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Abstract

We describe a “factoring” method which constructs all twenty-seven Hadamard
(16, 6, 2) difference sets. The method involves identifying perfect ternary arrays of
energy 4 (PTA(4)) in homomorphic images of a group G, studying the image of
difference sets under such homomorphisms and using the preimages of the PTA(4)s
to find the “factors” of difference sets in G.

This “factoring” technique generalizes to other parameters, offering a general
mechanism for creating Hadamard difference sets.

1 Introduction

Let G be a group of order v and X =
∑

g∈G

xgg an element of the integral group ring Z[G].

By X (−1) we will mean the integral group ring element X (−1) =
∑

g∈G

xgg
−1. We also identify

G with the group ring element
∑

g∈G

g. We say that X is a difference set with parameters

(v, k, λ) if X has coefficients xg ∈ {0, 1} and

XX(−1) = (k − λ)1G + λG.
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A difference set D with parameters (4m2, 2m2 − m, m2 − m) (m a positive integer) is

called a Hadamard difference set. An element T =
∑

g∈G

tgg of the integral group ring Z[G]

is a perfect ternary array of energy ν (PTA(ν)) if T has coefficients tg ∈ {−1, 0, 1} and

TT (−1) = ν1G.

A good introduction to perfect ternary arrays is the article [1] by Arasu and Dillon.
The beauty of Hadamard difference sets (especially in abelian groups) is nicely displayed in
the article by Dillon [3]. That paper includes a general product construction for Hadamard
difference sets; that product construction is generalized further by this paper. For the
general theory of symmetric designs and difference sets, see Lander’s monograph, [8]. The
(16, 6, 2) designs in detail are described in [2].

Kibler found, by computer in 1978, all (16, 6, 2) difference sets. There are 27 inequiv-
alent difference sets in 12 groups of order 16. These are listed in Kibler’s survey [6].

The article by Marcel Wild ([9]) provides a nice discussion of the groups of order 16.
These groups are also easily analyzed using the public domain software package GAP ,
[5].

We will discuss in detail in sections 2 and 3 how PTA’s, especially products of PTA(4)s
are related to finding the Hadamard difference sets we seek in groups of order 16. All
(16, 6, 2) difference sets are constructed in this manner; in section 4 we provide the fac-
toring for each of the 27 (16, 6, 2) difference sets.

The techniques in this paper generalize to other parameters of Hadamard difference
sets. Of the 259 groups of order 64 possessing a (64, 28, 12) difference set, a product
construction using PTAs will construct difference sets in 212 of these groups ([4].) Of the
132 groups of order 144 conjectured to have a (144, 66, 30) difference set, a PTA product
construction will provide difference sets in all but one of these groups (see [7].)

2 Perfect Ternary Arrays

The following lemma easily follows from the definitions in section 1.

Lemma 1 D is a Hadamard difference set in a group G of order 4m2 if and only if
D̂ := G − 2D is a PTA(4m2) in G.

Furthermore, it can be easily verified that if T is a PTA(ν) in a group G, then for
any g ∈ G, −T, gT, and Tg are also perfect ternary arrays. Furthermore, if φ is an
automorphism of G, then φ(T ) is also a PTA(ν). We say that two PTAs T1, T2 are
equivalent if there exists a group element g ∈ G and an automorphism φ of G such that
T2 = ±gφ(T1).

We explore PTA(4)s in detail. The results which follow, leading to Lemma 2, were
first observed by John Dillon and communicated to the second author during the author’s
sabbatical visit to the National Security Agency in 1990. We are not aware of any place
these computations have appeared in print.
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Suppose T is a PTA(4). Since TT (−1) = 4, then under the trivial representation of
the group, T must be sent to ±2. Replacing T by −T if necessary, we may assume that
T involves a single element g with coefficient +1 and three elements with coefficients
-1. Premultiplying by g−1, we may assume that T = 1 − a − b − c where a, b, c are
distinct nonidentity elements of G. Writing out the definition of PTA(4), we have that
T = 1 − a − b − c satisfies the equation

TT (−1) = (1 − a − b − c)(1 − a−1 − b−1 − c−1) = 4.

Formally multiplying out (1 − a − b − c)(1 − a−1 − b−1 − c−1) we have

4 − (a + b + c + a−1 + b−1 + c−1) + (ab−1 + ac−1 + ba−1 + bc−1 + ca−1 + cb−1).

If this is equal, in the group ring, to the element 4 · 1G then the (multi)sets
{a, b, c, a−1, b−1, c−1} and {ab−1, ac−1, ba−1, bc−1, ca−1, cb−1} must be equal. We walk

through the various cases forced by this requirement.
The element a cannot be equal to ab−1 or ac−1, for then, contrary to our assumption,

b or c is the identity. We may, therefore, assume without loss of generality, that a = cb−1

or a = ba−1. (The assumptions a = bc−1 or a = ca−1 are equivalent to these two cases,
after a relabelling of variables.)

Case 1. We assume a = cb−1 and therefore c = ab. We examine the set equation
{b, ab, b−1, b−1a−1} = {ab−1, ab−1a−1, ba−1, aba−1}.

1. Suppose b = ab−1. Then a = b2.

This forces the set equation {ab, b−1a−1} = {ab−1a−1, aba−1}. We may choose

(a) ab = ab−1a−1 = ab−3 =⇒ b4 = 1. Therefore T = 1 − b − b2 − b3 and b4 = 1.

(b) ab = aba−1 =⇒ a = 1, which is not allowed.

2. Suppose b = ab−1a−1.

This forces the set equation {ab, b−1a−1} = {ab−1, ba−1}. We may choose

(a) ab = ab−1 =⇒ b2 = 1. This and the earlier condition (b = ab−1a−1) force a
and b to commute. Thus T = 1−a−b−ab where b is an involution commuting
with a. (We call this solution the “commuting involution” solution.)

(b) ab = ba−1. This forces ab = a2b−1a−1 = ba−1 =⇒ a2 = b2. Thus T = 1 − a −
b − ab where a, b obey the “quaternion-like” conditions bab−1 = a−1, a2 = b2.

3. Suppose b = aba−1.

This forces the multiset equality {ab, b−1a−1} = {ab−1, ba−1}. We may choose either

(a) ab = ba−1 =⇒ b2 = 1, that is, we have a commuting involution solution.

(b) ab = ba−1 =⇒ a2 = 1, equivalent to the previous solution.
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Thus far we have two types of solutions:

1. the “commuting involution” solution, where c = ab, ab = ba, and at least one of a, b
has order 2.

2. the “quaternion” solution, where c = ab, a2 = b2, bab−1 = a−1.

Case 2. Suppose a = ba−1 and therefore b = a2. Furthermore, the sets {a2, c, a−2, c−1}
and {ac−1, a2c−1, ca−1, ca−2} are equal. If a2 = ac−1 then c = a−1, so a = bc and we have
a solution equivalent (after a relabeling of variables) to Case 1. Similarly, if a2 = ca−1

then c = a3 and c = ab. However, if a2 = ca−2 then c = a4 and we are forced to conclude
that a−3 = a4 and so a7 = 1. Thus the set {a, b, c} is the (7, 3, 1) difference set {a, a2, a4}
in the cyclic subgroup generated by a and if we write D := a + a2 + a4 then T = 1 − D.
This is the “Fano plane solution,” the only solution occurring in a group of odd order.

Lemma 2 In summary, TT (−1) = 4 allows three types of solutions. There is the sporadic
“Fano plane” solution, T = 1 − a − a2 − a4 where a7 = 1 and two others. The two other
solutions are the “commuting involution” solution T = 1− a− b− ab where a (or b) is an
involution and a and b commute and the “quaternion” solution T = 1 − a − b − ab where
bab−1 = a−1 and a2 = b2.

(Note: If a, b generate the Klein 4-group then both conditions above are satified,
that is, a, b satisfy both the “commuting involution” and the “quaternion” conditions.
Otherwise, bab−1 = a−1, a2 = b2 implies that 〈a, b〉 is the quaternion group Q8.)

From here on, for group elements a, b, we will use the notation T +
a,b := 1+a+b+ab and

T−
a,b := 1− a− b− ab when necessary. If T =

∑
g∈G tgg is an element of the integral group

ring Z[G] where tg ∈ {−1, 0, 1}, we define the support of T to be the set of elements
g ∈ G such that tg is not zero.

Lemma 3 Suppose there exist εi ∈ {−1, 1} such that T = ε01 + ε1a + ε2b + ε3ab is a
PTA(4). Then T is equivalent to the PTA(4) T−

x,y = 1− x− y− xy where x is either a or
a−1 and y is either b or b−1.

Proof Since TT (−1) = 4, the trivial representation forces exactly three of the εi to agree
in sign. Multiplying by -1 if necessary, we assume that three of the εi are negative. There
are four cases, depending on the choice of the single positive εi. If ε0 = 1 then T = T−

a,b.
Otherwise:

1. −1 + a − b − ab = a(T−
a−1 ,b

),

2. −1 − a + b − ab = (T−
a,b−1)b,

3. −1 − a − b + ab = a(T−
a−1 ,b−1)b.

Corollary 1 If T = ε01 + ε1a + ε2b + ε3ab is a PTA(4) of commuting involution type
where a is a commuting involution then T is equivalent to either T −

a,b or T−
a,b−1 .
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We conclude this section with a brief example. Suppose G ∼= C2 × C4 = 〈w, y : w2 =
y4 = [w, y] = 1〉. Each of the group ring elements

1. T−
w,y = 1 − w − y − wy,

2. T−
w,y2 = 1 − w − y2 − wy2,

3. T−
y2,y

= 1 − y2 − y − y3,

are perfect ternary arrays with energy 4. The automorphism group of G is isomorphic
to the dihedral group of order 8. There is an automorphism which fixes w but maps y2

to wy2. Given a fixed element g of order four, there is a unique automorphism which
fixes both w and y2 yet map y to g. The automorphisms just described generate the full
automorphism group of G and so the three PTAs listed above are mutually inequivalent
and any PTA is G is equivalent to one of these. Therefore, up to equivalence, the three
PTAs listed above are all the PTA(4)s in C2 × C4.

3 Perfect Ternary Arrays and Hadamard difference

sets

In this section we explain how PTA(4)s can be used to find (16, 6, 2) Hadamard difference
sets. The following theorem provides some crucial observations.

Theorem 1 Let G be a group of order 4m2 and z a central involution in G. Use the bar
convention for homomorphic images modulo 〈z〉. Let D be a (4m2, 2m2 − m, m2 − m) -
difference set. Then:

1. DD
(−1)

= m2 + 2(m2 − m) G and T = D − G is a PTA of energy m2.

2. Let H be a transversal of G modulo 〈z〉. Then T h = |D ∩ {h, hz}| − 1 for h ∈ H.
Define T ∈ Z[H] by Th = T h, and F ∈ Z[H] by Fh = 0 if |D ∩ {h, hz}| = 0 or 2,
Fh = 1 (or −1) if D ∩ {h, hz} = {h} (or = {hz}). Then

D = (T + H)(
1 + z

2
) + F (

1 − z

2
) (1)

and
FF (−1)(1 − z) = m2(1 − z). (2)

Proof 1. By definition,
DD(−1) = m2 + (m2 − m)G.

Passing to images in G,

DD
(−1)

= m2 + 2(m2 − m)G.
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Also,

TT
(−1)

= (D − G)(D
(−1)

− G
(−1)

) = DD
(−1)

− GD
(−1)

− DG
(−1)

+ GG
(−1)

= m2 + 2(m2 − m)G − (2m2 − m)G − (2m2 − m)G + (2m2)G

= m2.

T is thus a PTA of energy m2.

2. The image of D may be written as

D =
∑

h∈H

ahh

where ah ∈ {0, 1, 2}. Note that ah = |D ∩ {h, hz}| for h ∈ H. Since

∑

h∈H

ah = 2m2 − m

and ∑

h∈H

a2
h = m2 + 2(m2 − m) = 3m2 − 2m,

and |H| = 2m2, the multiset {ah : h ∈ H} must consist of m2−m
2

twos, m2 ones, and
m2+m

2
zeroes.

Now, T = D − G =
∑

h∈H

ahh −
∑

h∈H

h =
∑

h∈H

(ah − 1)h =
∑

h∈H

(|D ∩ {h, hz}| − 1)h.

Then
T =

∑

h∈H

(|D ∩ {h, hz}| − 1)h

and

T + H =
∑

h∈H

(|D ∩ {h, hz}|)h = 2
∑

|D∩{h,hz}|=2

h +
∑

D∩{h,hz}=h

h +
∑

D∩{h,hz}=hz

h.

Combining with F ∈ Z[H] as defined,

(T + H)
(1 + z)

2
+ F

(1 − z)

2

=
∑

|D∩{h,hz}|=2

(h + hz) +
∑

D∩{h,hz}=h

(h + hz)

2
+

∑

D∩{h,hz}=hz

(h + hz)

2

+
∑

D∩{h,hz}=h

(h − hz)

2
+

∑

D∩{h,hz}=hz

(hz − h)

2

= D
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proving Equation (1). We may further write

D̂ := G − 2D = −(T (1 + z) + F (1 − z)). (3)

Since T , the image of T in G/〈z〉, is a PTA(m2), we have that

TT (−1) = m2 + Y (1 − z)

where Y is some element in Z[G]. According to Lemma 1, for D to be a difference
set in a group of order 4m2, D̂ must be a PTA(4m2) which yields

4m2 = D̂D̂(−1) = 2TT (−1)(1 + z) + 2FF (−1)(1 − z).

This implies that
FF (−1)(1 − z) = m2(1 − z).

This suggests a two step search algorithm for Hadamard difference sets in groups of
order 4m2 possessing a commuting involution z. First, we find, up to equivalence all
PTA’s T in G. This defines T ⊆ Z[H]. Given T , the set H − Supp(T ) is the support
of F . We then choose coefficients ±1 for the elements of F so that F satisfies Equation
(2). In theory, both of these steps could be computationally difficult. (Indeed, if m is not
a power of 2, the element z might not exist.) But for the (16, 6, 2) case, this process is
efficient and provides all 27 difference sets.

We assume hereafter that m = 2 and so G has order 16. Thus, G has order 8 and T
is a PTA(4) that is either of the “commuting involution” or “quaternion” type.

If T is equivalent to 1−a−b−ab where a is a commuting involution, then {1, a}, {b, ab}
are cosets of 〈a〉 in G and there exists an element g ∈ G such that {1, b, g, bg} is a transver-
sal of 〈a〉 in G. We have G = {1, a, b, ab} ∪ {g, ag, bg, abg}. Choosing the transversal
H = {1, a, b, ab, g, ag, bg, abg} such that a, b, g are preimages in G of a, b, g respectively,
allows for T ∈ Z[H] to be 1 − a − b − ab. Then Supp(F ) = {g, ag, bg, abg} is a translate
of Supp(T ).

If T is equivalent to 1 − a − b − ab of the “quaternion” type, that is, 〈a, b〉 = G ∼= Q8

then G = {1, a, b, ab} ∪ {g, ag, bg, abg} where g = a2. As before, choosing the transversal
H = {1, a, b, ab, g, ag, bg, abg} such that a, b, g are preimages in G of a, b, g respectively,
allows for T ∈ Z[H] to be 1 − a − b − ab. Then Supp(F ) = {g, ag, bg, abg} is a translate
of Supp(T ).

We may substitute F = Xg in equation (2) where Supp(X) = {1, a, b, ab} = Supp(T ).
Since FF (−1) = (Xg)(Xg)(−1) = XX (−1), it is enough to find all X that satisfy the
equation:

XX(−1)(1 − z) = 4(1 − z)

which may be rewritten as
(XX(−1) − 4)(1 − z) = 0. (4)

If X satisfies equation (4), then so does −X, hence we may work with X of the form
1 ± a ± b ± ab. Theorem 2 describes all X satisfying equation (4), but first we prove
Lemma 4 for special cases.
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Lemma 4 If
(XX(−1) − 4) = A(1 − z)

where A ∈ C[G] then

(XX(−1) − 4)(1 − z) = 0 =⇒X is a PTA(4).

Proof As
0 = (XX (−1) − 4)(1 − z) = A(1 − z)2 = 2A(1 − z)

we obtain A(1 − z) = 0 and then XX (−1) = 4.

What does the image T of an element T say about the element F ? The answer to this
question is subtle.

Theorem 2 Suppose X = 1 + ε1a + ε2b + ε3ab, where εi ∈ {−1, 1}, i ∈ {1, 2, 3} and
T = 1 − a − b − ab is PTA(4) in G/〈z〉 of the “commuting involution” type. If

(XX(−1) − 4)(1 − z) = 0

then either

1. X is itself a PTA(4) in G (if a2 = 1, ab = ba and X has an odd number of minus
signs) or,

2. X is of the “quaternion type”, i.e., 〈a, b〉 = Q8 (if a2 = b2 = z, ab = baz).

Proof A straightforward computation shows that

XX(−1) − 4 =

(ε1+ε2ε3)(a+a−1)+ε2(b+b−1)+ε1ε3(aba−1+ab−1a−1)+ε3(ab+b−1a−1)+ε1ε2(ab−1+ba−1)
(5)

If X has an odd number of minus signs, then εi = −εjεk for distinct i, j, k. If X has an
even number of (or possibly 0) minus signs, then εi + εjεk = ±2 for distinct i, j, k. There
are four cases depending on the choice of a and b in G.

Case 1. a2 = 1, ab = ba
Using the above relations in equation (5), we get

XX(−1) − 4 = 2(ε1 + ε2ε3)(a) + (ε2 + ε1ε3)(b + b−1) + (ε3 + ε1ε2)a(b + b−1).

If X has an odd number of negative signs, then setting (ε1 + ε2ε3) = (ε2 + ε1ε3) =
(ε3 + ε1ε2) = 0,

(XX(−1) − 4) = 0.

If X has an even number of negative signs, then

(XX(−1) − 4)(1 − z) = (±4a ± 2(b + b−1) ± 2a(b + b−1))(1 − z) = 0
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=⇒ ±2a ± (b + b−1) ± a(b + b−1) = ±2az ± (b + b−1)z ± a(b + b−1)z.

Then a must be equal to an element x in the set {az, bz, b−1z, abz, ab−1z}. But as x̄ = ā
and a 6= az, we obtain a contradiction.

Case 2. a2 = 1, ab = baz
Using these relations in equation (5) we get

XX(−1) − 4 = 2(ε1 + ε2ε3)(a) + (ε2 + ε1ε3z)(b + b−1) + (ε3 + ε1ε2z)(ab + b−1a)

If X has an odd number of negative signs,

(XX(−1) − 4) = ±(1 − z)(b + b−1) ± (1 − z)(ab + b−1a)

By Lemma 4,
(XX(−1) − 4)(1 − z) = 0 =⇒(XX (−1) − 4) = 0.

However, if X is PTA(4), X would have to be of the “commuting involution” or “quater-
nion” type. Since it is neither, this case is impossible. If X has an even number of negative
signs, then

(XX(−1) − 4)(1 − z) = (±4a ± (1 + z)(b + b−1) ± (1 + z)(ab + b−1a))(1 − z)

= ±4a(1 − z).

Then
(XX(−1) − 4)(1 − z) = 0 =⇒ ±4a(1 − z) = 0 =⇒ a = az.

But that is impossible.
Case 3. a2 = z, ab = ba

We may assume without any loss of generality that b2 6= 1 and (ab)2 6= 1, otherwise we
may relabel and get to Case 1. Using the above relations in equation (5) we get

XX(−1) − 4 = (ε1 + ε2ε3)(a + a−1) + (ε2 + ε1ε3)(b + b−1) + (ε3 + ε1ε2z)(ab + ab−1z).

If X has an odd number of negative signs, then

XX(−1) − 4 = ±a(1 − z)(b + b−1z)

By Lemma 4,
(XX(−1) − 4)(1 − z) = 0 =⇒(XX (−1) − 4) = 0.

However, if X is PTA(4), X would have to be of the “commuting involution” or “quater-
nion” type. Since it is neither, this case is impossible. If X has an even number of negative
signs, then

(XX(−1) − 4)(1 − z) = (±2a(1 + z) ± 2(b + b−1) ± a(1 + z)(b + b−1z))(1 − z)

= ±2(b + b−1)(1 − z).
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Then
(XX(−1) − 4)(1 − z) = 0

implies that b is equal to one of b−1, bz or b−1z. The first two choices yield z = 1 which
is impossible hence the only remaining possibility is that b = b−1z which implies that
b2 = z. But if a2 = b2 = z, then (ab)2 = 1, a possibility we already dismissed.

Case 4. a2 = z, ab = baz
Using the above relations in equation (5) we get

XX(−1) − 4 = (ε1 + ε2ε3)a(1 + z) + (ε2 + ε1ε3z)(b + b−1) + (ε3 + ε1ε2)(ab + ab−1).

If X has an odd number of negative signs, then

XX(−1) − 4 = ±(1 − z)(b + b−1).

By Lemma 4,
(XX(−1) − 4)(1 − z) = 0 =⇒(XX (−1) − 4) = 0.

However, if X is PTA(4), X would have to be of the “commuting involution” or “quater-
nion” type. In this case X is of the quaternion type if b2 = z as well. If X has an even
number of negative signs, then

(XX(−1) − 4)(1 − z) = (±2a(1 + z) ± (1 + z)(b + b−1) ± 2(ab + ab−1))(1 − z)

= ±2(1 − z)(ab + ab−1)

In that case,
(XX(−1) − 4)(1 − z) = 0

implies that ab = ab−1z which leads to b = b−1z or b2 = z. This gives us that (ab)2 =
abab = bazab = z. Again X is of the “quaternion” type.

Recall from the discussion in Section 2 that X being a PTA(4) implies that X must
have an odd number of minus signs and be either of the “sporadic” (Fano plane) type, the
“commuting involution” type or the “quaternion” type. For 2-groups, Lagrange’s theorem
rules out the “sporadic” case and so a PTA(4) is either of “commuting involution” type
or “quaternion” type. Our experience in groups of order 16 and 64 indicates that the
“commuting involution” PTA(4) is extremely common in the construction of difference
sets; the “quaternion” type is rare but does occur.

Most groups of order 64 which possess a (64, 28, 12) difference set possess at least one
difference set which is the product of three PTA(4)s. A computer search reveals that
of the 259 groups with a difference set, 212 groups allow such a product construction.
However, the abelian group C8 × C8 contains many difference sets but, as this abelian
group only has three involutions, none of these difference sets may be constructed using a
product of three PTA(4)s. Some other construction is necessary to explain the difference
sets in the group C8 × C8.

The groups of order sixteen are small enough that all 27 difference sets in these groups
have a simple description as a product of two PTA(4)s. This is the result of our next
theorem. The last section then explicitly gives the PTA(4)s used to construct each of
these (16, 6, 2) difference sets.
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Theorem 3 Up to equivalence, all (16, 6, 2) difference sets may be written in the form
D̂ = T−

a1,b1
T−

a2,b2
for some collection of group elements a1, b1, a2, b2.

Proof By equation (3) we have D̂ = G− 2D = −(T (1+ z)+F (1− z)) = −(T−
a,b(1+ z)+

F (1 − z)). We will write out this expression for each choice of T−
a,b and F = Xg.

Case (a): a2 = 1, ab = ba

1. X = 1 − a − b − ab. D̂ = −((1 − a − b − ab)(1 + z) + (1 − a − b − ab)g(1 − z)) =
(T−

a,bz)(T
−
z,(ag)−1)ag.

2. X = −1 + a− b− ab. D̂ = −((1− a− b− ab)(1 + z) + (−1 + a− b− ab)g(1− z)) =
(T−

a,b)(T
−
z,(ag)−1)agz.

3. X = −1− a + b− ab. D̂ = −((1− a− b− ab)(1 + z) + (−1− a + b− ab)g(1− z)) =
(T−

az,bz)(T
−
z,(ag)−1)ag.

4. X = −1− a− b + ab. D̂ = −((1− a− b− ab)(1 + z) + (−1− a− b + ab)g(1− z)) =
(T−

az,b)(T
−
z,(ag)−1)ag.

Notice that each T−
∗,∗ in the factorization of D̂ is a PTA(4) of the commuting involution

type.

Case (b): a2 = 1, ab = baz and
Case (c): a2 = z, ab = ba do not yield difference sets as a result of Theorems 1 and

2.

Case (d): a2 = z, ab = baz

1. X = 1 − a − b − ab. D̂ = −((1 − a − b − ab)(1 + z) + (1 − a − b − ab)g(1 − z)) =
(T−

az,b)(T
−
z,(ag)−1)ag.

2. X = −1 + a− b− ab. D̂ = −((1− a− b− ab)(1 + z) + (−1 + a− b− ab)g(1− z)) =
(T−

az,bz)(T
−
z,(ag)−1)agz.

3. X = −1− a + b− ab. D̂ = −((1− a− b− ab)(1 + z) + (−1− a + b− ab)g(1− z)) =
(T−

a,b)(T
−
z,(ag)−1)ag.

4. X = −1− a− b + ab. D̂ = −((1− a− b− ab)(1 + z) + (−1− a− b + ab)g(1− z)) =
(T−

a,bz)(T
−
z,(ag)−1)ag.

5. X = −1− a + b + ab. D̂ = −((1− a− b− ab)(1 + z) + (−1− a + b + ab)g(1− z)) =
(T−

bz,a)(T
−
z,(ag)−1)ag.

6. X = −1 + a− b + ab. D̂ = −((1− a− b− ab)(1 + z) + (−1 + a− b + ab)g(1− z)) =
(T−

b,az)(T
−
z,(ag)−1)agz.
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7. X = −1 + a + b− ab. D̂ = −((1− a− b− ab)(1 + z) + (−1 + a + b− ab)g(1− z)) =
(T−

bz,az)(T
−
z,(ag)−1)agz.

8. X = 1 + a + b + ab. D̂ = −((1 − a − b − ab)(1 + z) + (1 + a + b + ab)g(1 − z)) =
(T−

b,a)(T
−
z,(ag)−1)agz.

Notice that in each case D̂ has the form D̂ = Ta1,b1Ta2,b2g
′ where g′ is some element

of G. By considering D̂g′−1 = (G − 2D)g′−1 = G − 2D′ we get an equivalent
difference set of the form Ta1 ,b1Ta2 ,b2. We also notice that if F = Xg corresponds to

D̂ = T1T2g
′ then −Xg corresponds to D̂ = T1T2g

′z both of which are translation
equivalent to T1T2. Therefore we have not listed them above.

The strategy for finding difference sets in groups of order 16 will be as follows.

1. For each group G we identify a special commuting involution z in G.

2. We find, up to equivalence in G/〈z〉, all perfect ternary arrays T in G/〈z〉.

3. Each T is the image of an element T in G. We verify that every automorphism of
G/〈z〉 extends to an automorphism of G and so we have, up to equivalence in G,
all possible T that might occur in the equation D̂ = −(T (1 + z) + F (1 − z)).

4. For each such T , we identify all F such that D̂ = −(T (1 + z) + F (1 − z)) gives
a difference set. The support of F is a translate of the support of T ; we apply
Theorem 2 in our search for F . of Ta,bz. Theorem 3 leads to a comprehensive list of
the possibilities of F .

5. Once our list is complete, we weed out equivalent solutions using our knowledge of
the automorphisms of G.

The cyclic group C16 does not have a difference set; this is “Turyn’s bound” (see, for
example, [8], Theorem 4.30, p. 161 or [3], p. 14) It then follows that the dihedral group
D8 does not have a (16, 6, 2) difference set ([3], p. 16.) The remaining 12 groups of order
16 do have difference sets. The elementary abelian group C4

2 has a single difference set
D = 1 + a + b + c + d + abcd where {a, b, c, d} is a generating set for the group. (This
exercise is left for the reader; it is straightforward to write D̂ as a product of two PTAs.
For example, if D = 1 + a + b + c + d + abcd then D̂ = abT−

a,bT
−
cd,cab.)

The remaining eleven groups will be handled as follows. In the remaining three abelian
groups, we choose z so that G/〈z〉 is isomorphic to C4 ×C2. (In GAP ’s library, these are
[16, 2] ∼= C4 × C4, [16, 5] ∼= C8 × C2 and [16, 10] ∼= C4 × C2 × C2.)

There are two groups in which the derived subgroup G′ has order two and G/G′ is
isomorphic to C4 × C2. Since G′ is a characteristic subgroup, every automorphism of G
fixes z and so our choice of z is unique. (In GAP ’s SmallGroup library, these groups are
[16,3], [16,4], [16,6].)

There are two groups in which the center of G is of order two and G/Z(G) is isomorphic
to the dihedral group D4. (In GAP ’s library, these are [16,8], [16,9].)
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There are three groups in which the derived subgroup G′ has order two and G/G′ is
isomorphic to C3

2 . (In GAP ’s library, these are [16,11], [16,12], [16,13].)
From Theorem 2, we will require that F be a PTA in G unless, given Ta,b, it happens

that z = [a, b] = a2 = b2 and 〈a, b〉 generate a quaternion subgroup. Only four groups
of order 16 have a subgroup isomorphic to Q8. There are, in GAP ’s library, the groups
[16,8], [16,9], [16,12], [16,13]. So, in most cases, we may assume F is a PTA(4).

Example 1
Let G = C4 × C4 = 〈x, y : x4 = y4 = 1〉. There are several choices for a commuting

involution z in G. The automorphism group of G is transitive on involutions of G so we
may assume, without loss of generality, that z = x2. Then G/〈z〉 ' C2×C4. We first look
for possible T which are PTA(4) in G/〈z〉. Next we choose F so that the union of the
support of F and T forms a transversal H of 〈z〉 in G as well as gives rise to a difference
set according to equation (1).

There are three possibilities for T up to equivalence in G/〈z〉.

1. T = Tx,y, Tx,y = 1 − x − y − xy and Supp(F ) = y2Supp(T−
x,y),

2. T = T
y2,y

, Ty2 ,y = 1 − y − y2 − y3 and Supp(F ) = xSupp(T−
y,y2),

3. T = T
y2,x

, Ty2,x = 1 − x − y2 − xy2 and Supp(F ) = ySupp(T−
x,y2),

Since the group G is abelian, the element F must be a perfect ternary array in G and
so its translate is also. We are essentially into Case (a) of Theorem 3 (with a := y2, b :=
x, z := x2) and there are four cases. Any Hadamard difference set D̂ is equivalent to one
of the following four:

1. T−
y2,x

T−
x2,y

2. T−
y2,x3T

−
x2,y

3. T−
y2,y

T−
x2,x

4. T−
y2,x2y

T−
x2,x

Since there is an automorphism of C4 ×C4 which fixes y and transposes x and x3, the
first two solutions, above, are equivalent. But the remainder are mutually inequivalent
and so there are three inequivalent (16, 6, 2) difference sets in C4 × C4.

Example 2 Let’s examine the group [16, 3] in GAP ’s SmallGroup library. In this
case G ∼= (C4 × C2) o C2 = 〈x, y, z : x4 = y2 = z2 = [x, y] = [y, z] = 1, zxz = xy〉,
a semidirect product of C4 × C2 with an element of order 2. This group has a unique
nonidentity element y in the derived subgroup and G/〈y〉 is isomorphic to C4 ×C2. There
is no subgroup of G isomorphic to the quaternions and so we are in Case (a) of Theorem
3. In this case all four solutions given there are inequivalent.
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In a similar manner, we can work through the remaining groups of order 16. Each
of the 27 difference sets discovered by Kibler can be rediscovered in this manner. The
results are listed below.

4 All (16,6,2) Difference sets

We list all twenty-seven (16, 6, 2) difference sets obtained by our methods in the previous
sections. The groups are ordered according to GAP ’s SmallGroups library of groups of
order 16.

1. C16 = 〈x : x16 = 1〉.
There are no difference sets in C16.

2. G = C4 × C4 = 〈x, y : x4 = y4 = 1〉.

(a) T−
y2 ,x

T−
x2,y

(b) T−
y2 ,x

T−
x2y2,y

(c) T−
y2 ,x

T−
x2y2,xy

3. (C4 × C2) o C2 = 〈x, y, z : x4 = y2 = z2 = [x, y] = [y, z] = 1, zxz = xy〉.

(a) T−
y,xT

−
x2,z

(b) T−
y,xT

−
x2y,z

(c) T−
y,xT

−
x2,xz

(d) T−
y,xT

−
x2y,xz

4. C4 o−1 C4 = 〈x, y : x4 = y4 = 1, yxy−1 = x−1〉.

(a) T−
y2 ,x

T−
x2y2,y

(b) T−
y2 ,x

T−
x2,xy

(c) T−
y2 ,x

T−
x2y2,xy

5. C8 × C2 = 〈x, y : x8 = y2 = [x, y] = 1〉.

(a) T−
y,x2T

−
x4,x

(b) T−
y,x2T

−
x4y,x

6. The modular group, M16 = 〈x, y : x8 = y2 = 1, yxy−1 = x5〉.

(a) T−
x4,x

T−
y,x2
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(b) T−
x4,x

T−
y,x6

7. The dihedral group, D8 = 〈x, y : x8 = y2 = 1, yxy = x−1〉.
There are no difference sets in D8.

8. The semi-dihedral group, SD16 = 〈x, y : x8 = y2 = 1, yxy = x3〉.

(a) T−
xy,x2T

−
y,x4

(b) T−
xy,x2T

−
x4,x

9. The generalized quaternion group, Q16 = 〈x, y : x8 = y4 = 1, yxy−1 = x−1, x4 = y2〉.

(a) T−
x5y,x6T

−
x6,x7y

(b) T−
x5y,x6T

−
x7y,xy

10. C4 × C2 × C2 = 〈x, y, z, x4 = y2 = z2 = [x, y] = [x, z] = [y, z] = 1〉.

(a) T−
x,yT

−
x2,xyz

(b) T−
x,yT

−
x2y,xz

11. D4 × C2 = 〈x, y, z : x4 = y2 = z2 = 1 = [x, z] = [y, z]; yxy = x3〉.

(a) T−
y,zT

−
x2,x3y

.

(b) T−
y,zT

−
x2z,x3y

.

12. Q8 × C2 = 〈z, y, z : x4 = y4 = z2 = x2y2 = yxy−1x = [x, z] = [y, z] = 1〉.

(a) T−
x2,x

T−
z,y

(b) T−
x2,x

T−
y,xz

13. (C4 × C2) o C2 = 〈x, y, z : x4 = y2 = z2 = [x, y] = [x, z] = 1, zyz = x2y〉.

(a) T−
y,x2T

−
z,x3z

(b) T−
y,x2T

−
x2y,x

14. C2 × C2 × C2 × C2 = 〈x, y, z, w : x2 = y2 = z2 = w2 = 1〉.

(a) D̂ = (T−
x,y)(T

−
w,z)
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