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Abstract

Answering a question of Cameron, Pretzel and Siemons proved that every integer
partition of n ≥ 2(k +3)(k +1) can be reconstructed from its set of k-deletions. We
describe a new reconstruction algorithm that lowers this bound to n ≥ k2 + 2k and
present examples showing that this bound is best possible.

Analogues and variations of Ulam’s notorious graph reconstruction conjecture have
been studied for a variety of combinatorial objects, for instance words (see Schützenberger
and Simon [2, Theorem 6.2.16]), permutations (see Raykova [4] and Smith [5]), and com-
positions (see Vatter [6]), to name a few.

In answer to Cameron’s query [1] about the partition context, Pretzel and Siemons [3]
proved that every partition of n ≥ 2(k + 3)(k + 1) can be reconstructed from its set of
k-deletions. Herein we describe a new reconstruction algorithm that lowers this bound,
establishing the following result, which Negative Example 2 shows is best possible.

Theorem 1. Every partition of n ≥ k2+2k can be reconstructed from its set of k-deletions.

We begin with notation. Recall that a partition of n, λ = (λ1, . . . , λ`), is a finite
sequence of nonincreasing integers whose sum, which we denote |λ|, is n. The Ferrers

diagram of λ, which we often identify with λ, consists of ` left-justified rows where row
i contains λi cells. An inner corner in this diagram is a cell whose removal leaves the
diagram of a partition, and we refer to all other cells as interior cells.

We write µ ≤ λ if µi ≤ λi for all i; another way of stating this is that µ ≤ λ if and
only if µ is contained in λ (here identifying partitions with their diagrams). If µ ≤ λ, we
write λ/µ to denote the set of cells which lie in λ but not in µ. We say that the partition
µ is a k-deletion of the partition of λ if µ ≤ λ and |λ/µ| = k.

Recall that this order defines a lattice on the set of all finite partitions, known as
Young’s lattice, and so every pair of partitions has a unique join (or least upper bound)

µ ∨ λ = (max{µ1, λ1}, max{µ2, λ2}, . . . )
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and meet

µ ∧ λ = (min{µ1, λ1}, min{µ2, λ2}, . . . ).

Finally, recall that the conjugate of a partition λ is the partition λ′ obtained by flipping
the diagram of λ across the NW-SE axis; it follows that λ′

i counts the number of entries
of λ which are at least i.

Before proving Theorem 1 we show that it is best possible:

Negative Example 2. For k ≥ 1, consider the two partitions

µ = (k + 1, . . . , k + 1
︸ ︷︷ ︸

k

, k − 1) and

λ = (k + 1, . . . , k + 1
︸ ︷︷ ︸

k−1

, k, k).

Note that no k-deletion of µ can contain the cell (k, k + 1) and that no k-deletion of λ
can contain the cell (k + 1, k). Therefore every k-deletion of µ and of λ is actually a
(k − 1)-deletion of

µ ∧ λ = (k + 1, . . . , k + 1
︸ ︷︷ ︸

k−1

, k, k − 1),

so µ and λ cannot be differentiated by their sets of k-deletions.

We are now ready to prove our main result.

Proof of Theorem 1. Suppose that we are given a positive integer k and a set ∆ of k-
deletions of some (unknown) partition λ of n ≥ k2 + 2k. Our goal is to determine λ from
this information. We begin by setting µ =

∨

δ∈∆
δ, noting that we must have λ ≥ µ.

Hence if |µ| = n then we have λ = µ and we are immediately done, so we will assume
that |µ| < n.

First consider the case where µ has less than k rows. Let r denote the bottommost
row of µ which contains at least k cells (r must exist because µ has less than k rows
and |µ| ≥ k2 + k). Thus the rth row of λ contains at least k cells as well, so there are
k-deletions of λ in which the removed cells all lie in or below row r. Hence the first r − 1
rows of λ and µ agree. Now note that λ has more than 2k cells to the right of column
k, so there are k-deletions of λ in which the removed cells all lie to the right of column
k, and thus the first k columns of λ and µ agree. This implies that λ and µ agree on all
rows below r (since these rows have less than k cells in µ) and so all cells of λ/µ must lie
in row r, uniquely determining λ, as desired. The case where µ has less than k columns
follows by symmetry.

We may now assume that µ has at least k rows and k columns. Let r (resp. c) denote
the bottommost row (resp. rightmost column) containing at least k cells. Both r and c
exist because µ has at least k rows and columns. Therefore both λ and µ can be divided
into three quadrants, 1, 2, and 3, as shown in Figure 1.

As before, we see that the first r − 1 rows and c − 1 columns of λ and µ agree. We
consider three cases based on whether and where r and c intersect.
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Figure 1: An example partition µ from Case 1 of the proof of Theorem 1, divided
into three quadrants. Here k = 8, and r and c appear shaded.

Case 1: r and c intersect at an interior cell of µ. Suppose that r and c intersect at the cell
(i, j). It follows from the maximality of r and c that i, j < k, and thus the cell (k, k) does
not lie in µ. Were the cell (k, k) to lie in λ then, because |λ| ≥ k2 + 2k, λ must contain
at least 2k cells to the right of or below (k, k) and thus λ would contain a k-deletion with
the cell (k, k), a contradiction; thus λ also does not contain (k, k).

Hence Quadrant 2 of λ contains less than k2 cells, so λ must have more than k cells
in quadrant 1 or 3. Hence there are k-deletions of λ with more than k cells in quadrant
1 or 3; suppose by symmetry that λ and µ both have more than k cells in quadrant 1.

There are then k-deletions of λ in which the removed cells are all chosen from quadrant
1, so λ and µ agree on all cells in quadrants 2 and 3. This shows that r is also the
bottommost row of λ with at least k cells, and so λ/µ contains no cells below row r in
quadrant 1. As we already know that λ and µ agree on their first r − 1 rows, we can
therefore conclude that all cells of λ/µ lie in row r, which allows us to reconstruct λ and
complete the proof of this case.

Case 2: r and c intersect at an inner corner of µ. Then this inner corner must be the
rightmost cell of row r and the bottom cell of column c. It follows that r, c ≥ k. Because
λ and µ agree to the left of column c and above row r, all cells of λ/µ must lie below or
to the right of (r, c). However, the cell (r + 1, c + 1) cannot lie in λ because if it did then
one could form a k-deletion of λ by removing only points lying to the right of column c,
which would leave at least k cells in row r + 1 and contradict the definition of r. This
leaves only two possibilities for λ/µ: the cells (r, c + 1) and (r + 1, c). However, only one
of these cells can be added to µ to produce a partition; if both could be added then row
r + 1 and column c + 1 of λ would each contain at least k cells, implying the existence of
k-deletions of λ in which each contain at least k cells and thus contradicting the choice
of r and c. This case therefore reduces to checking which one of the cells (r, c + 1) and
(r + 1, c) can be added to µ to produce a partition.
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Case 3: r and c do not intersect. Suppose that the rightmost cell in row r is (r, j) and the
bottommost cell in column c is (i, c). If j < c − 1 then because λ and µ agree to the left
of column c, λ/µ cannot contain any cells in or below row r, and we already have that λ
and µ agree above row r, so we are left with the conclusion that λ = µ. By symmetry we
are also done if i < r − 1, leaving us to consider the case where i = r − 1 and j = c − 1.
Again using the fact that λ and µ agree above row r and to the left of column c (and the
definitions of r and c) we see that the only possibility for λ/µ is (r, c), completing the
proof of this case and the theorem.
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