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Abstract

A quasi-progression, also known as a Beatty sequence, consists of successive mul-
tiples of a real number, with each multiple rounded down to the largest integer not
exceeding it. In 1986, Beck showed that given any 2-colouring, the hypergraph of
quasi-progressions contained in {0, 1, . . . , n} corresponding to almost all real num-
bers in (1,∞) have discrepancy at least log∗ n, the inverse of the tower function.
We improve the lower bound to (log n)1/4−o(1), and also show that there is some
quasi-progression with discrepancy at least (1/50)n1/6. The results remain valid
even if the 2-colouring is replaced by a partial colouring of positive density.

Introduction

A classic result in discrepancy theory is the theorem of Roth [2] stating that if the elements
of {0, 1, 2, . . . , n} are 2-coloured (e.g: red/blue), there exists an arithmetic progression
{a, a+d, . . . , a+(k−1)d} of discrepancy (i.e., difference in the number of reds and blues)
at least (1/20)n1/4, with 0 ≤ a < d ≤

√
6n. In 1996, Matoušek and Spencer [10], building

upon results by Sárközy (see [3]) and Beck [5], showed that apart from constants, this
result is the best possible.

The situation is quite different, however, for homogeneous arithmetic progressions
(HAPs), the subfamily of arithmetic progressions containing 0. It turns out that there
are extremely balanced colourings for such arithmetic progressions. Consider the following
examples.

χ3(3k + 1) = 1; χ3(3k + 2) = −1; χ3(3k) = χ3(k)

χ∗
3(3k + 1) = 1; χ∗

3(3k + 2) = −1; χ∗
3(3k) = 0
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It is easy to show that all HAPs contained in {0, 1, . . . , n} have discrepancy O(log n)
under the colouring χ3 and discrepancy at most 1 under the partial colouring χ∗

3. In
general, for any prime p, we can define a partial colouring χ∗

p via the non-trivial real
character modulo p (the Legendre symbol), and the resulting discrepancy of HAPs would
be bounded by (p− 1)/2. Also note that χ∗

p is “almost admissible” for large p, since only
a small fraction of numbers is coloured 0. Whether there is a “completely admissible”
colouring of bounded discrepancy for HAPs is a question raised by Erdős in the 1930s, and
one that remains unsolved to this day. It is indeed a mishap that this innocent-looking
question should turn out to be so difficult. We study a variant of this problem.

A quasi-progression Q(α; s, t) is the sequence of integers

bsαc, b(s + 1)αc, . . . , btαc

In other words, a quasi-progression is a sequence of successive multiples of a real num-
ber, with each multiple rounded down to the largest integer below it. Note that for integer
values of α, quasi-progressions reduce to HAPs, or the set-difference of two HAPs. Thus
the problem raised by Erdős concerns a subfamily of quasi-progressions, corresponding to
integer values of α.

Lower Bounds

Our first theorem gives a lower bound on the discrepancy of the family of all quasi-
progressions contained in {0, 1, . . . , n}.

Theorem 1 If the integers from 0 to n are 2-coloured, there exists α > 1 and integers
s and t such that the quasi-progression Q(α; s, t) has discrepancy at least (1/50)n1/6.

Proof Let m < n. The value of m will be specified at the end of the proof. By Roth’s
theorem, there exists an arithmetic progression P = {a, a + d, a + 2d, . . .} contained in
{n−m, n−m+1, . . . , n}, 2 ≤ d <

√
6m, 0 ≤ a < d, with discrepancy at least (1/40)m1/4.

We will show that for suitably chosen m, P can be realised as a quasi-progression corre-
sponding to a real number α > 1.

Observe that if α = d−ε, the first b1/εc elements in the sequence bαc, b2αc, b3αc . . . are
congruent to −1(mod d), the next (b2/εc− b1/εc) elements are congruent to −2 (mod d),
and so on. In particular, the arithmetic progression P ≡ −(d−a) (mod d) can be realised
as a quasi-progression by choosing ε such that P is completely contained in the (d− a)th

block of length b1/εc or d1/εc, as the case may be.

Since P ⊆ {n−m, n−m + 1, . . . , n}, it suffices to choose ε such that dxεe = d− a for
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n − m + 1 ≤ x ≤ n. Such an ε exists if

n − m + 1

d − a − 1
>

n

d − a

Note that d − a ≤ d ≤
√

6m. Therefore, we can choose m = b6−1/3n2/3c. This yields
a quasi-progression of discrepancy at least (1/50)n1/6.

While it is not known whether the set of homogeneous arithmetic progressions have
bounded discrepancy, there exist colourings (see [11]) for which the arithmetic progression
{0, d, 2d, . . . , } has discrepancy at most d4+o(1) for all d. It turns out, however, that upper
bounds independent of n do not exist for most quasi-progressions.

Let α > 1 be given, together with a 2-colouring of {0, 1, . . . , n}. Let Dα(n) denote the
maximum discrepancy of Q(α; s, t) over all admissible s and t. In 1986, Beck [6] showed
that given any 2-colouring of the non-negative integers, for almost every α ∈ [1,∞), there
are infinitely many n such that Dα(n) ≥ log∗ n. Recall that log∗ x denotes the inverse of
the tower function: log∗ x = ln x for 1 < x < e and log∗(ex) = 1 + log∗ x.

We improve on this result, and prove the following theorem.

Theorem 2 Let χ be a partial colouring of the non-negative integers with density
ρ > 0, and let χn denote the restriction of χ to {0, 1, . . . , n}. Then for almost every
α ∈ [1,∞), there are infinitely many n such that Dα(n) ≥ (log n)1/4−o(1).

Proof We begin with a definition.

Definition: We say that the real number α is M -balanced if Dα(n) ≤ M . For brevity,
we shall hereafter refer to (c0(log n)1/4)-balanced α simply as “balanced”.

Let E denote the set of α such that there are only finitely many n with Dn(α) ≤
(log n)1/4−o(1) under the colouring χ. If E has positive measure, there exists a positive
integer t for which the set of balanced α in [t, t + 1) has measure δ > 0. But it follows
from the Main Lemma (see below) that there exists c0 = c0(ρ, t, δ) such that the set of α
with Dn(α) ≤ c0(log n)1/4 has measure less than δ. For all other α in [t, t + 1), we have
Dn(α) > (log n)1/4−o(1) for sufficiently large n, yielding a contradiction.

It remains to state and prove the Main Lemma.

Main Lemma Let χ and χn be as in the statement of Theorem 2. Given t ∈ [1,∞)
and δ > 0, there exists c0 = c0(ρ, t, δ) such that the set of α in [t, t + 1) with the property
that Dα(n) ≤ c0(log n)1/4 under χn for all n, has Lebesgue measure less than δ.

Proof We will transform the problem into a geometric setting, with a view to using
orthogonal functions, as was done by Roth [1] in his classic paper on the measure-theoretic
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discrepancy of axis-parallel rectangles. A similar construction was used by Hochberg (see
[8] and [9]) to show the existence of a quasi-progression of discrepancy c′0(log n)1/4. As we
saw in Theorem 1, quasi-progressions with much larger discrepancy do occur.

We shall assume, for the sake of convenience, that n = (t + 1)m where m = 2u for
some positive integer u. We join each lattice point (a, b) with the one vertically above it,
and give the resulting unit segment the colour χ(b). For each point (x, y) in the plane, the
discrepancy function D(x, y) is defined to be the sum of the χ-values of the unit segments
crossed by the line joining (0, 0) and (x, y). Note that |D(x, y)| ≤ M if and only if y/x is
M -balanced.

-
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Let H(x, y) = D(x, y) if y/x is balanced, and 0 otherwise. Suppose that the measure
of the set of balanced α in [t, t + 1) is at least δ. We will deduce a contradiction for a
suitably chosen c0 by producing a point (x0, y0) with H(x0, y0) > c0(log n)1/4.

Let R denote the region bounded by the lines x = m/2, x = m, y = tx, y = (t + 1)x.
We will construct orthonormal functions g1, g2, . . . , gr on R where r = (log n)/8 and

r
∑

i=1

(〈H, gi〉)2 ≥ ρ2δ13m2(log n)1/2

229c2
0t

3

Since R has area 3m2/8, it follows from Bessel’s inequality that there exists (x0, y0)
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with H(x0, y0) > c0(log n)1/4 for

c0(ρ, t, δ) =
ρ1/2δ13/4

120t3/4

yielding the desired contradiction.

The functions g1, g2, . . . , gr will be normalised versions of mutually orthogonal func-
tions G1, G2, . . . , Gr. Following Hochberg, we will construct Gi by dividing R into a grid
of trapezoids, called the ith trapezoidal grid. We use vertical lines spaced ` = 2i apart
and slanting lines with slopes equally spaced between t and t + 1. The slopes of consec-
utive slanting lines differ by τ

.
= 1/(`βm) where β = c2(log n)1/4. The value of c2 will be

specified later. It is easy to see that the individual grid trapezoids have area at most 1/β
and at least 1/(2β).
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y = tx

y = (t + 1)x

m/2 m

Note that we have specified only the spacing between the grid lines and not their actual
position. We choose the position of the rightmost vertical line randomly and uniformly in
the interval [n− `, n), and the slope of the lowermost line randomly and uniformly in the
interval [t, t+ τ). The region between two consecutive sloping lines will be called a sector,
and sectors will be identified with subintervals of [t, t + 1) in the natural fashion. We will
denote the measure of balanced α in the jth sector of the ith grid by µij. For convenience,
we define µ∗

ij = µij/τ .

If χ(b) 6= χ(b − 1), we refer to b as a switch value. Furthermore, a lattice point (a, b)
will be called a switch point if b is a switch value. A switch point is said to be good if it
finds itself alone in a trapezoid no matter how the grid is positioned; bad otherwise. We
shall denote the number of good switch points in the j th sector of the ith grid by s∗ij.
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We define Gi as follows: On a trapezoid containing exactly one switch point, Gi is
defined in a checkerboard fashion. On all other trapezoids, Gi is defined to be identically
zero.
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(a, b)

The vertical dividing line passes through the centre of the trapezoid. The position of
the slanting dividing line is chosen such that the measure of balanced α above the line and
inside the sector equals the measure of balanced α below the line and inside the sector.
The value of s will vary from trapezoid to trapezoid, but will always equal +1 or −1.
Since the vertical dividing lines are nested dyadically (note that the vertical spacing is
` = 2i), it is clear that {Gi} form an orthogonal family.

We now derive a lower bound on the inner product 〈H, Gi〉. The position of the slant-
ing dividing line has been chosen with a view to extending Hochberg’s argument for the
µ∗

ij = 1 case to the more general problem at hand.

Lemma 1 E(〈H, Gi〉) ≥ (
∑

j

(µ∗
ij)

2s∗ij)/(64β)

Proof Consider the contribution of a unit vertical segment `a,b joining (a, b) and (a, b+1)
to the discrepancy function H(x, y). Let

Ba,b =

{

(x, y) : x ≥ a,
b

a
≤ y

x
<

b + 1

a

}

denote the set of points behind the line `a,b.
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(a, b + 1)

`a,b

Ba,b

Now define

Ha,b(x, y) =

{

χ(b) if (x, y) ∈ Ba,b and y/x is balanced
0 otherwise

Clearly,

H(x, y) =

∞
∑

a=0

∞
∑

b=0

Ha,b(x, y)

Furthermore, only finitely many terms in this sum are non-zero, for any fixed (x, y). Con-
sider a good switch point (a, b) lying inside a trapezoid T , located in the j th sector of the
ith grid.

We claim that if neither (a, b) nor (a, b + 1) lie inside T , then

∫ ∫

T

Gi(x, y)Ha,b(x, y) dx dy = 0

If T lies entirely outside or entirely inside Ba,b, it is clear that the integral is zero.
If exactly one of the bounding lines of Ba,b intersects T , the geometric symmetry with
respect to the vertical dividing line or the measure-theoretic symmetry with respect to
the sloping dividing line, as the case may be, ensures that there is perfect cancellation.
Thus the integral vanishes in this case as well.
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Therefore, we need consider only the terms Ha,b(x, y) and Ha,b−1(x, y), where (a, b) ∈
T . If (a, b) is not a switch point, we have,

∫ ∫

T

Gi(x, y)(Ha,b(x, y) + Ha,b−1(x, y)) dx dy = 0
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Now suppose that (a, b) is a switch point. If (a, b) lies on the intersection of the two
dividing lines, we have

∫ ∫

T

Gi(x, y)(Ha,b(x, y) + Ha,b−1(x, y)) dx dy =
s

4
(χ(b) − χ(b − 1))µ∗

ij area(T )
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We choose s so that the integral is positive. Since the switch point p is good, there
are no other lattice points in T , and the value of s can now be safely assumed fixed. Thus
we get

∫ ∫

T

Gi(x, y)H(x, y)) dx dy ≥
µ∗

ij

8β

provided (a, b) lies on the intersection of the two dividing lines. The location of (a, b)
inside the trapezoid is a uniformly distributed random variable. For the purposes of
computing the expectation, we can assume that T is a parallelogram, at the expense of a
multiplicative constant. Thus we have

E





∫ ∫

T

Gi(x, y)H(x, y) dx dy



 ≥
(µ∗

ij)
2

64β

Adding over all switch points and using the linearity of expectation, we get

E(〈H, Gi〉) ≥
1

64β

∑

j

(µ∗
ij)

2s∗ij

as claimed.

We now prove a slightly stronger version of a lemma due to Beck [6].

Lemma 2 Let J ⊆ [0, 1] be an arbitrary interval of length λ and let 1 ≤ b1 < b2 < . . . bq

be integers. Let N(α, J) = |{j : {bjα} ∈ J, 1 ≤ j ≤ q}|. If q ≥ λ−6, then µ({α ∈ [0, 1] :
N(α, J) ≥ (qλ/2)}) ≥ 1 − (8/

√
q).

Proof The proof uses LeVeque’s inequality from the theory of uniform distributions, and
is almost identical to the proof of Beck’s original lemma (see [6]).
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Let xj = {bjα}, 1 ≤ j ≤ q. Define ∆(α) and Sn(α) as follows:

∆(α) = sup
0≤a<b≤1

∣

∣

∣

∣

∣

∣





∑

j:xj∈[a,b)

1

q



− (b − a)

∣

∣

∣

∣

∣

∣

Sn(α) =
1

q

q
∑

j=1

e2πinxj

Note that
∫ 1

0

|Sn(α)|2 dα =
1

q2

∫ 1

0

q
∑

j=1

q
∑

k=1

e2πin(bj−bk)α dα =
1

q

By LeVeque’s inequality,

∆3(α) ≤ 6

π2

∑

n∈N

|Sn(α)|2
n2

Therefore,
∫ 1

0

∆3(α) dα ≤ 6

π2

∫ 1

0

(

∑

n∈N

1

n2
|Sn(α)|2

)

dα =
1

q

Let E = {α ∈ [0, 1) : N(α, J) ≥ qλ/2} and F = [0, 1) \ E. Clearly,

λ3µ(F )

8
≤
∫ 1

0

∣

∣

∣

∣

∣

∣





∑

j:xj∈J

1

q



− λ

∣

∣

∣

∣

∣

∣

dα ≤
∫ 1

0

∆3(α) dα

Therefore, λ3µ(F )/8 ≤ 1/q. Since q ≥ λ−6, we have

µ(E) = 1 − µ(F ) ≥ 1 − 8√
q
,

proving the lemma.

Let b1, b2, . . . , bq be the switch values of the colouring χ in [N/2, N ]. Note that
q ≥ (Nρ)/(4c0(t + 1)(log n)1/4) = (mρ)/(4c0(log n)1/4). Since switch points come in
rows, it is clear that χn gives rise to mq switch points.

Lemma 3
∑

j

(µ∗
ij)

2s∗ij ≥ δ5mq/(4096t), for 1 ≤ i ≤ r

Proof We say that a sector is rich if µ∗
ij > δ/2. Let {Ik}L

k=1 be an enumeration of the
rich sectors. Since (δ/2)(n`β − L) + Lτ ≥ δ , we have L > (δ/2)m`β.

We use Lemma 2 with J = [0, δ/(4`β(t + 1)], so that λ = δ/(4`β(t + 1)). Since
r = log m/8 and i ≤ r, we have q ≥ λ−6. For an arbitrary interval I = [ak, bk), let I ′ and
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I ′′ denote [ak, ck) and [ck, bk) respectively, where the measure of balanced α in I ′ and I ′′ are
equal. Let A = ∪L

k=1I
′
k. Note that A has measure at least δ2/8. Let B = {θ : 1/θ ∈ A}.

Since A ⊆ [t, t + 1) ⊆ [t, 2t), the measure of B is at least δ2/(32t2).

Let B∗ = {θ ∈ B : N(θ, J) ≥ (qλ)/2}. For sufficiently large n, B∗ has measure at
least δ2/(64t2). Note that θ ∈ B∗ ⇒ 1/θ ∈ I ′

k for some k. Suppose {bvθ} ∈ J for such a
θ. Let av = bbvθc. Then we have,

0 <
bv

av
− 1

θ
<

2λ(t + 1)

m
<

δτ

4

-
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r

(av, bv)

y = x/θ

It follows that (bv/av) ∈ Ik. Thus the kth sector contains a switch point of the form
(av, bv).

Since the contribution of a single I ′
k towards the measure of B∗ is at most τ/t2, there

must be at least δ2m`β/(32t2) rich sectors contributing at least δ3mq/(1024t) switch
points between them.

We now derive an upper bound on the total number of bad switch points.

Given a bad switch point (a, b), there exists a′ such that

|a′ − a| ≤ ` and

∣

∣

∣

∣

∣

∣

∣

∣

ba′

a

∣

∣

∣

∣

∣

∣

∣

∣

<
1

`β
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Let d = |a′ − a|. Note that there are m`/2 pairs (a, d) with 1 ≤ d ≤ `, m/2 ≤ a ≤ m.
For each such pair, there are a/(`β) + O(`) values of b that satisfy ||bd/a|| < 1/(`β). It
follows that there are at most m2/β lattice points which do not find themselves alone in
a trapezoid for some placement of the grid.

Since the number of bad switch points is at most

m2

β
=

m2

c2(log n)1/4
<

δ3mq

1024t

for c2 ≥ 4096c0t/(δ3ρ), we have

∑

(µ∗
ij)

2s∗ij >
δ5mq

4096t

as required.

Note that

E(〈H, Gi〉2) ≥ [E(〈H, Gi〉)]2 ≥
(

∑

j

(µ∗
ij)

2s∗ij
64β

)2

Furthermore, the combined area of all the grid trapezoids containing exactly one switch
point is at most mq/β. Therefore,

E(〈H, gi〉2) ≥
(
∑

j(µ
∗
ij)

2s∗ij)
2

4096mqβ
≥ ρ2δ13m2

226c2
0t

3(log n)1/2

By the linearity of expectation,

E

(

r
∑

i=1

〈H, gi〉2
)

≥ ρ2δ13m2(log n)1/2

229c2
0t

3

Thus, for some placement of the grids, the resulting gi satisfy
r
∑

i=1

(〈H, gi〉)2 ≥ ρ2δ13m2(log n)1/2

229c2
0t

3

yielding the statement of the main lemma.
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Upper Bounds

We derive an upper bound of O(N 1/3+ε) on the discrepancy of quasi-progressions con-
tained in {0, 1, 2, . . . , N}. We begin with an easier estimate. We will show that there
are Θ(N2) distinct maximal quasi-progressions contained in {1, 2, . . . , N}. This will yield
an upper bound of O(

√
N log N) on the discrepancy of quasi-progressions via a standard

random coloring argument (see [3]).

Let FN
.
= {a/b : 0 ≤ a ≤ b ≤ N ; (a, b) = 1} denote the Farey sequence of order N . It

is well-known (see [7]) that |FN | ∼ 3N2

π2 .

Let F N
.
= {1/x : x ∈ FN , x 6= 0}. Observe that distinct elements of F N give rise to

quasi-progressions whose restrictions to {1, 2, . . . , N} are distinct. Let F N [i] denote the
ith smallest element of F N . Given α ∈ (1, N ], we have F N [t] ≤ α < FN [t + 1] for some
positive integer t.

Suppose there exist integers s, k ∈ {1, 2, . . . , N} such that sF N [t] < k ≤ sα. Then k/s,
suitably reduced, belongs to GN and lies between F N [t] and FN [t+1], yielding a contradic-
tion. It follows that Q(α; 0, N) ∩ {1, 2, . . . , N} = Q(F N [t]; 0, N) ∩ {1, 2, . . . , N}. In other
words, the number of quasi-progressions contained in {1, 2, . . . , N} forms a polynomial-
sized family, and the O(

√
N log N) upper bound follows.

It turns out that we can do better, as shown below:

Theorem 5 The hypergraph of quasi-progressions contained in {0, 1, . . . , N} has dis-
crepancy O(N 1/3+ε).

Proof Let q be the largest integer such that N ≥ 8q3. Let N = 2Aq+B, 0 ≤ B < 2q.
Recall that it suffices to consider the elements of FN , the inverse Farey sequence of order
N . We divide the set {1, 2, . . . , N} into A blocks of size 2q, and a residual block of size
B = O(N1/3). Each block is colored with precisely one sign change at the halfway mark.
Thus either the left half of the block is red and the right half is blue, or vice versa. Ob-
serve that the number of terms in the left and right halves of a given block differs by at
most one, for any quasi-progression. Thus, with each FN [i], we can associate a bias set
Bi ⊆ {1, 2, . . . , 2A}, constructed as follows.

Consider the intersection of the quasiprogression corresponding to FN [i] with the kth

block. We mandate that 2k − 1 ∈ Bi if and only if the left half of the kth block contains
more elements (in fact, one more element) than the right half, and 2k ∈ Bi if and only
if the right half of the kth block contains more elements than the left half. Clearly, the
discrepancy of the hypergraph of quasiprogressions differs from the discrepancy of the
hypergraph of these bias sets by at most O(N 1/3). Since the latter is a polynomial family
of hyperedges over a vertex set of size O(N 2/3), random coloring now yields an upper
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bound of O(N1/3
√

log N) for the discrepancy of bias sets, and consequently for the dis-
crepancy of quasiprogressions. By increasing the block size by a logarithmic power, the
upper bound can, in fact, be improved to O((N log N)1/3).

Not surprisingly, this argument also beats the random colouring upper bound on
the discrepancy of arithmetic progressions. Indeed, Sárközy’s O(N 1/3+ε) upper bound
mentioned in the introduction was founded on quite similar ideas, and had the added
advantage of being deterministic, based as it was on properties of quadratic residues.

Acknowledgement
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