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Abstract

We extend a characterization of degree-choosable graphs due to Borodin [1], and
Erdős, Rubin and Taylor [2], to circular list-colorings.

1 Introduction

Let G = (V (G), E(G)) be a graph. A list assignment L for G is a mapping which assigns
to each vertex v of G a set of non-negative integers L(v). An L-coloring of G is a proper
coloring c of G such that c(v) ∈ L(v) for every v ∈ V (G). A graph G is degree-choosable
if G admits an L-coloring for every list assignment L, such that |L(v)| ≥ deg(v) for all
v ∈ V (G). Borodin [1] and Erdős, Rubin and Taylor [2] characterized degree-choosable
graphs as follows.

Theorem 1. A graph G is not degree-choosable if and only if each of the blocks of G is
a clique or an odd cycle (i. e. G is a Gallai tree).

In this paper we prove an analogue of Theorem 1 for circular colorings. Informally, a
circular coloring is a coloring of the vertices of the graph by points of a (possibly discrete)
circle, such that the circular distance between the colors assigned to adjacent vertices of
the graph is bounded from below. Circular colorings have attracted considerable attention
over the last decade (see [9] for a survey of the subject). Circular version of list-colorings
has been recently introduced by Mohar [4] and Zhu [8], and has been since studied in [3,
5, 6, 7], among others.

Let us now formally present the relevant definitions and notation. Let p be a positive
integer. For an integer a we denote by [a]p the remainder of a modulo p. Define Sp as
{0, 1, . . . , p − 1}. For a, b ∈ Sp, the interval [a, b]p is defined as

[a, b]p = {a, a + 1, a + 2, · · · , b},
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where the additions are modulo p. The circular distance |a−b|p between a and b is defined
as

|a − b|p = min{[a − b]p, [b − a]p} = min{|[a, b]p|, |[b, a]p|} − 1.

Let q be a positive integer, such that p ≥ 2q, and let G = (V (G), E(G)) be a graph.
A (p, q)-coloring of G is a function c : V (G) → Sp, such that for every edge uv ∈ E(G)
we have |c(u) − c(v)|p ≥ q. Given a list assignment L, an L-(p, q)-coloring of G is a
(p, q)-coloring that is also an L-coloring. We say G is L-(p, q)-colorable if there is an
L-(p, q)-coloring of G. Let l : V (G) → {0, 1, . . . , p} be a function. We say that a list-
assignment L for G is an l-p-list assignment if L(v) ⊆ Sp and |L(v)| ≥ l(v) for every
v ∈ V (G). We say that G is l-(p, q)-choosable if G is L-(p, q)-colorable for every l-p-list
assignment L for G.

We say that a graph G is circular q-degree-choosable if G is lq-(p, q)-choosable for every
integer p ≥ (∆(G) − 1)(2q − 1) + 1, where for v ∈ V (G)

lq(v) = (deg(v) − 1)(2q − 1) + 1. (1)

Observe that l1(v) = deg(v). So a graph is circular 1-degree-choosable if and only if it
is degree-choosable. In the following, we only consider circular q-degree-choosability for
q ≥ 2. We will show that for any integers q1, q2 ≥ 2, a graph G is circular q1-degree-
choosable if and only if G is circular q2-degree-choosable. We say that a graph is circular
degree-choosable if it is circular q-degree-choosable for some (and hence for all) integer
q ≥ 2.

Given a graph G, the heart of G is the graph obtained from G by repeatedly deleting
degree one vertices. In this paper we characterize circular degree-choosable graphs as
follows.

Theorem 2. A connected graph G is not circular degree-choosable if and only if G is a
tree, or the heart of G is an odd cycle, or G is isomorphic to K4.

In [3] Havet et al. considered notions of circular degree-choosability that are similar to,
but distinct from ours. They defined a graph G to be circularly (2d− 2)-choosable if G is
l′q-(p, q)-choosable for all integers q and p ≥ (2∆(G)−2)q, where l′q(v) = max{(2 deg(v)−
2)q, 1} for v ∈ V (G). They conjectured a characterization of circularly (2d−2)-choosable
graphs, namely, that a graph is circularly (2d− 2)-choosable unless it is a tree or an odd
cycle. Note that such a characterization is not implied by Theorem 2, nor would it imply
Theorem 2. Our notion of circular degree-choosability is more restrictive, but the class of
graphs that are conjectured to be circularly (2d − 2)-choosable is larger. Our definition
of circular degree choosability appears to us to be more natural. In particular, circular
q-degree-choosability inherits the following property from degree choosability: For a given
integer q the function lq, defined in (1), is the minimum function of deg(v), such that G
is lq-(p, q)-choosable for all p ≥ maxv∈V (G) lq(v), if, and only if, some induced subgraph H
of G is lq-(p, q)-choosable.

The remainder of the paper is devoted to the proof of Theorem 2. In Section 2 we
introduce results from [2, 5, 7] that we will utilize in our proof and prove a couple of
simple auxiliary lemmas. The proof itself is presented in Section 3.
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2 Prerequisites

Our proof of Theorem 2 follows the general outline of the proof of characterization of
degree-choosable graphs in [2]. We prove that a graph G is circular q-degree-choosable
if G has an induced subgraph H which is circular q-degree-choosable. Then we show
that if the heart of G is non-empty and distinct from an odd cycle then G contains an
induced subgraph with a simple, particular structure. Finally, we prove that graphs with
such a structure are circular q-degree-choosable. In this section we complete the first two
steps of the proof, and introduce the results that we will utilize in the last step. Let
us start by introducing some additional notation. For a positive integer p and x ∈ Sp

denote by Bp, q(x) the set of elements of Sp at circular distance less than q from x, i.e.,
Bp, q(x) = [x − q + 1, x + q − 1]p. We write B(x) instead of Bp, q(x), when the values of p
and q are understood from the context.

Lemma 3. Let q ≥ 1 be an integer, let G be a graph and let H be an induced subgraph of
G. If H is circular q-degree-choosable, then so is G.

Proof. It suffices to prove the lemma in the case when H is obtained from G by deleting
some vertex w ∈ V (G). Let p ≥ (∆(G) − 1)(2q − 1) + 1 be an integer. Let L be an
lq-p-list assignment for G, where lq is defined as in (1). We will prove that G admits an
L-(p, q)-coloring. Let c0 ∈ L(w) be chosen arbitrarily. Define a list assignment L′ for H
as follows: Let L′(v) = L(v) \Bp,q(c0) for every v ∈ V (H), such that vw ∈ E(G), and let
L′(v) = L(v), otherwise. Then |L′(v)| ≥ (degH(v) − 1)(2q − 1) + 1 for every v ∈ V (H),
and thus there exists an L′-(p, q)-coloring c of H. We extend c to a coloring of G by
setting c(w) = c0. Then c is an L-(p, q)-coloring by the choice of L′.

In proving the “only if” direction of Theorem 2 we will use the following partial
converse of Lemma 3.

Lemma 4. Let q ≥ 1 be an integer, let G be a graph, and let H be obtained from G
by deleting a vertex u ∈ V (G), such that u has a unique neighbor w ∈ V (G). Let
l : V (H) → Z+ be such that H is not l-(p, q)-choosable for all sufficiently large integers p.
Let l′ be obtained from l by setting l′(u) = 1, l′(w) = l(w)+2q− 1, and l′(v) = l(v) for all
v ∈ V (G) \ {u, w}. Then G is not l′-(p, q)-choosable for all sufficiently large integers p.

Proof. Let p0 ≥ (2q − 1)l(w) + 1 be chosen so that for every integer p ≥ p0 the graph
H is not l-(p, q)-choosable. Consider arbitrary p ≥ p0. By the choice of p, there exists
an l-p-list assignment L for H, such that H is not L-(p, q)-colorable. By the choice of p0

there exists c ∈ Sp \
(

⋃

a∈L(w) Bp,q(a)
)

. We have Bp,q(c) ∩ L(w) = ∅. Let L′(u) = {c},

L′(w) = L(w)∪Bp,q(c), and let L′(v) = L(v) for v ∈ V (G) \ {u, w}. Then L′ is an l′-p-list
assignment for G, and, clearly, there exists no L′-(p, q)-coloring of G.

In [2], typical induced subgraphs of graphs that contain a block distinct from a clique
or an odd cycle are described as follows.
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Lemma 5. [2] Let G be a graph that contains a block distinct from a clique or an odd
cycle. Then G contains an induced subgraph H, such that H is an even cycle with at most
one chord.

The next description of typical induced subgraphs of graphs with the heart non-empty
and distinct from an odd cycle follows immediately from Lemma 5.

Corollary 6. Let G be a connected graph such that G is not a tree and the heart of G is
not an odd cycle. Then G contains an induced subgraph H, such that

• H is a clique on 4 vertices, or

• H is an even cycle with at most one chord, or

• H consists of two odd cycles C1 and C2 joined by a path P , such that P is internally
disjoint from C1 and C2, and C1 and C2 are vertex disjoint, unless P has zero length,
in which case C1 and C2 share a single vertex.

Proof. If the heart of G contains a block that is not an odd cycle, then the lemma follows
from Lemma 5. If not, then G contains two blocks, each of which is an odd cycle. By
joining these blocks by an induced path in G (possibly of length zero), we obtain the
required subgraph H.

By Lemma 3 and Corollary 6, it suffices to prove Theorem 2 for graphs with simple
structure. We will use the following results on circular colorings of trees and cycles in
further analysis of colorings of these graphs.

Lemma 7. [7] Let T be a tree, let p ≥ 2q be positive integers and let l : V (T ) →
{0, 1, . . . , p}. Then T is l-(p, q)-choosable if and only if for each subtree T ′ of T we have

∑

v∈V (T ′)

l(v) ≥ 2q(|V (T ′)| − 1) + 1.

Lemma 8. [5] Let p ≥ 2q be positive integers. Let G be an even cycle, and let l(v) = 2q
for every v ∈ V (G). Then G is l-(p, q)-choosable.

3 Proof of Theorem 2

In this section we prove Theorem 2. We prove the “if” direction of the theorem by
considering graphs that serve as outcomes of Corollary 6. We start by disposing of the
first outcome.

Lemma 9. Suppose q ≥ 2, p ≥ 4q and L is a list assignment of K4 with |L(x)| ≥ 4q − 1
for each vertex x. Then G has an L-(p, q)-coloring.
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Proof. Without loss of generality, we may assume that 0 ∈ L(v1) and 1 6∈ L(v2). Color
v1 with 0. Let c1 be the least color in ∪4

i=2L(vi) \ [0, q − 1]p. If c1 ∈ L(vi) for some i 6= 2,
then color vi (say v3) with color c1. Otherwise, color v2 with color c1. At this moment,
there are two uncolored vertices, that are either v2, v4 or v3, v4.

In the former case, c1 6∈ L(v3)∪L(v4). Hence for i = 3, 4, L(vi)\ [0, c1+q−1]p contains
at least 2q colors. Let c2 be the least color in (L(v3) ∪ L(v4)) \ [0, c1 + q − 1]p. Assume
c2 ∈ L(v3), then color v3 with color c2. Then L(v4) \ [0, c2 + q − 1]p contains at least q
colors. Color v4 with the least color in L(v4)\ [0, c2+q−1]p, we obtain an L-(p, q)-coloring
of K4.

In the later case, let c2 be the least color in (L(v2)∪L(v4))\[0, c1+q−1]p. If c2 ∈ L(v4),
then color v4 with color c2. Since 1 6∈ L(v2), we conclude that L(v2)\[0, c2+q−1]p contains
at least q colors. Color v2 with the least color in L(v2) \ [0, c2 + q − 1]p, we obtain an
L-(p, q)-coloring of K4. If c2 6∈ L(v4), then color v2 with color c2. Now L(v4)\[0, c2+q−1]p
contains at least q colors. Color v4 with the least color in L(v4)\ [0, c2 + q−1]p, we obtain
an L-(p, q)-coloring of K4.

Corollary 10. Let G be a connected graph with V (G) ≥ 5 and suppose that G contains a
subgraph isomorphic to K4. Then G is circular q-degree choosable for every integer q ≥ 2.

Proof. We need to prove that G is lq-(p, q)-choosable for all integers p ≥ (∆(G)− 1)(2q −
1)+1, and the function lq as in (1). By repeating the argument in the proof of Lemma 3,
we can see that it suffices to prove that some subgraph H is lHq -(p, q)-choosable, where the
superscript H indicates that the degrees in the formula (1) for lq are taken in H. Choose
H isomorphic to K4. Note that ∆(G) ≥ 4, and, thus, p ≥ 4q. The corollary now follows
from Lemma 9.

When considering two of the remaining outcomes of Corollary 6, we produce the
required coloring by precoloring some vertices and applying a variant of Lemma 7 to color
the remaining ones. Unfortunately, for our purposes Lemma 7 is not always sufficient.
Our next goal is to prove a slightly more technical result.

Lemma 11. Let T be a tree, and let p and q be positive integers, such that p ≥ 4q − 1.
Then T is L-(p, q)-choosable for every list assignment L with the following properties

(a) L(v) ⊆ Sp for every v ∈ V (T ),

(b)
∑

v∈V (T ′) |L(v)| ≥ 2q(|V (T ′)| − 1) + 1 for each proper subtree T ′ of T ,

(c)
∑

v∈V (T ) |L(v)| ≥ 2q(|V (T )|−1), and if the equality holds, then L(t) is not an interval
for some leaf t of T .

Proof. If the inequality in the condition (c) does not hold with equality then the lemma
follows from Lemma 7. Thus, we assume that it does hold with equality, and that L(t)
is not an interval for some leaf t of T . Let u be the unique neighbor of t in T . Define
a list assignment L′ for T − t as follows: Let L′(u) = {x ∈ L(u) | L(t) 6⊆ Bp,q(x)}, and
let L′(v) = L(v) for all v ∈ V (T ) \ {w, u}. Note that L′ satisfies conditions of Lemma 7,
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as long as |L′(u)| ≥ |L(u)| + |L(t)| − 2q + 1. Moreover, any L′-(p, q)-coloring of T − w
extends to an L-(p, q)-coloring of T by the choice of L′.

Thus, it remains to show that |L′(u)| ≥ |L(u)| + |L(t)| − 2q + 1. By (b) and our
assumptions, we have |L(t)| ≤ 2q − 1. Therefore, we assume that there exists z ∈
L(u) \ L′(u). Then L(t) ⊆ B(z). Let x and y be the elements of L(t) closest to z − q + 1
and z + q−1, respectively. We have L(t) ( [x, y]p and therefore |y−x|p ≥ |L(t)|. Finally,
we have L(u)\L′(u) =

⋂

s∈L(t) B(s) ⊆ B(x)∩B(y), and |B(x)∩B(y)| = 2q−1−|y−x|p ≤

2q − 1 − |L(t)|. The desired inequality follows.

Next we prove another technical result. It will later allow us to precolor vertices of
the graph in such a way that sufficiently many colors remain available for the remaining
vertices, and Lemma 11 is applicable.

Lemma 12. Let p and q be positive integers, such that p ≥ 4q− 1. Let w : Sp → {0, 1, 2}
be a weight function, such that w(Sp) = 4q, where w(Sp) =

∑

i∈Sp
w(i). Let

A = {a ∈ Sp | w(Bp, q(a)) ≥ 2q}.

Then |A| ≤ 3q − 1. Moreover, if |A| = 3q − 1 then w(x) ∈ {0, 2} for every x ∈ Sp, and
either q = 1, or there exists a ∈ A such that supp(w) \ Bp, q(a) is not an interval, where
supp(w) = {i | w(i) 6= 0}.

Proof. We prove the lemma for fixed q by induction on p. We start by considering the
base case p = 4q − 1. Let X = {(a, b) | a ∈ A, |a − b|p = q}. Then |X| = 2|A|. On the
other hand, |{a ∈ Sp | (a, b0) ∈ X}| ≤ 2 for every b0 ∈ Sp. The inequality is strict for
every b0 ∈ supp(w), as B(b0 − q), B(b0 + q) and {b0} are pairwise disjoint subsets of Sp.
Thus

2|A| ≤ |X| ≤ 2(4q − 1) − |supp(w)|.

It follows that |A| ≤ 3q − 1.
Suppose now that |A| = 3q − 1. Then |supp(w)| = 2q, and therefore w(x) ∈ {0, 2} for

every x ∈ Sp. If supp(w) is an interval, then A = supp(w), so |A| = 2q and, thus, q = 1.
Assume supp(w) is not an interval. Then there exists x0 ∈ Sp, such that supp(w) \

B(x0) is not an interval. If x0 ∈ A, or q = 1, then the lemma holds, and so we assume
x0 6∈ A and q > 1.

Since |X| = 2(4q − 1)− |supp(w)|, then, using the argument from the first paragraph
of the proof, we derive that for a ∈ supp(w), exactly one of a − q and a + q is in A, and
for a /∈ supp(w), we have a − q, a + q ∈ A. To simplify the notation we assume for the
rest of the paragraph that x0 = 0. Since 0 6∈ A, we conclude that q, 3q− 1 ∈ supp(w) and
2q − 1, 2q ∈ A. Note that supp(w) \B(2q) and supp(w) \B(2q− 1) can not be contained
in a common interval of supp(w), as such an interval would have to contain q and 3q − 1
and would have to have length at least 2q, in contradiction with the assumption that
supp(w) is not an interval (as q is bigger than 1). Thus either one of supp(w) \B(2q) and
supp(w)\B(2q−1) is not an interval, in which case the lemma holds, or supp(w)\B(2q) =
{q} and supp(w) \ B(2q − 1) = {3q − 1}. In the second case, we have w(q − 1) = 0, and,
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thus 4q − 2 ∈ A. It remains to note that B(4q − 2) ∩ B(2q − 1) = ∅, and, therefore,
2q ≤ w(B(4q − 2)) = w(2q − 1) ≤ 2. This contradicts our assumption that q > 1, and so
the proof in the base case is finished.

It remains to consider the induction step. If supp(w) = Sp then p = 4q, w(x) = 1 for
every x ∈ Sp, and the lemma trivially holds as |A| = ∅. Thus we assume Sp\supp(w) 6= ∅.
We construct an auxiliary graph H with V (H) = Sp, joining x, y ∈ Sp by an edge
in H if, and only if, |x − y|p ≥ 2q − 1. The graph H is connected, and so there exist
x ∈ supp(w), y 6∈ supp(w) such that xy ∈ E(H). We have w(B(y−q+1)∩B(y+q−1)) = 0,
and w(B(y − q + 1) ∪ B(y + q − 1)) ≤ 4q − w(x). Therefore, not both of y − q + 1 and
y + q − 1 belong to A. We assume, by symmetry, that y = p and that p − q + 1 6∈ A.
Consider the restriction w′ of w to Sp−1, and let A′ = {a ∈ Sp−1 |w(Bp−1,q(a)) ≥ 2q}. Let
φ : Sp → Sp−1 be defined as φ(z) = z if z ≤ p − q, and φ(z) = z − 1 if z ≥ p − q + 1.
Then φ(A) ⊆ A′, as Bp,q(z) ∩ Sp−1 ⊆ Bp−1,q(φ(z)) for every z ∈ Sp. Moreover, we have
p − q + 1 6∈ A, and, thus, φ is injective when restricted to A. It follows that |A| ≤ |A′|,
and A′ ≤ 3q − 1, by the induction hypothesis. The remaining conclusions of the lemma
also follow straightforwardly from the induction hypothesis applied to w′ and A′.

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. We start by proving the “if” direction of the theorem. If G contains
a subgraph isomorphic to K4 then the result follows from Corollary 10. Therefore, by
Lemma 3 and Corollary 6, it suffices to prove that G is q-degree-choosable if G is isomor-
phic to one of the other outcomes of Corollary 6. Let p ≥ (∆(G) − 1)(2q − 1) + 1 be a
positive integer, and let L be an lq-p-list assignment for G, where lq is defined as in (1).
It suffices to prove that G is L-(p, q)-colorable for all such p and L. If G is an even cycle
then the result follows from Lemma 8.

Suppose next that G is an even cycle with a single chord uu′. Let s and t be the
neighbors of u in the cycle. For x ∈ Sp let w(x) = χL(s)(x) + χL(t)(x). (Here χX : Sp →
{0, 1} denotes the characteristic function of a subset X of Sp.) By Lemma 12, applied to
w, we conclude that there exists c0 ∈ L(u) such that |B(c0)∩L(s)|+|B(c0)∩L(t)| ≤ 2q−1.
Let L′ be a list assignment for G \ u, such that L′(v) = L(v) \B(c0) for v ∈ {u′, s, t}, and
let L′(v) = L(v), otherwise. Then |L′(u′)| ≥ |L(u′)| − 2q + 1 = 2q, and |L′(s)| + |L′(t)| ≥
|L(s)| + |L(t)| − 2q + 1 = 2q + 1. It follows that L′ satisfies the conditions of Lemma 7,
and, thus, there exists an L′-(p, q)-coloring of G\u, which can be extended to an L-(p, q)-
coloring of G by coloring u in color c0.

It remains to prove the claim in the case when G consists of two odd cycles C1 and
C2 joined by a path P , such that C1, C2 and P satisfy the conditions in the statement of
Corollary 6. Let u1 and u2 be the vertices that P shares with C1 and C2, respectively. Let
si and ti be the neighbors of ui in Ci for i ∈ {1, 2}. Let Ri be the set of colors c in L(ui),
such that either |B(c)∩L(si)|+ |B(c)∩L(ti)| > 2q; or |B(c)∩L(si)|+ |B(c)∩L(ti)| = 2q,
and both |B(c) ∩ L(si)| and |B(c) ∩ L(ti)| are intervals in Sp. Note that if c ∈ L(ui) \ Ri

then every L-(p, q)-coloring of G\ (Ci \ui), where ui is colored in color c, can be extended
to an L-(p, q)-coloring of G by Lemma 11. For x ∈ Sp let wi(x) = χL(si)(x) + χL(ti)(x) .
By Lemma 12 applied to wi, we conclude that |Ri| ≤ 3q − 2.
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We are now ready to construct an L-(p, q)-coloring of G. Let L′ be the following
list assignment for P . Let L′(u1) = L(u1) \ R1, L′(u2) = L(u2) \ R2. If u1 = u2 then
let L′(u1)=L(u1) \ R1 \ R2, instead. Let L′(v) = L(v) for v ∈ V (P ) \ {u1, u2}. We
have |L′(u1)| + |L′(u2)| ≥ 2((4q − 1) − (3q − 2)) = 2q + 2 if u1 6= u2, and we have
|L′(u1)| ≥ 6q − 2 − 2(3q − 2) = 2 if u1 = u2. Thus, L′ satisfies the requirements of
Lemma 7, and so there exists an L′-(p, q)-coloring of P . As noted above, such an L′-
(p, q)-coloring can be extended to an L-(p, q)-coloring of G.

It remains to prove that if a graph G is a tree, or G has an odd cycle as its heart,
or G is isomorphic to K4, then for all positive integers q the graph G is not circular
q-degree-choosable.

If G is isomorphic to K4 then there exists no (4q−1, q)-coloring of G. If G is a tree then
the required result follows from Lemma 4 and the fact that K1 is not lq-(p, q)-choosable
for all p. If G has an odd cycle as its heart then we claim that G is not lq-(p, q)-choosable
for all sufficiently big p. By Lemma 4 it suffices to consider the case when G is an odd
cycle. Let L(v) = {0, 1, . . . , 2q − 1} for all v ∈ V (G). It is easy to see that G is not
L-(p, q)-colorable. Therefore, G is not lq-(p, q)-choosable for all p ≥ 2q, as claimed.
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