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Abstract

A collection P of phylogenetic trees is compatible if there exists a single phy-
logenetic tree that displays each of the trees in P. Despite its computational dif-
ficulty, determining the compatibility of P is a fundamental task in evolutionary
biology. Characterizations in terms of chordal graphs have been previously given
for this problem as well as for the closely-related problems of (i) determining if P is
definitive and (ii) determining if P identifies a phylogenetic tree. In this paper, we
describe new characterizations of each of these problems in terms of edge colourings.
Furthermore, making use of the tools that underlie these new characterizations, we
also determine the minimum number of quartets required to identify an arbitrary
phylogenetic tree, thus correcting a previously published result.

1 Introduction

Unrooted phylogenetic (evolutionary) trees are used in computational biology to represent
the evolutionary relationships of a set X of extant species. A fundamental way in which
such trees are inferred is by amalgamating a collection P of smaller phylogenetic trees
on overlapping subsets of X into a single parent tree. Collectively, such amalgamation
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methods are known as supertree methods and the resulting parent tree is called a supertree.
The popularity of supertree methods is highlighted in [1, 2].

If the amalgamating collection P contains no conflicting information, then P is said
to be compatible. Furthermore, P is definitive if P is compatible and there is exactly
one supertree that ‘displays’ all of the ancestral relationships displayed by the trees in P.
Precise definitions of these concepts are given in the next section. Within the context of
supertree methods, two natural mathematical problems arise:

(i) is P compatible and, if so,

(ii) is P definitive?

As computational problems, (i) is known to be NP-complete [3, 11], while the complex-
ity of the second problem continues to remain open. Nevertheless, there are attractive
characterizations of these problems in terms of chordal graphs [5, 8, 9, 11].

In practice, while a collection P of phylogenetic trees might be compatible, it is unlikely
to be definitive. A closely related notion, and one that is essentially as good, is the
following: P identifies a supertree T if T displays P and all other supertrees that display
P are ‘refinements’ of T . This means that if P identifies a supertree, then the collection
of supertrees that display P is well understood. This gives rise to a third mathematical
problem:

(iii) does P identify a supertree?

Like problems (i) and (ii), a characterization of this problem has also been given in terms
of chordal graphs [6].

Each of problems (i), (ii), and (iii) are typically stated in terms of collections of
quartets—that is, binary phylogenetics trees with four leaves—rather than an arbitrary
collection of phylogenetic trees. The reason for this is that a phylogenetic tree is com-
pletely determined by its collection of induced quartets (see, for example, [10]). Conse-
quently, for the rest of the paper, we will view P as a collection of quartets.

In this paper, we introduce the ‘quartet graph’ and show that, in addition to the
chordal graph characterizations, these problems can also be characterized in terms of
edge colourings via this graph. One of the main motivations for the paper is that it is
hoped that the quartet graph may provide new insights not only on the complexity of (ii)
but also on other quartet problems in phylogenetics. Indeed, in the second half of the
paper, we make use of the quartet graph and its associated concepts to determine, for a
given phylogenetic tree T , the size of a minimum-sized set of quartets that identifies T .
The resulting theorem corrects a previously published result [10].

The paper is organized as follows. The next section consists of preliminaries and
formal statements of the main results of the paper. For completeness, Section 3 contains
the chordal graph characterizations of problems (i)-(iii). Section 4 contains the proofs of
the characterizations of (i)-(iii) in terms of quartet graphs. The proof of the compatibility
characterization is algorithmic and thus provides a phylogenetic tree that displays the
original collection of quartets if this collection is compatible. Section 5 contains the proof
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Figure 1: Two phylogenetic trees.

of the minimum number of quartets needed to identify a given phylogenetic tree as well
as two closely-related optimality results. Throughout the paper, X will always denote a
finite set, and notation and terminology follows [10].

2 Main Results

2.1 Phylogenetic Trees and Compatibility

A phylogenetic X-tree T is an unrooted tree in which every interior vertex has degree at
least three and whose leaf set is X. In addition, if all interior vertices of T have degree
three, then T is binary. The set X is called the label set of T . A quartet is a binary
phylogenetic tree whose label set has size 4. To illustrate, two phylogenetic trees are
shown in Fig. 1, with the tree on the right being a quartet.

Let T and T ′ be two phylogenetic trees with label sets X and X ′, respectively, where
X ⊆ X ′. The restriction of T ′ to X, denoted T ′|X, is the phylogenetic tree that is
obtained from the minimal subtree of T ′ connecting the elements in X by contracting
degree-2 vertices. We say that T ′ displays T if T ′|X is isomorphic to T . For example, in
Fig. 1, T displays the quartet in Fig. 1(b).

Now let P be a collection of phylogenetic trees. The label set of P, denoted L(P),
is the union of the label sets of the trees in P. We say that a phylogenetic X-tree T
displays P if T displays each of the trees in P, in which case, P is said to be compatible.
Furthermore, if T is the only such tree and X = L(P), then P is said to be definitive.

Associated with each edge e of a phylogenetic X-tree T is an X-split, that is, a
bipartition of X into two non-empty parts. Here the two parts are X ∩ V1 and X ∩ V2,
where V1 and V2 are the vertex sets of the two connected components of T \e. We say that
a phylogenetic X-tree T ′ is a refinement of T if every X-split of T is an X-split of T ′.
Note that T is a refinement of itself. Intuitively (and equivalently), T can be obtained
from T ′ by contracting edges (see [10]. We say that a collection P of phylogenetic trees
with L(P) = X identifies T if T displays P and every phylogenetic X-tree that displays
P is a refinement of T .
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Figure 2: The quartet graph of {ab|ce, cd|bf, ef |ad}.

2.2 Quartets and the Quartet Graph

Let q be a quartet with label set {a, b, c, d}. If the path from a to b does not intersect the
path from c to d, then we denote q by ab|cd or, equivalently, cd|ab. For a collection Q of
quartets with label set X, we define the quartet graph of Q, denoted GQ, as follows. The
vertex set of GQ is the set of singletons of X and, for each q = ab|cd ∈ Q, there is an edge
joining {a} and {b}, and an edge joining {c} and {d} each of which is labelled q. Apart
from these edges, GQ has no other edges. Note that if q1 = ab|cd, q2 = ab|ce ∈ Q, then
GQ has edges {a, b} and {c, d} labelled q1, and separate edges {a, b} and {c, e} labelled
q2. For purposes later in the paper, in reference to q, we sometimes use {a, b}q and {c, d}q

to denote the two parts of q.
As an example of a quartet graph, consider the set Q = {ab|ce, cd|bf, ef |ad} of quar-

tets. The quartet graph of Q is shown in Fig. 2, where, instead of labelling the edges with
the appropriate element of Q, we have used solid, dashed, and dotted lines to represent
the edges arising from ab|ce, cd|bf , and ef |ad, respectively.

Each edge of GQ has a partner, namely, the one which is labelled by the same quartet.
Another way we could have indicated this is by assigning a distinct colour to each quartet
in Q, and then assigning this colour to each of the two edges corresponding to this
quartet. In doing this, we observe that the resulting edge colouring of GQ is a proper
edge colouring. From this viewpoint, we say that an edge is q-coloured if it is labelled q.
Recall that an edge colouring of a graph G is an assignment of colours to the edges of G.
An edge colouring is proper if no two edges incident with the same vertex have the same
colour.

2.3 Unification Operation

Central to this paper is a particular graphical operation that ‘unifies’ vertices. Let X be
a non-empty finite set, and let G be an arbitrary graph with no loops and whose vertex
set V is a partition of X, where no part is the empty set. In other words, X is the disjoint
union of the vertices of G. Furthermore, suppose that G is properly edge-coloured. Let U
be a subset of V with the property that if e and f are distinct edges of G with the same
colour, then at most one of these edges is incident with a vertex in U . The unification of
the vertices in U is the graph obtained from G by

(i) replacing the vertices in U together with every edge for which both end-vertices are
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Figure 3: A complete-unification sequence of the quartet graph in Fig. 2.

in U by a single new vertex such that if an edge is incident with exactly one vertex
in U , then it is incident with the resulting new vertex;

(ii) labelling the new vertex as the union of the elements in U ; and

(iii) for each edge that joins two vertices in U , delete all other edges with the same
colour.

Observe that, at the end of (ii), the resulting graph is properly edge-coloured.
Let Q be a collection of quartets on X. Noting that the quartet graph GQ satisfies

the above properties, let G0 = GQ, G1, . . . , Gk be a sequence S of graphs, where Gi is
obtained from Gi−1 by a unification for all i ∈ {1, . . . , k}. We will call such a sequence
a unification sequence of GQ. If Gk has no edges, then S is said to be complete. As a
matter of convenience, for all i ∈ {1, . . . , k} we denote by Si the unification sequence
G0 = GQ, G1, . . . , Gi.

Example 2.1. Consider the quartet graph GQ shown in Fig. 2. Figure 3 illustrates a
unification sequence of GQ beginning with GQ on the left and ending with the graph
consisting of three isolated vertices on the right. Initially, we unify the vertices {a} and
{b} to get the second graph. The third graph is obtained by unifying {c} and {d} in the
second graph, while the last graph is obtained from the third graph by unifying {a, b}
and {c, d}. Since the last graph has no edges, this unification sequence is complete.

The following theorem characterizes the compatibility of a collection of quartets in
terms of quartet graphs.

Theorem 2.1. Let Q be a set of quartets. Then Q is compatible if and only if there is a
complete-unification sequence of GQ.

As an illustration of Theorem 2.1, the set Q = {ab|ce, cd|bf, ef |ad} is compatible since
there is a complete-unification sequence of GQ (see Fig. 3). Indeed, the phylogenetic tree
T shown in Fig. 1(a) displays Q.

To describe our characterizations of when a set of quartets identifies and defines a
phylogenetic tree, we require some further definitions.
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2.4 Distinguishing Quartets

Let T be a phylogenetic tree. We denote by Q(T ) the set of quartets that are displayed
by T . Let q = ab|cd ∈ Q(T ). An interior edge e = uv of T is distinguished by q if, for
one end-vertex of e, say u, the labels a and b are in separate components of T \u and
neither of these components contains v, while c and d are in separate components of T \v
and neither of these components contains u. A subset Q ⊆ Q(T ) distinguishes T if every
interior edge of T is distinguished by some q ∈ Q.

Let T be a phylogenetic X-tree that displays a collection Q of quartets on X, and
let e = uv be an interior edge of T . We define GQ(u,v) to be the graph that has the
neighbours of v except u as its vertex set and where two vertices wi, wj are joined by an
edge precisely if there is a quartet in Q that distinguishes e and is of the form wiwj|xy
for some x, y ∈ X. A set Q of quartets on X specially distinguishes a phylogenetic X-tree
T if T displays Q and, for every interior edge e = uv of T , both GQ(u,v) and GQ(v,u) are
connected.

2.5 Collecting Quartets and Unification Sequences

Let Q be a collection of quartets on X, and let G0 = GQ, G1, . . . , Gk be a unification
sequence S of GQ. For all i, let Ui denote the subset of vertices of Gi−1 that are unified
to obtain Gi and let Ai denote the union of the elements of Ui. We will call U1, . . . , Uk

the sequence of unifying sets associated with S. Observe that, for all i and j with i < j,
we have that either Ai ⊆ Aj or Ai ∩ Aj = ∅. This observation will be used throughout
the paper. Furthermore, we call the set

Σ(S) = {Ai|(X − Ai) : i ∈ {1, . . . , k}}

of X-splits the set of X-splits induced by S
Now let q = ab|cd be an element of Q. If, for some j, either {a, b} or {c, d} is a subset

of Aj, but neither {a, b} ⊆ Ai nor {c, d} ⊆ Ai for all i < j, then we say that q has been
collected by Uj or, more generally, by S. Moreover, if {a, b} ⊆ Aj and, for all i < j,
neither {a, b} ⊆ Ai nor {c, d} ⊆ Ai, we say that Aj or, again more generally, S merged
{a, b}q. For a subset Q′ of Q, we denote the set

{

{a, b}q : q = ab|cd ∈ Q′ and S merged {a, b}q

}

by M(Q′)S .
Lastly, if S is complete, then S is said to be minimal if there is no other complete-

unification sequence S ′ with U ′
1, . . . , U

′
l as its sequence of unifying sets such that {A′

j :
j ∈ {1, . . . , l}} is a proper subset of {Ai : i ∈ {1, . . . , k}}, where A′

j is the union of the
elements in U ′

j for all j.

Theorem 2.2. Let Q be a set of quartets on X. Then Q identifies a phylogenetic X-tree
if and only if both of the following conditions hold:
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Figure 4: Another phylogenetic tree that displays Q.

(i) There exists a phylogenetic X-tree T that displays Q and is specially distinguished
by Q.

(ii) Let Q′ be a minimal subset of Q that specially distinguishes T and let q = A|B ∈ Q′.
Let S and S ′ be minimal complete-unification sequences of GQ such that, amongst
the quartets in Q′, the quartet q is collected (joint) last and A is merged. Then
M(Q′)S = M(Q′)S′.

Provided (i) holds in Theorem 2.2, we remark here that there is always at least one
minimal complete-unification sequence that satisfies the assumption conditions in (ii).
(See Lemma 4.5.)

Example 2.2. To illustrate Theorem 2.2, again consider the set of quartets

Q = {ab|ce, cd|bf, ef |ad}.

As well as the phylogenetic tree T shown in Fig. 1(a), the phylogenetic tree shown in
Fig. 4 also displays Q. Since Q specially distinguishes T , and the second tree is not a
refinement of T , the set Q does not identify any phylogenetic tree. This fact is realized
by Theorem 2.2 as follows.

In addition to the complete-unification sequence S1 shown in Fig. 3, Fig. 5 shows a
second complete-unification sequence S2 of GQ. Now, Q specially distinguishes T . In both
S1 and S2, the quartet ef |ad is the last quartet of Q that is collected and {a, d} is merged.
Consider the quartet ab|ce ∈ Q. In S1, we have that {a, b} is merged, while, in S2, we
have that {c, e} is merged. Thus M(Q)S1

6= M(Q)S2
. It now follows by Theorem 2.2 that

Q does not identify a phylogenetic tree.

We remark here that the quartet set Q used in Example 2.2 shows that condition (i) by
itself in Theorem 2.2 is not sufficient for a collection of quartets to identify a phylogenetic
tree, as Q specially distinguishes the phylogenetic tree shown in Fig. 1.

It will turn out that a consequence of Theorem 2.2 is the next corollary.

Corollary 2.3. Let Q be a set of quartets on X. Then Q defines a phylogenetic X-tree
if and only if both of the following conditions hold:

(i) There exists a binary phylogenetic X-tree T that displays Q and is distinguished by
Q.
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Figure 5: Another complete-unification sequence of the quartet graph in Fig. 2.

(ii) Let Q′ be a minimum-sized subset of Q that distinguishes T and let q ∈ Q′. Let
S and S ′ be minimal complete-unification sequences of GQ such that, amongst the
quartets in Q′, the quartet q is collected last. Then M(Q′ − q)S = M(Q′ − q)S′.

As mentioned in the introduction, in the second half of the paper we consider the
problem of determining, for a given phylogenetic tree T , the size of a minimum-sized
set of quartets that identifies T . In particular, we establish the following theorem. This
corrects [10, Theorem 6.3.9] which incorrectly states that the size of such a set is |X| − 3,
where X is the label set of T . For binary phylogenetic trees, |X| − 3 is the correct size
(corresponding to the number of interior edges of T ), but, for non-binary trees, the result
is somewhat more complicated.

For a phylogenetic tree T , let E̊(T ) denote the set of interior edges of T and let d(u)
denote the degree of a vertex u of T . Let q(T ) denote the size of a minimum-sized set of
quartets that identifies T .

Theorem 2.4. Let T be a phylogenetic X-tree and let Q be a collection of quartets that
identifies T . Then, for each interior edge e = uv of T with d(u) ≤ d(v), the collection Q
contains at least q(d(u) − 1, d(v) − 1) quartets that distinguish e, where

q(r, s) =

⌈

r(s − 1)

2

⌉

for all r, s ≥ 2. In particular,

|Q| ≥
∑

uv∈E̊(T )

q(d(u) − 1, d(v) − 1).

Moreover, there exists a collection of quartets that identifies T and has size

q(T ) =
∑

uv∈E̊(T )

q(d(u) − 1, d(v) − 1).
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Restricting Theorem 2.4 to binary trees, where the notions of identify and define are
equivalent, we get the following known result (see [10, Corollary 6.3.10] for example).

Corollary 2.5. Let T be a binary phylogenetic X-tree and let n = |X|. Let Q be a
collection of quartets that defines T . Then |Q| ≥ n−3. Moreover, there exists a collection
of quartets that defines T and has size n − 3.

We end this section with some additional preliminaries.

2.6 Phylogenetic Trees and Splits

A partial split A|B of X is a bipartition of a subset of X into two non-empty parts. If
the disjoint union of A and B is X, then A|B is a split of X. A partial split is non-trivial
if |A|, |B| ≥ 2. Recall that the edges of a phylogenetic X-tree T give rise to splits of X.
The collection of non-trivial X- splits of T arising in this way is denoted by Σ(T ). We say
that a partial split A|B of X is displayed by T if there is an edge whose deletion results in
two components, where A is a subset of the vertex set of one component and B is a subset
of the vertex set of the other component. Observe that if A = {a1, a2} and B = {b1, b2},
then T displays A|B if and only if it displays the quartet a1a2|b1b2. Consequently, for the
purposes of this paper, we will often use the quartet notation for such partial splits.

Buneman [4] showed that every phylogenetic tree is determined by its collection of non-
trivial X-splits. A collection Σ of partial splits of X is compatible if there is a phylogenetic
tree that displays each of the splits in Σ. The following result, which we will refer to as
the Splits-Equivalence Theorem, is due to Buneman [4].

Theorem 2.6. Let Σ be a non-trivial collection of X-splits. Then the following statements
are equivalent:

(i) there is a phylogenetic X-tree T such that Σ is the set of non-trivial X-splits of T ;

(ii) Σ is pairwise compatible;

(iii) for each pair A1|B1 and A2|B2 of X-splits in Σ, at least one of the sets A1 ∩ A2,
A1 ∩ B2, B1 ∩ A2, and B1 ∩ B2 is empty.

Moreover, if such a phylogenetic X-tree exists, then, up to isomorphism, T is unique.

A one-split phylogenetic X-tree is a phylogenetic tree with exactly one interior edge.
For example, a quartet is a one-split phylogenetic tree with four leaves. If the one non-
trivial X-split of this tree is {a1, . . . , ar}|{b1, . . . , bs}, then we will denote this tree by
a1 · · ·ar|b1 · · · bs or A|B, where A = {a1, . . . , ar} and B = {b1, . . . , bs}.

3 Chordal Graph Characterizations

In this section, we state the chordal graph analogues of Theorems 2.1 and 2.2, and Corol-
lary 2.3. This section is independent of the rest of the paper and so the reader may wish
to initially skip it.
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The partition intersection graph of a collection Q of quartets, denoted int(Q), is the
vertex-coloured graph that has vertex set

⋃

q=A|B∈Q

{

(q, A), (q, B)
}

,

and an edge joining (q′, B′) and (q′′, B′′) precisely if B′ ∩ B′′ is non-empty. Here two
vertices are the same colour if they share the same first coordinate.

A graph is chordal if none of its vertex-induced subgraphs is isomorphic to a cycle
with at least four vertices. A graph G is a restricted chordal completion of int(Q) if G is
a chordal graph that can be obtained from int(Q) by only adding edges between vertices
whose first coordinates are distinct. Note that this maintains the property of a proper
vertex colouring. Theorem 3.1, the chordal graph analogue of Theorem 2.1, was indicated
by Buneman [5] and Meacham [8], and formally proved by Steel [11].

Theorem 3.1. Let Q be a set of quartets. Then Q is compatible if and only if there is a
restricted chordal completion of int(Q).

A restricted chordal completion G of int(Q) is minimal if, for every non-empty subset
F of edges of E(G)−E(int(Q)), the graph G\F is not chordal. The next theorem is due
to Semple and Steel [9].

Theorem 3.2. Let Q be a set of quartets on X. Then there is a unique phylogenetic
X-tree that displays Q if and only if the following two conditions hold:

(i) there is a binary phylogenetic X-tree that displays Q and is distinguished by Q; and

(ii) there is a unique minimal restricted chordal completion of int(Q).

To describe the chordal graph analogue of Theorem 2.2 requires some further defi-
nitions. Let T be a phylogenetic X-tree and let e = u1u2 be an edge of T . Then e is
strongly distinguished by a one-split phylogenetic tree A1|A2 if, for each i, the following
hold:

(i) Ai is a subset of the vertex set of the component of T \e containing ui, and

(ii) the vertex set of each component of T\ui, except for the one containing the other
end vertex of e, contains an element of Ai.

For a collection Q of quartets on X, let G(Q) denote the collection of graphs

{G : there is a phylogenetic X-tree T displaying Q with G = int(Q, T )},

where int(Q, T ) is the graph that has the same vertex set as int(Q), and an edge joining
two vertices (q, A) and (q′, A′) if the vertex sets of the minimal subtrees of T connecting
the elements in A and A′ have a non-empty intersection. Note that if G is a graph in
G(Q), then G is a restricted chordal completion of int(Q). There is a partial order ≤
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on G(Q) which is obtained by setting G1 ≤ G2 for all G1, G2 ∈ G(Q) if the edge set of
G1 is a subset of the edge set of G2. Lastly, a compatible collection Q of quartets infers
a one-split phylogenetic tree if every phylogenetic tree that displays Q also displays this
one-split tree. Theorem 3.3 was established by Bordewich et al. [6].

Theorem 3.3. Let Q be a set of quartets on X. Then Q identifies a phylogenetic X-tree
if and only if the following conditions hold:

(i) there is a phylogenetic X-tree that displays Q and, for every edge e of this tree, there
is a one-split phylogenetic tree inferred by Q that strongly distinguishes e; and

(ii) there is a unique maximal element in G(Q).

Remark 1. Note that if Q is a collection of quartets, then int(Q) is the line graph of the
quartet graph GQ where, for a graph G, the line graph of G has vertex set E(G) and two
vertices joined by an edge precisely if they are incident with a common vertex in G. The
vertex colouring of the partition intersection graph corresponds to the edge colouring of
the quartet graph. However, the characterizations of defining and identifying quartet sets
described in this section and those ones derived in this paper are quite different and we
do not use the duality between the partition intersection graph and the quartet graph to
prove the new results.
Remark 2. The results stated in this section were originally proved for general ‘charac-
ters’ (that is, partitions of X) rather than for quartets. The concept of the quartet graph
can be extended to this more general setup but then hypergraphs have to be considered.
On the other hand, the phylogenetic information of characters can be expressed in terms
of quartets thus no generality is lost in restricting our attention to quartets in this paper
(see [10, Proposition 6.3.11]).

4 Proofs of Theorems 2.1 and 2.2, and Corollary 2.3

The proof of Theorem 2.1 is an immediate consequence of the next two lemmas.

Lemma 4.1. Let Q be a set of quartets on X, and let S be a unification sequence of
GQ. Then the set ΣS of X-splits induced by S is compatible. Moreover, if Q′ denotes the
subset of Q collected by S, then the phylogenetic X-tree whose set of non-trivial X-splits
is ΣS displays each of the quartets in Q′, but no quartet in Q−Q′.

Proof. Suppose that S is the sequence G0 = GQ, G1, . . . , Gk with unifying sequence
U1, . . . , Uk. For all i, let Ai denote the union of the elements of Ui. The proof of the
proposition is by induction on k. If k = 0, the result holds trivially. Now suppose that
the result holds for all unification sequences of GQ of smaller length, in particular, the re-
sult holds for the unification sequence G0 = GQ, G1, . . . , Gk−1. Denote this last sequence
by S ′.

Consider the X-split Ak|(X − Ak), and note that, by the induction assumption, ΣS′

is compatible. Let Ai|(X − Ai) ∈ ΣS′ . Since Ai is a subset of a vertex of Gk−1, either
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Ai ⊆ Ak, in which case Ai ∩ (X − Ak) = ∅, or Ai ∩ Ak = ∅. In either case, by the
Splits-Equivalence Theorem, Ai|(X − Ai) and Ak|(X − Ak) are compatible. It follows by
the induction assumption and the Splits-Equivalence Theorem that ΣS is compatible.

Let T denote the phylogenetic X-tree whose set of non-trivial X-splits is ΣS , and let T ′

denote the phylogenetic X-tree whose set of non-trivial X-splits is ΣS′. By the induction
assumption, T ′ displays each of the quartets collected by S ′, but no other quartet in Q.
Assume that ab|cd is a quartet collected by Uk. Then either a, b ∈ Ak and c, d ∈ X −Ak,
or c, d ∈ Ak and a, b ∈ X − Ak, and so T displays ab|cd. Since T is a refinement of T ′,
it follows that T displays each of the quartets collected by S. Moreover, if wx|yz is a
quartet of Q not collected by S, then, for all i ∈ {1, . . . , k},

{w, x, y, z} ∩ Ai 6∈ {{w, x}, {y, z}},

and so wx|yz is not displayed by T .

Given Lemma 4.1, we call the phylogenetic X-tree T whose set of non-trivial X-splits
is equal to the set of X-splits induced by a unification sequence S the phylogenetic X-tree
induced by S.

Lemma 4.1 provides one direction of the proof of Theorem 2.1. The next lemma gives
the other direction.

Let Q be a set of quartets on X and let T be a phylogenetic X-tree that displays Q.
Let v be a vertex of T . Order the elements A1|(X − A1), . . . , Ak|(X − Ak) of Σ(T ) as
follows:

(i) If ei is the edge of T that induces Ai|(X − Ai), then Ai is the subset of the vertex
set of the component that does not contain v in T \ei.

(ii) If i < j, then either Ai ⊆ Aj or Ai ∩ Aj = ∅.

It is easily checked that such an ordering is possible. Now let Sv denote the sequence
of graphs G0 = GQ, G1, . . . , Gk, where, for all i, the graph Gi is obtained from Gi−1 by
unifying the vertices whose disjoint union is Ai. It is easily seen that Sv is well-defined.
The next lemma shows that Sv is a complete-unification sequence of GQ.

Lemma 4.2. Let Q be a set of quartets on X and let T be a phylogenetic X-tree that
displays Q. Let v be a vertex of T . Then Sv (as described above) is a complete-unification
sequence of GQ.

Proof. Suppose that Sv is not such a sequence and let j denote the smallest index for which
Gj is not a unification of Gj−1. Since Gj is not a unification of Gj−1, there is a quartet,
ab|cd say, in Q not yet collected by Sv such that |{a, b, c, d} ∩ Aj| ≥ 2, where, in the case
|{a, b, c, d} ∩ Aj| = 2, we have {a, b, c, d} ∩ Aj 6∈ {{a, b}, {c, d}}. If |{a, b, c, d} ∩ Aj| = 2,
then, by the construction of Sv, the tree T does not display ab|cd; a contradiction. So we
may assume that |{a, b, c, d} ∩ Aj| ≥ 3. But then by our choice of q, Uj contains three
distinct vertices each having a non-empty intersection with {a, b, c, d}. This implies that
no X-split of T displays q; a contradiction. Hence Sv is a unification sequence of GQ.
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To see that Sv is complete, note that T displays Q and so, for each quartet, ab|cd in Q,
there exists some i with the property that either a, b ∈ Ai or c, d ∈ Ai. This establishes
the lemma.

Proof of Theorem 2.1. This is now an immediate consequence of Lemmas 4.1 and 4.2.

We begin the proof of Theorem 2.2 with three lemmas.

Lemma 4.3. Let Q be a collection of quartets on X. If Q identifies a phylogenetic X-tree
T , then Q specially distinguishes T .

Proof. Suppose that Q identifies T , but does not specially distinguish T . Then there ex-
ists an interior edge, uv say, of T such that GQ(u,v) contains k > 1 components C1, . . . , Ck.
We next construct a phylogenetic X-tree T ′ from T that displays Q but is not a refinement
of T .

Recalling the definition of GQ(u,v), delete v and all its incident edges from T . For each
i ∈ {1, . . . , k}, either add a new edge joining u and the vertex of Ci if Ci contains exactly
one vertex, or adjoin a new vertex vi to u via a new edge and, for each vertex w of Ci,
add a new edge joining vi and w. It is now easily seen that the resulting phylogenetic
X-tree T ′ displays Q. But T ′ is not a refinement of T . It now follows that Q specially
distinguishes T .

A phylogenetic tree is minimally refined with respect to displaying a set Q of quartets
if it is not a strict refinement of another phylogenetic tree that displays Q.

Lemma 4.4. Let Q be a compatible set of quartets on X. If S is a minimal complete-
unification sequence of GQ, then the phylogenetic X-tree whose set of non-trivial X-splits
is ΣS is minimally refined with respect to displaying Q.

Proof. Suppose that S is the sequence GQ = G0, G1, . . . , Gk with unifying sequence
U1, . . . , Uk, and let T be the phylogenetic X-tree whose set of non-trivial X-splits is
ΣS . If T is not minimally refined with respect to displaying Q, then there is an edge e of
T whose contraction results in another phylogenetic X-tree, T ′ say, that displays Q. Let
Ae|(X −Ae) denote the X-split of T displayed by e, where, for some i, Ae is the union of
the elements of Ui.

Let S ′ be the sequence that is obtained from S by replacing the sequence of unifying
sets associated with S with U1, . . . , Ui−1, U

′
i+1, . . . , U

′
k, where, for all j ∈ {i + 1, . . . , k},

U ′
j =

{

(Uj − Ae) ∪ Ui, if Ae is an element of Uj;

Uj, otherwise.

Note that if, for some j, U ′
j 6= Uj, then there is exactly one such j. To prove the lemma,

it suffices to show that S ′ is a complete-unification sequence of GQ.
Clearly, Si−1 is a unification sequence of GQ. Consider G′

i+1. If U ′
i+1 = Ui+1, then it is

easily seen that GQ = G0, G1, . . . , Gi−1, G
′
i+1 is a unification sequence of GQ. Therefore

assume that U ′
i+1 6= Ui+1. If GQ = G0, G1, . . . , Gi−1, G

′
i+1 is not a unification sequence,
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then there is a quartet, q say, in Q such that the two q-coloured edges are both incident
with vertices in U ′

i+1. Since Si+1 is a unification sequence of GQ, this implies that one
of these q-coloured edges, ab say, is incident with two vertices in Ui, while the other q-
coloured edge, cd say, is incident with at least one vertex in Ui+1 − Ae. It now follows
that Ae|(X − Ae) is the unique X-split in ΣS that displays q. In turn, this implies that
T ′ does not display Q; a contradiction. Thus GQ = G0, G1, . . . , Gi−1, G

′
i+1 is a unification

sequence of GQ. Moreover, G′
i+1 = Gi+1 and, for all j ∈ {i + 2, . . . , k}, we have U ′

j = Uj.
It now follows that in this case S ′ is a complete-unification sequence of GQ.

Considering, in turn, each of the graphs G′
i+2, . . . , G

′
k and repeatedly using the same

argument as that in the previous paragraph, we eventually deduce that either S ′ is a
complete-unification sequence of GQ or S ′ is a unification sequence but not complete.
In the latter case, there is a q′ ∈ Q such that G′

k contains two q′-coloured edges. By
Lemma 4.1, the phylogenetic X-tree whose set of non-trivial X-splits is ΣS′ does not
display q′. But, as S ′ is not complete, U ′

j = Uj for all j and so ΣS′ = ΣS−Ae|(X−Ae). But
ΣS′ is the set of non-trivial X-splits of T ′ and so T ′ does not display q′; a contradiction.
This completes the proof of the lemma.

Lemma 4.5. Let Q be a set of quartets on X and let T be a phylogenetic X-tree that
displays Q and is distinguished by Q. Let q = A|B be a quartet in Q that distinguishes
an edge e = uv of T . Then there is a minimal complete-unification sequence of GQ such
that, amongst the quartets in Q, the quartet q is collected (joint) last and A is merged.
In particular, by choosing v to be the vertex of T such that the elements in A are in a
different component of T \e from v, the sequence Sv described prior to Lemma 4.2 is such
a sequence.

Proof. Suppose that q distinguishes the edge e = uv of T , and let Ae|(X − Ae) denote
the X-split induced by e. Without loss of generality, we may assume that the elements in
A are in the same component of T \e as u. Let Sv be the complete-unification sequence
of GQ as described prior to Lemma 4.2 with the additional proviso that Ae|(X − Ae) is
last in the associated ordering of the non-trivial X-splits induced by the edges of T . It is
easily seen using Lemma 4.2 that such an ordering and sequence is possible.

To complete the proof of the lemma, we show that Sv is minimal. If not, then there is
a complete-unification sequence S of GQ such that ΣS is a proper subset of Sv. But then
T is a proper refinement of the phylogenetic tree whose set of non-trivial X-splits is ΣS .
Since this last tree also displays Q, we contradict the fact that Q distinguishes T . Thus
Sv is minimal.

Proof of Theorem 2.2. First suppose that Q identifies a phylogenetic tree T . Then, by
Lemma 4.3, (i) holds for T . We next show that (ii) holds for T . Let Q′ be a minimal
subset of Q that specially distinguishes T and let q = A|B ∈ Q′. Let S and S ′ be two
minimal complete-unification sequences of GQ such that amongst the quartets in Q′, the
quartet q is collected (joint) last and A is merged. Let q ′ = A′|B′ ∈ Q′ and suppose that,
in S, the set A′ is merged, while, in S ′, the set B′ is merged. Furthermore, suppose that
Ai merged A′ and Aj merged A in S, and that Ai′ merged B′ and Aj′ merged A in S ′.
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Since Q identifies T , it follows by Lemma 4.4 that the phylogenetic X-trees whose set
of non-trivial X-splits are ΣS and ΣS′ are both isomorphic to T , in particular, ΣS = ΣS′ .
Since Q′ is a minimal subset of Q that specially distinguishes T , both q and q ′ distinguish
edges of T , and so exactly one split of ΣS displays q and exactly one split of ΣS displays
q′. This implies that Ai = (X −Ai′) (so Ai′ = (X −Ai)) and Aj = Aj′. Up to symmetry,
there are two cases to consider:

(I) Ai ⊆ Aj and Ai′ ⊆ Aj′; and

(II) Ai ⊆ Aj and Ai′ ∩ Aj′ = ∅.

If (I) holds, then Aj contains X − Ai. But Aj contains Ai, and so Aj contains X;
a contradiction. Consider (II). Since Ai′ ∩ Aj′ = ∅, we have (X − Ai) ∩ Aj = ∅. But
Ai ⊆ Aj, so Ai = Aj. Therefore, as q is collected (joint) last amongst the quartets in Q′

in S, i = j. Thus, as Ai = Aj = Aj′, we have Ai′ = (X − Aj′). But i′ ≤ j ′, and so S ′

merges B; a contradiction. Hence (II) does not hold. It now follows that (ii) does indeed
hold.

To prove the converse, suppose that, in the size of its label set, Q is a minimal
collection of quartets that satisfies (i) and (ii), but does not identify a phylogenetic tree.
Since T is specially distinguished by Q, it follows that T is minimally refined with respect
to displaying Q. Let T ′ be another phylogenetic X-tree that is minimally refined with
respect to displaying Q.

We will show that every X-split of T is also an X-split of T ′, contradicting the
assumption that T ′ is minimally refined and different from T . Assume not. Let Q′ be a
minimal subset of Q that specially distinguishes T , and let q = ab|cd be a quartet in Q′

such that the subset of X-splits in Σ(T ′) that display q is minimal and does not contain
any X-split induced by T . Such a quartet exists, since every quartet in Q′ distinguishes
an edge of T and thus is displayed by exactly one X-split of T . Therefore, a quartet that
is displayed by an X-split in Σ(T )−Σ(T ′) is not displayed by any X-split in Σ(T )∩Σ(T ′).
Let A|B be the X-split of T that displays q. Without loss of generality, we may assume
that a, b ∈ A. Let H be the graph that has vertex set X and an edge joining to vertices g
and h precisely if {g, h} ∈ M(Q′)S , where S is a minimal complete-unification sequence
of GQ that collects q (joint) last amongst the quartets in Q′ and merges {a, b}.

We claim that the vertex set of the connected component of H that contains a and
b also contains A. Assume the claim is wrong and choose A′|B′ ∈ Σ(T ) such that A′

is minimal with the property that A′ ⊆ A and that there is no component of H whose
vertex set contains A′. Let L1, . . . , Lk be the (pairwise different) maximal proper subsets
of A′ such that, for all i ∈ {1, . . . , k}, the bipartition Li|(X − Li) is an X-split of T . For
all i, it follows from the minimality of A′ that there is a component of H that contains Li.
Let H ′ be the graph that has vertex set L1, . . . , Lk and an edge joining to vertices Li and
Lj precisely if there is a quartet gg′|hh′ ∈ Q′ with g ∈ Li, g′ ∈ Lj, and h, h′ ∈ B′. Since
Q′ specially distinguishes T the graph H ′ is connected. It now follows by Lemma 4.5 and
the fact that (ii) holds for T that, for all such gg′|hh′, we have {g, g′} ∈ M(Q′)S . Hence
there is a connected component of H whose vertex set contains A′; a contradiction. This
establishes the claim.
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By Lemma 4.5, there is a minimal complete-unification sequence S ′ of GQ that collects
q (joint) last amongst the quartets in Q′ and merges {a, b} such that T ′ is the phylogenetic
tree induced by S ′. Noting that M(Q′)S′ = M(Q′)S , it is easily seen that, as there is a
connected component of H whose vertex set contains A, the graph obtained from T ′ by
deleting all edges corresponding to X-splits that display q has a connected component
whose vertex set contains A. By repeating the above argument using {c, d} instead of
{a, b}, the same graph also has a connected component whose vertex set contains B.
Hence A|B ∈ Σ(T ′). This completes the proof of the converse and thus the theorem.

Proof of Corollary 2.3. Suppose that Q defines a phylogenetic X-tree T . Then it is clear
that (i) holds for T . To show that (ii) holds for T , let Q′ be a minimum-sized subset
of Q that distinguishes T . First note that, for distinct q, q′ ∈ Q′, the quartets q and
q′ distinguish different edges of T . Let q = A|B ∈ Q′. Let S and S ′ be two minimal
complete-unification sequences of GQ so that amongst the quartets in Q′, the quartet q is
collected last. If both S and S ′ merge A, or both S and S ′ merge B, then, by Theorem 2.2,
(ii) holds. Furthermore, making use of the note, the argument for the case that one of
the sequences, S say, merges A and the other sequence, S ′ say, merges B is similar to
that used in the analogous part in the proof of Theorem 2.2. We omit the straightforward
details.

Now suppose that (i) and (ii) hold. Then, by Theorem 2.2, Q identifies a phylogenetic
tree. Since T is a binary phylogenetic tree that displays Q and is distinguished by Q, we
deduce that Q defines T . This completes the proof of the corollary.

5 Minimum Identifying Sets of Quartets

The main result of this section is Theorem 2.4. To establish this result, we begin by
describing some partial split (inference) rules. For a set Σ of partial splits, we write
Σ ` A|B if every phylogenetic tree that displays Σ also displays A|B. The statement
Σ ` A|B is called a partial split rule. The input to the first two rules are quartets (see
[7]):

{ab|cd, ab|ce} ` ab|cde; (dc)

{ab|de, ac|df, bc|ef} ` abc|def. (tc)

These rules are examples of so-called dyadic and triadic rules, respectively. The third rule
says that if A1|B1 and A2|B2 are partial splits, A1 ∩ A2 6= ∅, and B1 ∩ B2 6= ∅, then

{A1|B1, A2|B2} ` (A1 ∩ A2)|(B1 ∪ B2). (sc)

The rule (sc) is “Rule 1” in [8]. Observe that (dc) is a special case of (sc).
The next lemma is obtained by repeated application of (dc). The proof is routine and

omitted.
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Lemma 5.1. Let A|B be a non-trivial partial split of a set X, and let

Q(A|B) = {aa′|bb′ : a, a′ ∈ A and b, b′ ∈ B}.

Then Q(A|B) ` A|B.

Lemma 5.2 generalizes (tc).

Lemma 5.2. Let Σ = {A1|B1, A2|B2, A3|B3} be a set of partial splits of X such that
Ai ∩ Aj 6= ∅, Bi ∩ Bj 6= ∅ for all i 6= j. Then

Σ `
⋃

i6=j

(Ai ∩ Aj)|
⋃

i6=j

(Bi ∩ Bj).

Proof. By Lemma 5.1, it suffices to show that every q = xy|wz, where x, y ∈
⋃

i6=j(Ai∩Aj)
and w, z ∈

⋃

i6=j(Bi ∩ Bj), is inferred by Σ. Clearly, this holds if x, y ∈ Ai and w, z ∈ Bi

for some i. Therefore assume that this does not happen. Then, without loss of generality,
we may assume that x ∈ A1 ∩A2, y ∈ A1 ∩A3, and z ∈ B2 ∩B3. By symmetry, there are
two cases to consider depending on whether w ∈ B1 ∩ B2 or w ∈ B2 ∩ B3.

Let a ∈ A2 ∩ A3 and b ∈ B1 ∩ B3. If w ∈ B1 ∩ B2, then, as xy|wb ∈ Q(A1|B1),
xa|wz ∈ Q(A2|B2), and ya|zb ∈ Q(A3|B3), it follows by (tc) that

{xy|wb, xa|wz, ya|zb} ` xya|wzb.

Hence, in this case, q is inferred by Σ.
If w ∈ B2 ∩ B3, then xa|wz ∈ Q(A2|B2) and ya|wz ∈ Q(A3|B3). Therefore, by (dc),

Σ infers xya|wz which in turn infers q. This completes the proof of the lemma.

Analogously to a collection of phylogenetic trees, a collection Σ of partial splits iden-
tifies a phylogenetic tree T if T displays Σ and all phylogenetic trees that display Σ are
refinements of T .

Lemma 5.3. Let T be a one-split phylogenetic tree in which the unique non-trivial split
is A|B with A = {a1, . . . , ar} and B = {b1, . . . , bs}. Then, for non-negative integers m
and n with r ≤ 2m − 1 and s ≤ 2n − 1, the 2-element collection

Σ =
{

a1 · · ·am|b1 · · · bn, ar−m+1 · · ·ar|bs−n+1 · · · bs

}

of partial splits together with the collection

Q =
{

aiam+i|bjbn+j : 1 ≤ i ≤ r − m, 1 ≤ j ≤ s − n
}

of quartets identifies T .
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Proof. Let
A′ = {a1, . . . , am} ∩ {ar−m+1, . . . , ar}

and
B′ = {b1, . . . , bn} ∩ {bs−n+1, . . . , bs}.

Since r ≤ 2m−1 and s ≤ 2n−1, it follows that both A′ and B′ are non-empty. Therefore,
by Lemma 5.2, the two partial splits in Σ together with the quartet aiam+i|bjbn+j infer
the partial split

(A′ ∪ {ai, am+i})|(B
′ ∪ {bj, bn+j}) (1)

for all i and j. Furthermore, by repeated applications of (sc), the partial splits of the
form (1) infer (A′ ∪ {ai, am+i})|B for all i. Repeatedly using (sc) again, these last partial
splits infer A|B. It now follows that the partial splits in Σ together with the quartets in
Q identify T .

For a one-split phylogenetic tree T whose non-trivial split is A|B with |A| ≤ |B|, we
will denote the size of a minimum-sized set of quartets that identifies T by q(|A|, |B|).
Much of the work in proving Theorem 2.4 goes into proving the next lemma, a special
case of that theorem.

Lemma 5.4. Let T be a one-split phylogenetic X-tree in which the only non-trivial split
is A|B with |A| = r and |B| = s, where 2 ≤ r ≤ s. Then

q(r, s) =

⌈

r(s − 1)

2

⌉

.

Proof. Throughout the proof, we will assume that A = {a1, . . . , ar} and B = {b1, . . . , bs}.

We first show that q(r, s) ≥ d r(s−1)
2

e.

Suppose that Q is a set of quartets that identifies T with |Q| < r(s−1)
2

, and consider
the quartet graph GQ. Since Q identifies T , no edge in GQ joins a singleton of A to a
singleton of B, and, in view of Lemma 4.3, GQ consists of two components whose vertex
sets are the set of singletons of A and the set of singletons of B. Furthermore, if q ∈ Q,
then there is a q-coloured edge joining a pair of singletons of A and a q-coloured edge
joining a pair of singletons of B. Since |Q| < r(s−1)

2
and r ≤ s, there is a vertex {a} ⊂ A

that is incident with at most s − 2 differently coloured edges.
Let Ga be the subgraph of GQ that is obtained by deleting all of the singletons of A

and deleting all edges whose colour is not that of any coloured edge incident with {a}
in GQ. Hence, Ga has s vertices and at most s − 2 edges and is therefore disconnected.
Let C1, . . . , Ck be the connected components of Ga containing at least two vertices. As
Q specially distinguishes T , we have k ≥ 1. Now consider the unification sequence S of
GQ = G0, G1, . . . , Gk+1 in which we make the following unifications:

(i) For 1 ≤ i ≤ k, unify the vertices in Ci of Gi−1 to obtain Gi;
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(ii) unify {a} together with the set of vertices whose union is B to obtain Gk+1.

It is easily checked that S is a complete-unification sequence of GQ. By Lemma 4.1, the
phylogenetic tree T ′ whose set of non-trivial X-splits is ΣS displays Q. But A|B is not
an X-split of T ′, and so T ′ is not a refinement of T , contradicting that Q identifies T .
We conclude that q(r, s) ≥ d r(s−1)

2
e.

We next show that q(r, s) ≤ d r(s−1)
2

e for all r and s. We begin with the case r = 2.

5.4.1. For all s, we have q(2, s) ≤ d 2(s−1)
2

e = s − 1.

Proof. Here A|B = {a1, a2}|{b1, . . . , bs} and it follows by repeated applications of (sc)
that the collection

Q =
{

a1a2|b1bi : i ∈ {2, . . . , s}
}

of quartets identifies T . As |Q| = s − 1, the inequality holds for r = 2.

5.4.2. For all r, we have q(r, r) ≤ r(r−1)
2

.

Proof. Let Qr be the collection {aiaj|bibj : 1 ≤ i < j ≤ r} of quartets. Then |Qr| =
(

r

2

)

= r(r−1)
2

. The proof is by induction on r. Clearly, the result holds for r = 2. Now
suppose that r ≥ 3 and that the result holds for all smaller values of r. Then the partial
split a1 · · ·ar−1|b1 · · · br−1 can be identified by Qr−1. By (tc), the quartets in Qr−1 and
Qr −Qr−1 infer each of the partial splits in

{aiajar|bibjbr : 1 ≤ i < j < r}.

Moreover, by repeatedly applying (sc), we deduce that the elements in this set infer
a1 · · ·ar|b1 · · · br.

5.4.3. For all r and all s with r ≤ s ≤ 2r − 2, we have q(r, s) ≤ d r(s−1)
2

e.

Proof. The proof is by induction on r. If r = 2, then the result holds by (5.4.1). Now
suppose that r ≥ 3, and that the result holds for all smaller values of r. There are five
cases to consider.
Case 1. s = 2l − 1 for some integer l ≥ 2.
By Lemma 5.3, the 2-element collection

Σ1 =
{

a1 · · ·al|b1 · · · bl, ar−l+1 · · ·ar|bl · · · bs

}

of partial splits together with the collection

Q1 =
{

aial+i|bjbl+j : 1 ≤ i ≤ r − l, 1 ≤ j ≤ l − 1
}

of quartets identify T . By the induction assumption, each partial split in Σ1 can be
identified by a collection of l(l−1)

2
quartets. Furthermore, Q1 contains (r−l)(l−1) quartets.

Thus

q(r, s) ≤ l(l − 1) + (r − l)(l − 1)

=
r(s − 1)

2
.
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Case 2. r = 2k and s = 2l for some integers k ≥ 2 and l ≥ 3, where either k is odd or l
is even.
By Lemma 5.3, the 2-element collection

Σ2 =
{

a1 · · ·ak+1|b1 · · · bl+1, ak · · ·ar|bl · · · bs

}

of partial splits together with the collection

Q2 =
{

aiak+i+1|bjbl+j+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1
}

of quartets identify T . By the induction assumption, each partial split in Σ2 can be
identified by a collection of (k+1)l

2
quartets. Without loss of generality, we may assume

that these last collections share the quartet akak+1|blbl+1. Furthermore, Q2 contains
(k − 1)(l − 1) quartets. Thus

q(r, s) ≤ (k + 1)l − 1 + (k − 1)(l − 1)

=
r(s − 1)

2
.

Case 3. r = 2k − 1 and s = 2l for some integers k ≥ 2 and l ≥ 3, where either k is odd
or l is even.
By Lemma 5.3, the 2-element collection

Σ3 =
{

a1 · · ·ak+1|b1 · · · bl+1, ak−1 · · ·ar|bl · · · bs

}

of partial splits together with the collection

Q3 =
{

aiak+i+1|bjbl+j+1 : 1 ≤ i ≤ k − 2, 1 ≤ j ≤ l − 1
}

of quartets identify T . By the induction assumption, each partial split in Σ3 can be
identified by a collection of (k+1)l

2
quartets. Without loss of generality, we may assume

that these last collections share the quartet akak+1|blbl+1. Furthermore, Q3 contains
(k − 2)(l − 1) quartets. Thus

q(r, s) ≤ (k + 1)l − 1 + (k − 2)(l − 1)

=

⌈

r(s − 1)

2

⌉

.

Case 4. r = 4k and s = 4l − 2 for integers k ≥ 1 and l ≥ 2.
This case includes an anomaly. In particular, when l = 2, that is (r, s) = (4, 6). We will
prove this subcase first before proving Case 4 in general.

Let
Q′

1 =
{

a1a2|b1b2, a1a3|b1b3, a2a3|b2b3

}

,

Q′
2 =

{

a2a3|b4b5, a2a4|b4b6, a3a4|b5b6

}

,

and
Q′

3 =
{

a1a2|b3b4, a3a4|b3b4, a1a4|b1b5, a1a4|b2b6

}

.
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By (tc), Q′
1 and Q′

2 infer the partial splits a1a2a3|b1b2b3 and a2a3a4|b4b5b6, respectively.
Furthermore, together with Q′

3, these partial splits infer a1a2|b1b2b3b4 and a3a4|b3b4b5b6 by
(sc). By (tc), the partial splits a1a2|b1b4, a2a4|b4b5 a1a4|b1b5 infer a1a2a4|b1b4b5. Similarly,
by (tc), we infer

a1a2a4|b2b4b6, a1a3a4|b1b3b5, a1a3a4|b2b3b6.

In turn, again using (tc), we infer

a1a2a3|b3b4b5, a1a2a3|b3b4b6, a2a3a4|b1b3b4, a2a3a4|b2b3b4.

The last eight partial splits now infer a1a2|B, a2a3|B, and a3a4|B which, by (sc), infers

A|B. Thus q(4, 6) ≤ 10 = 4(6−1)
2

.
Now assume that k ≥ 2 and l ≥ 3. By Lemma 5.3, the 2-element collection

Σ4 =
{

a1 · · ·a2k+2|b1 · · · b2l+1, a2k−1 · · ·ar|b2l−2 · · · bs

}

of partial splits together with the collection

Q4 =
{

aia2k+i+2|bjb2l+j+1 : 1 ≤ i ≤ 2k − 2, 1 ≤ j ≤ 2l − 3
}

of quartets identifies T . By the induction assumption, each partial split in Σ4 can be
identified by a collection of (2k + 2)l quartets. Consider one of these partial splits, say
a1 · · ·a2k+2|b1 · · · b2l+1. Since the size of the larger side is 2l + 1 ≥ 7 and odd, we may
make up the set of (2k + 2)l quartets that identify this partial split as in Case 1, where,
by (5.4.2), we may assume that this set contains

{a2k−1a2k|b2l−2b2l−1, a2k−1a2k+1|b2l−2b2l, a2ka2k+1|b2l−1b2l,

a2k−1a2k+2|b2l−2b2l+1, a2ka2k+2|b2l−1b2l+1, a2k+1a2k+2|b2lb2l+1}.

Similarly, we may assume the set of (2k + 2)l quartets that identifies the other partial
split in Σ4 also contains the six quartets in this set. Since Q4 contains (2k − 2)(2l − 3)
quartets, it now follows that

q(r, s) ≤ 2(2k + 2)l − 6 + (2k − 2)(2l − 3)

=
r(s − 1)

2
.

Case 5. r = 4k − 1 and s = 4l − 2 for some integers k ≥ 1 and l ≥ 2.
By Lemma 5.3, the 2-element collection

Σ5 =
{

a1 · · ·a2k|b1 · · · b2l, a2k · · ·ar|b2l−1 · · · bs

}

of partial splits together with the collection

Q5 =
{

aia2k+i|bjb2l+j : 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2l − 2
}
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of quartets identifies T . By the induction assumption, each partial split in Σ5 can be
identified by a collection of k(2l− 1) quartets. Furthermore, Q5 contains (2k − 1)(2l− 2)
quartets. Thus

q(r, s) ≤ 2k(2l − 1) + (2k − 1)(2l − 2)

=

⌈

r(s − 1)

2

⌉

.

Combining Cases 1-5, we conclude that q(r, s) ≤ d r(s−1)
2

e whenever r ≤ s ≤ 2r−2.

We complete the proof of Lemma 5.4 by showing that, for any fixed r, the result holds
for all s with r ≤ s. By (5.4.3), the result holds whenever s ≤ 2r − 2. Now assume that
s > 2r − 2 and that the result holds for all smaller values of s.

Consider the 2-element collection

Σ =
{

a1 · · ·ar|b1 · · · br, a1 · · ·ar|br · · · bs

}

of partial splits. Observe that, as s > 2r− 2, we have |{a1, . . . , ar}| ≤ |{br, . . . , bs}|. By a
single application of (sc), Σ infers A|B. Furthermore, by (5.4.2), the first partial split in

Σ can be identified by a collection of r(r−1)
2

quartets and, by the induction assumption,

the second partial split in Σ can be identified by a collection of d r(s−r)
2

e quartets. Hence

q(r, s) ≤
r(r − 1)

2
+

⌈

r(s − r)

2

⌉

=

⌈

r(s − 1)

2

⌉

.

Running over all values of r, we deduce that

q(r, s) ≤

⌈

r(s − 1)

2

⌉

for all r and all s with 2 ≤ r ≤ s. This completes the proof of the lemma.

The next lemma is an immediate consequence of the definition of identifying quartet
sets.

Lemma 5.5. Let T be a one-split phylogenetic X-tree in which the only non-trivial split
is A|B, and suppose that T displays a collection Q of quartets. If Q does not identify T ,
then there is a phylogenetic X-tree that displays Q, but for which A|B /∈ Σ(T ).

Before proving Theorem 2.4, we require one further definition. An interior vertex of a
tree that is adjacent to exactly k leaves is called a k-bud, or more generally a bud.
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Proof of Theorem 2.4. First suppose that for some interior edge e = uv of T , the subset
Qe of Q containing exactly the quartets that distinguish e has the property that

|Qe| < q(d(u) − 1, d(v) − 1).

Suppose the neighbours of u that are not v are u1, . . . , ur and the neighbours of v that are
not u are v1, . . . , vs. Let Te denote the phylogenetic tree that is the minimal subtree of
T containing the vertices in {u1, . . . , ur, v1, . . . , vs}. Furthermore, let Pe be the collection
of quartets obtained from Qe by replacing each quartet, aa′|bb′ say, with uiuj|vkvl, where
ui is on the path from u to a, uj is on the path from u to a′, vk is on the path from v
to b, and vl is on the path from v to b′. Since T displays Qe, it follows that Te displays
Pe. However, because of the cardinality of Qe, it follows by Lemma 5.4 that Pe does not
identify Te.

By Lemma 5.5, there is a phylogenetic tree T ′
e with label set {u1, . . . , ur, v1, . . . , vs}

that displays Pe but does not contain the split {u1, . . . , ur}|{v1, . . . , vs}. Let T ′ be the
phylogenetic X-tree that is obtained by adjoining, for all w ∈ {u1, . . . , ur, v1, . . . , vs},
the maximal subtree of T that contains w and neither u nor v to T ′

e by identifying the
common vertices denoted by w. Clearly, T ′ displays Qe. Moreover, it is easily seen by
the construction of T ′ that every quartet in Q − Qe is also displayed by T ′. Since T ′

does not contain the split of T induced by e, we deduce that Q does not identify T .
This contradiction means that, for every interior edge e = uv, the collection Q contains
q(d(u) − 1, d(v) − 1) quartets that distinguish e. Thus

|Q| ≥
∑

e∈E̊

q(d(u) − 1, d(v) − 1).

We prove the second part of the theorem by induction on the number m of interior
edges of T . If m = 1 and the unique interior edge is uv, then, by Lemma 5.4, there exists
a collection of quartets of size q(d(u) − 1, d(v) − 1) that identifies T . Now assume that
m ≥ 2 and that the result holds for every phylogenetic tree with m − 1 interior edges.

Let e = uv be an interior edge of T such that u is a bud of T . First assume that
d(u) ≤ d(v). Let r = d(u)− 1 and s = d(v)− 1. Furthermore, let a1, · · · , ar be the leaves
of T adjacent to u, and let b1, · · · , bs be leaves of T such that, for all distinct i and j, the
path from bi to bj contains v, but not u. Let T ′ = T |(X − {a2, · · · , ar}). Now T ′ is a
phylogenetic tree with precisely m− 1 interior edges, and so by our induction assumption
T ′ can be identified by a collection Q′ of quartets of size q(T ′).

Let Qe be a minimum-sized set of quartets that identifies the one-split phylogenetic
tree whose non-trivial split is a1 · · ·ar|b1 · · · bs. By Lemma 5.4, |Qe| = q(r, s). Consider
Qe∪Q′. Clearly, T displays Qe∪Q′. Let T ′′ be a phylogenetic tree that displays Qe∪Q′.
Since Q′ identifies T ′, we have that T ′′|(X − {a2, . . . , ar}) is a refinement of T ′. Using
this fact and the fact that T ′′ displays Qe, it is easily seen that T ′′ displays the partial
split a1 · · ·ar|b1 · · · bs. It now follows that Qe ∪ Q′ identifies T . Moreover,

|Qe ∪ Q′| = q(d(u) − 1, d(v) − 1) + q(T ′) = q(T ).

The same argument holds if d(v) < d(u). This completes the proof of the theorem.
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Recall that q(T ) denotes the size of a minimum-sized set of quartets that identifies a
phylogenetic tree T . We end this section with two results that determine, for all n, those
phylogenetic trees T with n leaves for which q(T ) is minimized and maximized.

Proposition 5.6. Let T be a phylogenetic X-tree with n leaves and at least one interior
edge. Then q(T ) ≥ n − 3. Moreover, q(T ) = n − 3 if and only if

(i) T has exactly one interior edge and contains a 2-bud or two 3-buds; or

(ii) T has at least two interior edges and every vertex with degree at least four is a bud.

Proof. First suppose that T has exactly one interior edge uv. Let r = d(u) − 1 ≥ 2 and
s = d(v) − 1 ≥ 2. Without loss of generality, we may assume that r ≤ s. Then, by
Theorem 2.4,

q(T ) = q(r, s) =

⌈

r(s − 1)

2

⌉

.

It is easily checked that q(T ) ≥ r + s − 3. Furthermore, a routine check also shows that
q(T ) = r + s− 3 if and only if r = 2 or s = 3. As r + s− 3 = n− 3, the proposition holds
over all phylogenetic trees with exactly one interior edge.

Next we show that the proposition holds in general. The proof is by induction on
n. Clearly, the result holds if n = 4. Let T be a phylogenetic tree with n leaves, where
n ≥ 5, and suppose that q(T ) is of minimum size. Suppose that the proposition holds
for all phylogenetic trees T ′ with fewer leaves for which q(T ′) is of minimum size. Since
we already know that the result holds if T has exactly one interior edge, we may assume
that T has at least two interior edges. Since every binary phylogenetic tree with n leaves
is defined by n − 3 quartets (see, for example, [10]), q(T ) ≤ n − 3. Let w be a bud of T
of maximum size. Let j be the size of this bud, let x1, . . . , xj denote the leaves adjacent
to w, let v be the non-leaf vertex adjacent to w, and let T ′ be the restriction of T to
X − {xj}. By the induction assumption, q(T ′) ≥ (n − 1) − 3 = n − 4. We consider the
two cases j ≥ 3 and j = 2 separately.

Suppose firstly that j ≥ 3. If d(w) ≤ d(v), then, by Theorem 2.4,

q(T ) − q(T ′) = q(j, d(v) − 1) − q(j − 1, d(v)− 1)

=

⌈

j(d(v) − 2)

2

⌉

−

⌈

(j − 1)(d(v) − 2)

2

⌉

≥ 1.

Therefore

q(T ) ≥ q(T ′) + 1 ≥ n − 4 + 1 = n − 3. (2)
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Since q(T ) ≤ n−3, it follows that equality holds throughout (2) and so q(T ) = n−3 and
q(T ′) = n − 4. Since T has at least two interior edges and k ≥ 3, the phylogenetic tree
T ′ has at least two interior edges and so, by the induction assumption, (ii) holds for T ′.
Hence (ii) holds for T . A similar argument also shows that (ii) holds for T if d(w) > d(v).

Now suppose that j = 2. Here every bud of T has size two. Note that, in this case,
d(w) ≤ d(v). By Theorem 2.4,

q(T ) − q(T ′) = q(2, d(v) − 1) = d(v) − 2 ≥ 1.

Arguing as in (i), we now deduce that q(T ) = n − 3 and q(T ′) = n − 4. This implies
that d(v) − 2 = 1 and so d(v) = 3. If T ′ has at least two interior edges, then (ii) holds
for T ′ and so (ii) holds for T . Furthermore, if T ′ has exactly one interior edge, then T ′

is a quartet and again it follows that (ii) holds for T . This completes the proof of the
proposition.

For two non-negative integers k and l with k + l ≥ 3, we will denote by T 2l
k the

phylogenetic tree with k + 2l leaves that has an interior vertex adjacent to k leaves while
all other l neighbours are 2-buds.

Theorem 5.7. Let T be a phylogenetic X-tree with n leaves. Then q(T ) ≤
⌊

(

n
2
− 1

)2
⌋

.

Moreover, q(T ) =
⌊

(

n
2
− 1

)2
⌋

if and only if T is isomorphic to

(i) T n−2
2 if n is even; or

(ii) T n−1
1 or T n−3

3 if n is odd.

Proof. First note that, for 1 ≤ k ≤ 3, a routine check using Theorem 2.4 shows that

q(T n−k
k ) =

⌊

(

n
2
− 1

)2
⌋

. In other words, q(T n−2
2 ) =

(

n
2
− 1

)2
if n is even and q(T n−1

1 ) =

q(T n−3
3 ) = (n−1)(n−3)

4
if n is odd. The proof is by induction on n. A simple check shows

that the result holds if n ∈ {4, 5}. Let T be a phylogenetic tree with n leaves, where
n ≥ 6, and suppose that q(T ) is of maximum size. Note that

q(T ) ≥

⌊

(n

2
− 1

)2
⌋

. (3)

Suppose that the theorem holds for all phylogenetic trees T ′ with fewer leaves for which
q(T ′) is of minimum size. Say T has exactly one interior edge. Then one of the interior
vertices is a j-bud with j ≤ n

2
and the other interior vertex is an (n−j)-bud. Consequently,

by Theorem 2.4,

q(T ) =
1

2
j(n − j − 1) ≤

1

2

(

n − 1

2

)2

<

⌊

(n

2
− 1

)2
⌋

as n ≥ 6. It now follows that T has at least two interior edges, which also means that T
has no adjacent buds.
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Let w be a bud of T of maximum size and let k be the size of this bud. Let x1, . . . , xk

denote the leaves adjacent to w, let v be the non-leaf vertex adjacent to w, and let T ′ be

the restriction of T to X − {xk}. By the induction assumption, q(T ′) ≤
⌊

(

n−1
2

− 1
)2

⌋

.

Combining this with (3), we deduce that

q(T ) − q(T ′) ≥

⌈

n − 3

2

⌉

. (4)

First suppose k ≥ 3. Then, by Theorem 2.4, q(T ) − q(T ′) = q(k, d(v) − 1) − q(k −

1, d(v) − 1) and a routine check shows that q(T ) − q(T ′) ≤ d(v)
2

. Together with (4), this
implies that d(v) ≥ n − 2 if n is even and d(v) ≥ n − 3 if n is odd. Since T has at least
two interior edges and w is adjacent to k ≥ 3 leaves, this is only possible if n is odd,
k = 3, and v is adjacent to n − 5 leaves and a 2-bud. Assuming n is odd, n ≥ 7 and so,
by Theorem 2.4,

q(T ) = q(2, n − 4) + q(3, n − 4) =
5

2
(n − 5) <

(n − 1)(n − 3)

4
;

a contradiction.
Now suppose that k = 2. By Theorem 2.4, q(T ) − q(T ′) = q(2, d(v) − 1) = d(v) − 2.

Therefore, by (4), d(v) ≥ n+1
2

. Assume that T has an interior vertex v′ 6= v such that v′

is adjacent to a bud. Then, as v is adjacent to a bud, there are at least d(v) ≥ n+1
2

leaves
` of T for which v′ is not contained in the path from ` to v. Interchanging v and v ′ in this
argument, we also deduce that there are at least d(v) ≥ n+1

2
leaves ` of T for which v is

not contained in the path from ` to v′. Hence T has at least n+1 leaves; a contradiction.
It follows from the above arguments that T has exactly one interior vertex that is not

a bud and all buds are 2-buds. Thus, for some k, we have that T is isomorphic to T n−k
k .

Now

q(T n−k
k ) =

n − k

2
q

(

2,
n + k

2
− 1

)

=
n − k

2

(

n + k

2
− 2

)

=
1

4
(n − 2 + (k − 2))(n − 2 − (k − 2))

and, since k and n must have the same parity, q(T n−k
k ) is maximum for k = 2 if n is even

and for k ∈ {1, 3} if n is odd. This completes the proof of the theorem.
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