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Abstract

A closed plane region between two parallel lines is called a strip. András Bezdek
posed the following conjecture: For each convex region K there is an ε > 0 such

that if εK lies in the interior of K and the annulus K\εK is covered by finitely

many strips, then the sum of the widths of the strips must be at least the minimal

width of K. In this paper, we consider problems which are related to the conjecture.

1 Introduction and Basic Definitions

A closed plane region between two parallel lines at distance d is called a strip of width d.
For each direction θ, 0 ≤ θ ≤ π, a convex region M has two parallel supporting lines and
the distance between them is denoted by ω(θ). The minimum ω(θ) is called the minimal
width of M . In the case of a triangle, the minimal width is the altitude on the longest
side.

Let O denote the origin of the plane E2. For a given convex set K and ε > 0, let εK

denote a homothetic copy of K consisting of all points X such that
−→

OX= ε
−→

OY , where
Y ∈ K.

Tarski [5] conjectured and Bang [1] proved that if a convex region K can be covered
by a finite collection of strips, then the sum of the widths of the strips must be at least
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the minimal width of K. András Bezdek [2] posed the following conjecture and proved
two theorems:
Conjecture. ([2]) For each convex region K there is an ε > 0 such that if εK lies in the
interior of K and the annulus K\εK is covered by finitely many strips, then the sum of
the widths of the strips must be at least the minimal width of K.
Theorem A. ([2]) Let C be the unit square and let ε be equal to 1 − 1/

√
2 ≈ 0.29. If

εC lies in the interior of the square C and the annulus C\εC is covered by finitely many
strips, then the sum of the widths is at least 1.
Theorem B. ([2]) The conjecture is true for each polygon whose incircle is tangent to
two of its parallel sides. In particular, it is true for regular polygons with an even number
of sides.

White and Wisewell obtained in 2007 the following result:
Theorem C. ([6]) Let P be a convex polygon. If there is a minimal-width chord of P
that meets a vertex and divides the angle at that vertex into two acute angles, then for
every ε > 0 an ε-scaled copy of P can be removed so that the resulting annulus can be
covered by strips of total width strictly less than the minimal width of P .

We would like to make the following remarks here. In the previous version of this
article which is in the References of the paper [6] by White and Wisewell, we claimed the
following result as a counter example to Bezdek’s conjecture:
Proposition The conjecture is not true for any equilateral triangle.

Clearly this proposition is a special case of Theorem C ([6]). But our three-sentence
proof is quite elementary and independent of [6]. Maybe it’s worthy of consideration.
Here is the proof.

Figure 1:

Proof. It’s an elementary fact that the sum of the distances from any point in an equilat-
eral triangle T to its three sides is equal to the minimal width of T . Let the width of T be
ω and T0 = εT ⊂ T , then the annulus T\T0 is covered by the strips S1, S2, S3, as shown
in Fig.1. But the sum of the three strips’ widths is equal to (1− ε)ω which is strictly less
than ω.
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2 Main Results

In this paper we consider more problems which are related to the conjecture. We need a
few lemmas for our further discussion.

Lemma 1. ([2],[3]) Let S1, S2, · · · , Sn be a finite number of strips such that Si is of width
di. Let M be a centrally symmetric convex polygon of 2n sides such that each pair of
opposite sides are of length di and perpendicular to one of the strips Si. Assume that the
origin O is the center of M . Denote by ui the vector which is perpendicular to Si and has
magnitude 1

2
di. Then one of the 2n points, say P , of the form ε1u1 + ε2u2 + εnun(where

each εi can be ±1) does not belong to the interior of any strip Si(i = 1, · · · , n).
Moreover, if no two of the strips are parallel and no three of the boundary lines pass

through the same point, then the strips cannot cover a neighborhood of the point P and
thus they cannot cover a neighborhood of M .

Lemma 2. [4] Let M be a centrally symmetric convex polygon with perimeter l. 4ABC
is a circumscribed triangle of M , then the minimal width w of 4ABC is not greater than
l
2
.

Theorem 1. Let T be a triangle with minimal width w and S1, S2, · · · , Sn be n strips

such that Si is of width di and
n
∑

i=1

di = d. If d < w, for any ε with 0 < ε < 1− (d/w), εT

lies in the interior of T , then the annulus T\εT can not be covered by the n strips.

Proof. Without loss of generality, let T = 4ABC with |BC| ≥ |CA| ≥ |AB| and T0 = εT .
Assume that BC is horizontal. Obviously, the minimal width w of T is the altitude on
BC.

Assume that the n strips are in general position, otherwise, we expand the covered
parts by moving the strips slightly so that the sum of the widths is still less than w, while
the strips are in general position. Consider the centrally symmetric convex polygon M of
2n sides which corresponds to the n strips as in Lemma 1, that is, each pair of opposite
sides of M are perpendicular to one of the strips Si and of length di. It’s easy to see that
for any given triangle T , each convex region M has a circumscribed triangle T1 similar to
T . So let T1 = 4A1B1C1 be the circumscribed triangle of M with B1C1 horizontal and T1

be similar to T . By Lemma 2, w1 = w(T1) ≤ l
2

= 1
2
(2

n
∑

i=1

di) = d < w. As T is a triangle

with minimal width w, 4ABC ' 4A1B1C1 , we can translate T1 with the inscribed
polygon M until the angles ∠BAC and ∠B1A1C1 coincide, and it follows that T1 lies in T
and BC ‖ B1C1. Now denote the distance between B1C1 and BC by ε1 = w−w1 ≥ w−d.
Take a positive number ε which is slightly less than 1 − d/w. Then add an additional
strip Sn+1 which is horizontal with width dn+1 satisfying ε1 > dn+1 > ε. If M has a pair
of horizontal sides, then we choose a direction sufficiently close to horizontal. So the inner
triangle T0 can be covered by Sn+1 while the strips S1, S2, · · · , Sn+1 remain in general
position.

Denote by M1 the convex polygon corresponding to the given n + 1 strips. A pair of
vertical sides of length smaller than ε1 are added to the sides of M to get the polygon
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M1. Thus M1 can also be translated into the interior of T . According to Lemma 1, M1

can not be covered by S1, S2, · · · , Sn+1. M1 ⊆ T , T0 is covered by Sn+1, and so T\T0 can
not be covered by S1, S2, · · · , Sn.

We denote by c(εK) any copy of εK obtained by translating or rotating εK, and if
c(εK) ⊂ K, K\c(εK) is also called an annulus. Denote by P (u, v, β) a parallelogram
with two adjacent sides u, v (u ≤ v) and the smaller angle β.

For the proof of our third result, we need another three lemmas besides Lemma 1:

Lemma 3. Let M be a centrally symmetric convex polygon with perimeter l. If P (u, v, β)
is a circumscribed parallelogram of M , then u ≤ l

2 sin β
, v ≤ l

2 sin β
.

Proof. It’s easy to get a circumscribed parallelogram ABCD of M with |AB| = |CD| =
u, |DA| = |BC| = v and smaller angle ∠ABC equal to β. Let E be the common point of
the side AB and M , and F be the common point of the side CD and M . Then it’s obvious
that |EF | < l

2
and v sin β ≤ |EF |, so v ≤ l

2 sin β
. In the same way, we get u ≤ l

2 sinβ
.

By the law of sines, we have:

Lemma 4. Among all the triangles with a side and its opposite angle given, the isosceles
one has the largest perimeter.

Lemma 5. Let parallelogram P = P (u, v, β) be the circumscribed parallelogram of a
quadrilateral EFGH whose perimeter is less than l, then the perimeter of P is less than
√

2
1−cos β

l.

Proof. Let A, B, C, D be the four vertices of the parallelogram P (u, v, β), and E, F, G, H
lie on AB, BC, CD, DA respectively. If |AH| = |AE| = a1, by the law of cosines, we

have 2a2
1 + 2a2

1 cos β = |EH|2, hence a1 =
√

1
2(1+cos β)

|EH| <
√

1
2(1−cos β)

|EH|. For the

given |EH| and π − β, by Lemma 4, |AH| + |AE| ≤ 2a1 <
√

2
1−cos β

|EH|. Similarly

we obtain |BE| + |BF | <
√

2
1−cos β

|EF |, |FC| + |CG| <
√

2
1+cos β

|FG| <
√

2
1−cos β

|FG|,

|HD| + |DG| <
√

2
1−cos β

|HG|. So p(ABCD) <
√

2
1−cos β

p(EFGH) <
√

2
1−cos β

l.

On the basis of Theorem A [2], we obtain the following result which may be considered
as a generalization in some sense.

Theorem 2. For a given parallelogram P = P (u, v, β), assume that ε = (1 −
√

1+cos β

2
)u

and P0 = c(εP ) is any copy of εP such that the angle from the longer side of P to the
perpendicular line of the longer side of P0 is β(see Fig.2). If P0 lies in the interior of
P and the annulus P\P0 is covered by finitely many strips, then the sum of the width of
strips is at least u sin β.
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Figure 2:

Proof. Let S1, S2, · · · , Sn be the strips with widths d1, d2, · · · , dn which cover P\P0. As-
sume that P has a pair of horizontal sides. As in the proof of Theorem 1, assume that the
strips are in general position. Suppose, on the contrary, that d1 + d2 + · · ·+ dn < u sinβ
and we show that the union of strips Si does not contain the annulus P\P0. Let M
be the centrally symmetric convex 2n−gon corresponding to the n strips and satisfying
that each pair of opposite sides are of length di and perpendicular to one of the strips
Si. It’s easy to get a circumscribed parallelogram P1 = P1(u1, v1, β) of M . Translate P1

along with the inscribed polygon M until the left upper vertices of the parallelograms P
and P1 coincide. Since the perimeter of M is less than 2u sinβ, by Lemma 3, we have
u1 ≤ 2u sinβ

2 sin β
= u, v1 ≤ u ≤ v and it follows that P1 lies in P . Choose a vertex of M on each

side of P and connect them counterclockwise. The quadrilateral obtained has a perimeter

less than 2u sin β as well. By Lemma 5, the perimeter of P1 is less than 2u sinβ
√

2
1−cos β

.

So one of the sides of P1 is less than
u sinβ

q

2

1−cos β

2
= u

√

1+cos β

2
. Without loss of generality,

assume that u1 < u
√

1+cos β

2
. Add an additional strip Sn+1 such that

1. The angle from the horizontal side of P to the boundary line of Sn+1 is π
2

+ β;

2. Its width dn+1 satisfies (u − u1) sin β > dn+1 > (1 −
√

1+cos β

2
)u sin β;

3. It covers the inner parallelogram P0 of the annulus, while the strips S1, S2, · · · ,
Sn+1 remain in general position.

Denote by M1 the convex 2(n + 1)-polygon corresponding to the given n + 1 strips.
A pair of sides of length less than (u − u1) sin β and parallel to the shorter sides of P
are added to the sides of M to get the polygon M1. Thus M1 can be translated into the
interior of P as well. According to Lemma 1, M1 can not be covered by S1, S2, · · · , Sn+1.
M1 ⊆ P , P0 is covered by Sn+1, and so P\P0 can not be covered by S1, S2, · · · , Sn, a

contradiction. So
n
∑

i=1

di ≥ u sin β.
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