence of Ehrhart–Macdonald reciprocity and a result of Hibi [Hib92] tells us that this property holds if and only if P^{\vee} is a lattice polytope. Hence rational convex polytopes whose duals are lattice polytopes are characterised by having palindromic δ vectors. This can also be derived from Stanley's work [Sta78] on Gorenstein rings.

References

- [BR07] Matthias Beck and Sinai Robins, *Computing the continuous discretely*, Undergraduate Texts in Mathematics, Springer, New York, 2007, Integer-point enumeration in polyhedra.
- [BS07] Matthias Beck and Frank Sottile, *Irrational proofs for three theorems of Stanley*, European J. Combin. **28** (2007), no. 1, 403–409.

- [BSW08] Matthias Beck, Steven V. Sam, and Kevin M. Woods, Maximal periods of (Ehrhart) quasi-polynomials, J. Combin. Theory Ser. A 115 (2008), no. 3, 517– 525.
- [Ehr62] Eugène Ehrhart, Sur les polyèdres homothétiques bordés à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 988–990.
- [Ehr67] _____, Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires, J. Reine Angew. Math. **227** (1967), 25–49.
- [Hib91] Takayuki Hibi, Ehrhart polynomials of convex polytopes, h-vectors of simplicial complexes, and nonsingular projective toric varieties, Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc., Providence, RI, 1991, pp. 165–177.
- [Hib92] _____, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2, 237–240.
- [Mac71] I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192.
- [Sta78] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83.
- [Sta80] _____, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).