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Abstract

A clutter or antichain on a set defines a hypergraph. Matroid ports are a special

class of clutters, and this paper deals with the diameter of matroid ports, that is, the

diameter of the corresponding hypergraphs. Specifically, we prove that the diameter

of every matroid port is at most 2. The main interest of our result is its application

to secret sharing. Brickell and Davenport proved in 1989 that the minimal qualified

subsets of every ideal secret sharing scheme form a matroid port. Therefore, our

result provides a new necessary condition for an access structure to admit an ideal

secret sharing scheme.
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1 Introduction

A clutter or antichain on a set P is a family Λ of subsets of P such that A 6⊆ B for every
pair of different elements A, B ∈ Λ. For instance, the circuits of a matroid form a clutter
on the ground set. Given a matroid M and a point p0 ∈ Q in the ground set, the port of

the matroid M at the point p0 is the clutter Mp0
on the set P = Q − {p0} defined by

Mp0
= {A ⊆ P : A ∪ {p0} is a circuit of M}.

Matroid ports were introduced in 1964 by Lehman [6] to solve the Shannon switching
game. By extending a previous characterization by Lehman [7], Seymour [11] gave in
1976 several characterizations of matroid ports, one of them in terms of forbidden minors.

Every clutter Λ on a set P defines a hypergraph whose vertices are the elements of P
while its hyperedges are the sets in Λ. The diameter of a clutter is defined in the following
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as the diameter of the corresponding hypergraph. For a clutter Λ on a set P and two
points p1, p2 ∈ P , a path Πp1,p2

of length r between the points p1 and p2 in the clutter Λ is
a sequence Πp1,p2

= (A1, . . . , Ar) of sets in Λ such that p1 ∈ A1, p2 ∈ Ar, and Ai∩Ai+1 6= ∅
if 1 ≤ i ≤ r − 1. A clutter is said to be path-connected if there is a path between every
pair of vertices. The minimum length of all paths between p1 and p2 is called the distance

between these two points, and it is denoted by dΛ(p1, p2). The diameter of a clutter is
the maximum distance between all pairs of vertices. In this paper, we prove the following
property of matroid ports.

Theorem 1. The diameter of every path-connected matroid port is at most 2.

Since there exist efficient algorithms to compute the diameter of a hypergraph, this
result provides a necessary condition for a clutter to be a matroid port that can be
efficiently checked. The main application of our result is in secret sharing, specifically,
in the characterization of the access structures of ideal secret sharing schemes. As a
consequence of the results by Brickell and Davenport [4], for every ideal secret sharing
scheme, the clutter formed by its minimal qualified subsets is a matroid port. Therefore,
our result provides an easily checkable necessary condition for an access structure to admit
an ideal secret sharing scheme.

Some basic facts about secret sharing and its connection to matroid ports are presented
in Section 2. Theorem 1 is proved in Section 3, while some extensions of this result and
its application to secret sharing are discussed in Section 4.

2 Secret Sharing and Matroid Ports

The main definitions and terminology, and some basic facts about matroid ports are
recalled in this section. In addition, we discuss the connections of matroids ports to
secret sharing. The reader is referred to the book by Oxley [9] for the concepts from
matroid theory that are not defined here and to [15] for a survey on secret sharing.

Matroids are combinatorial objects that generalize the properties of linear dependence
among a finite set of vectors. There are many different equivalent definitions of matroid.
The one we present here is based on the axioms of the circuits, the minimal dependent
sets. A matroid M is a pair M = (Q, C) where Q is a finite set, the ground set of M,
and C is a clutter on Q such that

1. ∅ /∈ C, and

2. if C1 and C2 are different elements in C and p ∈ C1 ∩ C2, then there exists C3 ∈ C
such that C3 ⊆ (C1 ∪ C2) − {p}.

The subsets in C are the circuits of the matroid. A matroid is said to be connected if
every two points lie in a common circuit. A clutter Λ on a set P is said to be connected

if P =
⋃

A∈Λ
A. From [9, Proposition 4.1.2], a matroid M is connected if and only if any

of its ports Mp0
is a connected clutter, and in this case all ports of M are connected.
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Lehman [6] proved that a connected matroid can be determined from any of its ports.
Since it will be used later, we describe in detail this result. A proof for it can be found in [9,
Theorem 4.3.2]. For a clutter Λ on a set P and a subset X ⊆ P , consider Λ(X) = {A ⊆
X : A ∈ Λ}, the induced clutter of Λ on X. Consider as well the sets I(X) and E(X)
defined by I(X) =

⋂
{A : A ∈ Λ(X)} and E(X) = X − I(X). Let C2(Λ) = min C+

2 (Λ)
be the clutter on P formed by the minimal subsets of

C+
2 (Λ) = {E(A1 ∪ A2) : A1, A2 ∈ Λ, A1 6= A2}.

Finally, on the set Q = P ∪ {p0} where p0 /∈ P , consider the clutter C1(Λ) = {A ∪ {p0} :
A ∈ Λ} and let C(Λ) = C1(Λ) ∪ C2(Λ). Now, by using these notations, the result by
Lehman can be stated as follows.

Theorem 2. Let Λ be a connected clutter on a set P and Q = P ∪ {p0}, where p0 /∈ P .

Then the clutter Λ is a matroid port on P if and only if M = (Q, C(Λ)) is a matroid with

ground set Q, and in this case M is the only matroid with Λ = Mp0
.

This result provides a characterization of matroid ports. Other characterizations were
given later on by Lehman [7] and Seymour [11]. By combining the results by Seymour [11]
with some results and techniques from secret sharing, a new characterization of matroid
ports has been found recently [8]. This characterization, which is stated in Theorem 3, is
the one that we will use subsequently in this paper.

Secret sharing, which was independently introduced by Blakley [1] and Shamir [13] in
1979, is an important primitive in cryptography that is used as a building-block in many
different cryptographic protocols. A secret sharing scheme is a method of distributing
shares of a secret value among a set of participants P in such a way that only certain
specified subsets of participants, the qualified subsets, can reconstruct the secret value by
pooling their shares, while the shares of the participants in a non-qualified subset provide
absolutely no information about the value of the secret. The access structure Γ is the
collection of the qualified subsets. Since every subset containing a qualified subset must
be qualified, the access structure is a monotone increasing family of subsets, which is
determined by the clutter min Γ of its minimal elements.

The complexity of a secret sharing scheme is usually measured by the length of the
shares. The information rate ρ(Σ) of a secret sharing scheme Σ is defined as the ratio
between the length (in bits) of the secret and the maximum length of the shares given
to the participants. A secret sharing scheme is said to be ideal if every share has the
same length as the secret, which is the best possible situation. Not every access structure
admits an ideal scheme. The characterization of the ideal access structures, that is,
the access structures of ideal secret sharing schemes, is a difficult, long-standing open
problem. Brickell and Davenport [4] proved in 1991 that, for every ideal access structure
Γ, the clutter min Γ is a matroid port. Seymour [12] proved that this necessary condition
for an access structure to be ideal is not sufficient. Specifically, he proved that the access
structures induced by the ports of the Vamos matroid are not ideal. As a consequence of
the results by Brickell [3], the ports of linearly representable matroids define ideal access
structures. This sufficient condition is not necessary [14].
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A more general open problem in secret sharing is the determination, for every access
structure Γ, of the optimal information rate ρ(Γ), that is, the information rate of the best
secret sharing scheme for Γ. The independent sequence method is a general method to
obtain upper bounds on the optimal information rate of an access structure [2, 10]. We
describe in the following this method. For a clutter Λ on a set P , the closure cl(Λ) of Λ
is formed by all subsets of P containing some subset in Λ. Obviously, cl(Λ) is monotone
increasing. An independent sequence of length m and size s in the clutter Λ is a sequence
(B1, . . . , Bm |X1, . . . , Xm) of subsets of P satisfying:

1. B1 ⊆ · · · ⊆ Bm ⊆ P and s = |X1 ∪ · · · ∪ Xm|, and

2. Bi ∪ Xi ∈ cl(Λ) for i = 1, . . . , m, and

3. Bi ∪ Xi+1 /∈ cl(Λ) for i = 1, . . . , m − 1 and Bm /∈ cl(Λ).

Independent sequences provide upper bounds on the optimal information rate of an access
structure Γ. Specifically, if there exists in Λ = min Γ an independent sequence of length
m and size s, then ρ(Γ) ≤ s/m [2, 10].

By combining the independent sequence method with the forbidden minor characteri-
zation of matroid ports by Seymour [11], a new characterization of matroid ports in terms
of independent sequences has been obtained in a recent work [8].

Theorem 3. A clutter is a matroid port if and only if it does not admit any independent

sequence with length m = 3 and size s = 2, and in this case there does not exist in the

clutter any independent sequence whose length m is greater than its size s.

As a consequence of this new characterization of matroid ports, the result by Brickell
and Davenport [4] on ideal access structures was generalized in [8].

Theorem 4. If the optimal information rate of an access structure is greater than 2/3,
then its minimal qualified sets form a matroid port.

Because of the applications to secret sharing, it would be interesting to have an effi-
ciently checkable characterization of matroid ports. The algorithms to decide wether a
given clutter is a matroid port or not that can be obtained from the existing characteriza-
tions are not efficient. Even though our main result (Theorem 1) is not a characterization,
it provides a necessary condition for a clutter to be a matroid port that can be efficiently
checked.

3 The Diameter of Matroid Ports

We present in this section the proof of our main result, Theorem 1. We begin by presenting
three technical lemmas that are needed in the proof. The first one, Lemma 5, is due to
Withney [16] and its proof can be derived from the one of [9, Proposition 4.1.2], while
Lemma 6 was given in [11, Lemma 4]. By combining these two results we obtain Lemma 7,
which will be used several times in the proof of Theorem 1.
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Lemma 5. Let C1 and C2 be two different circuits of a matroid M with C1 ∩ C2 6= ∅.
Then, for every pair of points c1 ∈ C1 − C2 and c2 ∈ C2 − C1, there exists a circuit C of

M such that c1, c2 ∈ C ⊆ C1 ∪ C2.

Lemma 6. Let Λ be a matroid port and let A ∈ Λ and C ∈ C2(Λ) with A ∩C 6= ∅. Then

there exist distinct subsets A1, A2 ∈ Λ such that A1, A2 ⊆ A ∪ C and C = E(A1 ∪ A2).

Lemma 7. Let Λ be a connected matroid port on a set P , and let p1, p2 ∈ P be two points

such that there does not exist any set A ∈ Λ with {p1, p2} ⊆ A. Then, for every pair of

subsets A1, A2 ∈ Λ with p1 ∈ A1 and p2 ∈ A2, there exist A′
1, A

′
2 ∈ Λ(A1 ∪ A2) such that

Λ(A′
1 ∪ A′

2) = {A′
1, A

′
2}, and p1 ∈ A′

1 and p2 ∈ A′
2.

Proof. Let M be the matroid with ground set Q = P ∪ {p0} such that Λ = Mp0
and

consider the circuits Ci = Ai ∪ {p0} for i = 1, 2. From Lemma 5, there exists a circuit
C of M such that p1, p2 ∈ C ⊆ C1 ∪ C2 = A1 ∪ A2 ∪ {p0}. Observe that C /∈ C1(Λ)
because there does not exist A ∈ Λ with p1, p2 ∈ A. By applying Lemma 6 to A1 ∈ Λ and
C ∈ C2(Λ) (notice that p1 ∈ A1 ∩ C 6= ∅), there exist A′

1, A
′
2 ∈ Λ with A′

1, A
′
2 ⊆ A1 ∪ C

such that C = E(A′
1 ∪ A′

2). Since A1 ∪ C ⊆ A1 ∪ C1 ∪ C2 = A1 ∪ A2 ∪ {p0}, we get that
A′

1, A
′
2 ∈ Λ(A1∪A2). In addition, since p1, p2 ∈ C = E(A′

1∪A′
2) ⊆ A′

1∪A′
2, we may assume

without loss of generality that p1 ∈ A′
1 and p2 ∈ A′

2. The proof is concluded by checking
that Λ(A′

1 ∪A′
2) = {A′

1, A
′
2}. Assume that there exists A ∈ Λ(A′

1 ∪A′
2)−{A′

1, A
′
2}. Then

A′
i∪A ⊆ A′

1∪A′
2 for i = 1, 2, which implies that E(A′

i∪A) ⊆ E(A′
1∪A′

2). Since the circuit
C = E(A′

1 ∪A′
2) is a minimal element in C+

2 (Λ), we get that E(A′
i ∪A) = E(A′

1 ∪A′
2) for

i = 1, 2. Therefore, p1 ∈ A because p1 ∈ C = E(A′
1 ∪ A′

2) = E(A′
2 ∪ A) ⊆ A′

2 ∪ A and
p1 /∈ A′

2. Symmetrically, p2 ∈ A. This is a contradiction because we are assuming that
{p1, p2} * A for every A ∈ Λ.

We can proceed now with the proof of Theorem 1. Assume that the result is false
and consider a path-connected matroid port Λ on a set P with diameter at least 3. In
such a case there exist two different points p1, p2 ∈ P such that dΛ(p1, p2) = 3. Now,
among the paths of length three from p1 to p2, consider a path Π0 = (A1, A2, A3) such
that the number of points in A1 ∪ A2 ∪ A3 is minimum. Clearly, p1 ∈ A1 − (A2 ∪ A3)
and p2 ∈ A3 − (A1 ∪ A2). Moreover, A1 ∩ A3 = ∅ while both A1 ∩ A2 and A2 ∩ A3 are
nonempty. Consider two points q1 ∈ A1 ∩ A2 and q2 ∈ A2 ∩ A3.

In the following, we prove several properties of the induced clutters Λ(A1∪A3), Λ(A1∪
A2), Λ(A2 ∪ A3), and Λ(A1 ∪ A2 ∪ A3).

Claim 8. Λ(A1 ∪ A3) = {A1, A3}.

Proof. By Lemma 7, there exist A′
1, A

′
3 ∈ Λ(A1 ∪A3) with p1 ∈ A′

1 and p2 ∈ A′
3 such that

Λ(A′
1∪A′

3) = {A′
1, A

′
3}. Observe that A′

1∩A3 = ∅ and A1∩A′
3 = ∅ because dΛ(p1, p2) > 2.

Since A′
1 ∪ A′

3 ⊆ A1 ∪ A3, we get that A′
i ⊆ Ai for i = 1, 3, and hence A′

i = Ai because Λ
is a clutter.

Claim 9. For i = 1, 3, there exists Di ∈ Λ(Ai ∪ A2) such that Λ(Ai ∪ Di) = {Ai, Di},
such that A1 ∪ Di ∪ A3 = A1 ∪ A2 ∪ A3, and Πi = (A1, Di, A3) is a path from p1 to p2.
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Proof. By symmetry, it is enough to prove the existence of D1. From Lemma 7 applied to
the sets A1, A2 ∈ Λ and to the points p1 ∈ A1 and q2 ∈ A2, there exist A′

1, A
′
2 ∈ Λ(A1∪A2)

such that p1 ∈ A′
1, and q2 ∈ A′

2, and Λ(A′
1 ∪ A′

2) = {A′
1, A

′
2}.

We prove in the following that A′
1 ∩ A′

2 6= ∅. This is clear if A′
1 = A1 or A′

2 = A2.
Suppose that A′

1 6= A1 and A′
2 6= A2. Then A′

1 ∩ A2 6= ∅ and Π′ = (A′
1, A2, A3) is a path

of length three from p1 to p2. Since Π0 = (A1, A2, A3) is a path with a minimum number
of points, |A1 ∪ A2 ∪ A3| ≤ |A′

1 ∪ A2 ∪ A3|, and hence A1 ∪ A2 ∪ A3 = A′
1 ∪ A2 ∪ A3 and

A1 −A2 ⊆ A′
1. In addition, A′

2 ∩ (A1 −A2) 6= ∅ because A′
2 ⊆ A1 ∪A2 and A′

2 6= A2. This
implies that A′

1 ∩ A′
2 6= ∅.

Therefore, Π′
1 = (A′

1, A
′
2, A3) is a path of length three from p1 to p2. By taking into

account the minimality on the number of points involved in the path Π0, we conclude
that A1 ∪ A2 ∪ A3 = A′

1 ∪ A′
2 ∪ A3. Since A1 ⊆ A′

1 ∪ A′
2 and Λ(A′

1 ∪ A′
2) = {A′

1, A
′
2}, we

get that A1 = A′
1. The proof is concluded by taking D1 = A′

2.

Claim 10. There exists A ∈ Λ − {A1, A2, A3} with A ⊆ A1 ∪ A2 ∪ A3.

Proof. Assume that the claim is false. Consider the subsets B1 = (A1 ∪ A2 ∪ A3) −
{p1, p2, q1, q2}, and B2 = B1 ∪ {p1}, and B3 = B1 ∪ {p1, p2}, and also the subsets X1 =
{q1, q2}, and X2 = {q1}, and X3 = {q2}. On one hand we have that A2 ⊆ B1 ∪ X1, and
A1 ⊆ B2∪X2, and A3 ⊆ B3∪X3. Therefore the three subsets B1∪X1, B2∪X2, and B3∪X3

are in cl(Λ). On the other hand, since p1 ∈ A1, p2 ∈ A3, and q1, q2 ∈ A2, it follows that the
subsets B1∪X2, B2∪X1, and B3 are not in cl(Λ). Therefore (B1, B2, B3 |X1, X2, X3) is an
independent sequence with length m = 3 and size s = 2, a contradiction by Theorem 3.

Claim 11. If A ∈ Λ(A1 ∪ A2 ∪ A3) − {A1, A2, A3}, then p1, p2 /∈ A and A1 ∪ A2 ∪ A3 =
A1 ∪ A ∪ A3.

Proof. Consider A ∈ Λ − {A1, A2, A3} with A ⊆ A1 ∪ A2 ∪ A3. We prove first that both
A∩A1 and A∩A3 are nonempty by using the sets D1, D3 introduced in Claim 9. Suppose
that A∩A1 = ∅. Since A ⊆ A1 ∪A2 ∪A3 = A1 ∪D3 ∪A3, we get that A ⊆ D3 ∪A3. This,
combined with Λ(D3 ∪ A3) = {D3, A3}, implies that A = D3, a contradiction because
A1 ∩ D3 6= ∅ by Claim 9. Symmetrically, A ∩ A3 6= ∅. Therefore p1, p2 /∈ A because
dΛ(p1, p2) = 3. In addition, Π = (A1, A, A3) is a path of length three from p1 to p2, which
implies that A1 ∪ A2 ∪ A3 = A1 ∪ A ∪ A3 by the minimality of the path Π0.

At this point, we conclude the proof of Theorem 1 by showing an independent sequence
that leads to contradiction. From Claim 8, we have A2 * A1 ∪ A3, while it follows from
Claim 10 that there exists a set A4 ∈ Λ(A1∪A2∪A3)−{A1, A2, A3}. Therefore we can take
a point q3 ∈ A2 − (A1 ∪A3) and a point q4 ∈ A4 −A2. Because of the symmetry between
A1 and A3, we can suppose without loss of generality that q4 ∈ A1. Consider the subsets
B1 = A4−{q3, q4}, B2 = (A2∪A4)−{q3, q4}, and B3 = (A1∪A2∪A4)−{q3, q4}. Consider
as well the subsets X1 = {q3, q4}, X2 = {q3}, and X3 = {q4}. Clearly A4 = B1 ∪ X1,
and A2 ⊆ B2 ∪ X2, and A1 ⊆ B3 ∪ X3, which implies that Bi ∪ Xi ∈ cl(Λ) for i = 1, 2, 3.
Obviously, B1 ∪ X2 = A4 − {q4} /∈ cl(Λ). In addition, Ai * B2 ∪ X3 and Ai * B3

for i = 1, 2, 3. Moreover, from Claim 11, if A ∈ Λ(A1 ∪ A2 ∪ A3) − {A1, A2, A3}, then
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q3 ∈ A, and hence A * B2 ∪ X3 and A * B3. Therefore B2 ∪ X3, B3 /∈ cl(Λ) and
(B1, B2, B3 |X1, X2, X3) is an independent sequence with length m = 3 and size s = 2,
which is a contradiction by Theorem 3. This concludes the proof of Theorem 1.

4 Related Results and Applications to Secret Sharing

The converse of Theorem 1 does not hold. On the set P = {p1, p2, p3, p4}, consider the
clutters Λ1 = {{p1, p2}, {p1, p3}, {p1, p4}, {p2, p3, p4}} and Λ2 = {{p1, p2}, {p1, p3}, {p2, p3,
p4}}. The diameters of Λ1 and Λ2 are equal to 1 and 2, respectively. As a consequence
of Seymour’s characterization [11], none of these clutters is a matroid port. This fact can
be easily proved from Theorem 3 as well.

Therefore, we cannot obtain a characterization of matroid ports from our main result.
Nevertheless, it provides an efficiently checkable necessary condition for a clutter to be a
matroid port. Because of the connections between matroid ports and the access structures
of ideal secret sharing schemes that were described in Section 2, our result can be applied
to secret sharing. The next corollary is a direct consequence of Theorems 1 and 4.

Corollary 12. Let Γ be an access structure such that the clutter min Γ is path-connected.

Then ρ(Γ) ≤ 2/3 if the diameter of min Γ is greater than 2.

Therefore, given an access structure Γ such that the clutter min Γ is path-connected,
we compute the diameter of min Γ. If this diameter is greater than 2, we conclude that
min Γ is not a matroid port, and hence there is no ideal secret sharing scheme for Γ and,
moreover, its optimal information rate is ρ(Γ) ≤ 2/3. Nevertheless, we cannot say much
about the optimal information of Γ if the diameter of min Γ is 1 or 2.

There is no other restriction on the values of the diameters of matroid ports than the
one in Theorem 1. Consider two integers k, n with 1 ≤ k ≤ n. The ground set of the
uniform matroid Uk,n has n points, while its circuits are all subsets with exactly k + 1
points. If 2 ≤ k < n, the diameter of every port of the uniform matroid Uk,n is equal to
1. Consider a connected matroid M = (Q, C) and a point p0 ∈ Q such that the matroid
port Mp0

is path-connected and there exist two different points {p1, p2} ∈ Q−{p0} such
that {p1, p2} is a circuit of M. Then the diameter of the matroid port Mp0

is equal to
2 because dMp0

(p1, p2) = 2. An example of such a matroid is the one with ground set
Q = {p0, p1, p2, p3} and circuits C = {{p1, p2}, {p0, p1, p3}, {p0, p2, p3}}.

Even though it is not possible to improve Theorem 1, next we prove a property of
matroid ports with diameter equal to two which involves its dual . The dual Λ∗ of a
clutter Λ on a set P is defined as the collection of the minimal sets that have nonempty
intersection with all members of Λ, that is

Λ∗ = min{B ⊆ P : B ∩ A 6= ∅ for all A ∈ Λ}.

The dual of a clutter is also is a clutter, and Λ∗∗ = Λ. Now, given two points in P , we
can consider the distance between these points both in the clutter Λ and in its dual Λ∗.
The next proposition establish the relationship between both distances whenever Λ is a
matroid port.
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Proposition 13. Let Λ be a matroid port on a set of points P , and let p1, p2 ∈ P be two

points such that dΛ(p1, p2) = 2. Then, dΛ∗(p1, p2) = 1.

Proof. Since dΛ(p1, p2) = 2, then by Lemma 7 there exist A′
1, A

′
2 ∈ Λ(A1 ∪ A2) with

p1 ∈ A′
1 and p2 ∈ A′

2 such that Λ(A′
1 ∪ A′

2) = {A′
1, A

′
2}. Observe that

Λ = Λ∗∗ = min{C ⊆ P : C ∩ B 6= ∅ for all B ∈ Λ∗}.

Since A * (A′
1 ∪ A′

2) − {p1, p2} for every A ∈ Λ, there must exist a subset B ∈ Λ∗ such
that B ∩ ((A′

1 ∪ A′
2) − {p1, p2}) = ∅. In addition, A′

i ∩ B 6= ∅ for i = 1, 2 because A′
i ∈ Λ

and B ∈ Λ∗. Therefore p1, p2 ∈ B, and hence dΛ∗(p1, p2) = 1.

Proposition 13 has also an interesting application to secret sharing that is related
to the construction of multiplicative linear secret sharing schemes. All definitions and
basic results on this topic can be found in [5]. The dual of an access structure Γ is
the access structure cl((min Γ)∗). Let Γ be the access structure of an ideal linear secret
sharing scheme. Then min Γ is a matroid port. Suppose that there exist two participants
at distance 2 in the clutter min Γ. then it is clear from Proposition 13 that Γ∗ * Γ.
This means that the access structure Γ is not Q2, and hence that Γ does not admit a
multiplicative linear secret sharing scheme.
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