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Abstract

We examine certain maps from root systems to vector spaces over finite fields.

By choosing appropriate bases, the images of these maps can turn out to have nice

combinatorial properties, which reflect the structure of the underlying root system.

The main examples are E6 and E7.

1 Introduction

The primary goal of this paper is to provide a convenient way of visualising the root
systems E6 and E7. There are two important relations on a root system that one might
wish to have a good understanding of: the poset structure, in which α > β if α − β is
a sum of positive roots, and the orthogonality structure, in which α ∼ β if α and β are
orthogonal roots.

In our paper on cominuscule Schubert calculus, with Frank Sottile [8], we found that
our examples required a good simultaneous understanding both these structures. This is
easy enough to acquire for the root systems corresponding to the classical Lie groups. In
An, for example, one can visualise the positive roots as the entries of an strictly upper
triangular (n + 1) × (n + 1) matrix, where the ij position represents the root xi − xj.
Then α ≥ β if and only if α is weakly right and weakly above β. Orthogonality is also
straightforward in this picture: α and β are non-orthogonal if there is some i such that
crossing out the ith row and the ith column succeeds in crossing out both α and β. Figure 1
shows the roots orthogonal to x3 − x5 in A5.

In type E, it is less obvious how to draw such a concrete picture. Separately the
two structures have been well studied in the contexts of minuscule posets [7, 9, 11], and
strongly regular graphs (see e.g. [1, 3, 4]). However, once one draws the Hasse diagram of
the posets, the orthogonality structure suddenly becomes mysterious. Of course, one can
always calculate which pairs of roots are orthogonal, but we would prefer a picture which
allows us to do it instantly. Thus the main thrust of this paper is to get to Figures 4 and 6,
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Figure 1: Orthogonality and partial order in type A.

which illustrate how one can simultaneously visualise E7 and E6 posets and orthogonality
structures, at least restricted to certain strata of the root system. The restriction of these
structures to the strata is exactly what is needed for the type E examples in [8]. With a
little more work, one can use these figures to recover the partial order and orthogonality
structures for the complete root system.

To reach these diagrams, we begin by considering certain maps from a root system
to (Z/p)m, which are injective (or 2:1 if p = 2). In Section 2, we make some general
observations about these maps. Then, in Section 3 we give examples for E6 and E7 which
are particularly nice. In these cases, we show that properties of the underlying root system
are reflected in simple combinatorial structures on the target space, which is what allows
us to produce diagrams in question. As the E7 example is richer, we will discuss it before
the E6 example. Finally, in Section 4, we discuss how the partial order structures on each
of the strata are related by order ideals. This relationship plays an essential role in [8],
and is useful for understanding the structure of the E8 root system.

The idea of relating the E6 and E7 root systems to (Z/p)m has appeared elsewhere.
For example, Harris [5] uses such an identification to describe the Galois group of the 27
lines on the cubic surface, one of the del Pezzo surfaces. The connection between del Pezzo
surfaces and the exceptional Lie groups has been well established; we refer the reader to
[6]. One can also see such a relationship reflected in the well known identification of Weyl
groups (see e.g. [2]):

W (E6) ∼= SO(5; Z/3) ∼= O−(6; Z/2),

W (E7) ∼= Z/2 × Sp(6; Z/2).

These facts follow from the identifications outlined in this paper, and presumably have
been proved in similar ways before. (To see that W (E7) identification is a direct product
rather than a semidirect product, one needs the additional fact that the long word w0 ∈
W (E7) is central.)

The author is grateful to Hugh Thomas and Richard Green for their comments on this
paper. This work was partially supported by NSERC.
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2 Compression of root systems

2.1 Simply laced root systems

Let ∆ ⊂ Rn be a simply laced root system. Let 〈·, ·〉 denote the inner product on Rn,
for which we have 〈β, β〉 = 2 for all β ∈ ∆. We assume that ∆ has full rank in Rn. Let
Λ = Z∆ denote the lattice in Rn generated by ∆.

Throughout, we will make use of the fact that if α and β are roots in a simply laced
root system ∆, then α + β ∈ ∆ if and only if 〈α, β〉 = −1. Similarly, we have α− β ∈ ∆
if and only if 〈α, β〉 = 1.

Choose a basis of simple roots α1, . . . , αn ∈ ∆, for Λ. Let ∆+ denote the positive roots
with respect to this basis, and ∆− denote the negative roots. Recall that ∆+ is a partially
ordered set, with β > β ′ iff β − β ′ is a sum of positive roots. Roots β and β ′ are always
comparable in the partial ordering when 〈β, β ′〉 > 0, though the converse is not true.

For each β ∈ Λ, we define βi to be the coefficient of αi, when β is expressed in the
basis of the simple roots: β =

∑n
i=1 β

iαi.
Let Dyn denote the Dynkin diagram of ∆. As ∆ is simply laced, each component of Dyn

has type ADE. The vertices of Dyn are denoted v1, . . . , vn, and correspond (respectively)
to the simple roots α1, . . . , αn. When ∆ is a simple root system (i.e Dyn has just one

component), the affine Dynkin diagram D̂yn is obtained by adding a vertex v̂n to Dyn,
corresponding to the lowest root α̂n of ∆. Thus −α̂n is the highest root, and in particular
is a positive root.

In addition to the usual named types (An, Dm, m ≥ 4, E6, E7, E8), we will adopt the
conventions that D2 = A1 × A1, D3 = A3, E3 = A2 × A1, E4 = A4, and E5 = D5. (Note
that on the level of root systems, the product is a disjoint union in the direct sum of the
ambient vector spaces.)

2.2 Root systems over Z/p

Let p ≥ 2 be a positive integer. For reasons explained later in this section, the most
interesting cases will be when p is a prime, p = 4, or p = 6. Let V be a finite rank
free module over Z/p, with a symmetric bilinear form (·|·) taking values in Z/p. Let

Γ = {x ∈ V \ {
−→
0 } | (x|x) = 2}.

Suppose that Γ has a subset S = {a1, . . . , an} such that

(ai|aj) = 〈αi, αj〉 (mod p), for all i, j,

and if p = 2 or 3 assume: ai 6= aj, for all i 6= j.
(1)

Then we obtain a map f : Λ → V by extending the natural map αi 7→ ai to a homomor-
phism of abelian groups.

Proposition 2.2.1. If β, β ′ ∈ Λ then

(f(β)|f(β ′)) = 〈β, β ′〉 (mod p) (2)
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Proof. This is true for all pairs of simple roots, and both inner products are bilinear.

Corollary 2.2.2. Suppose β 6= ±β ′ ∈ ∆. Then 〈β, β ′〉 = 0 if and only if (f(β)|f(β ′)) = 0.

Proof. Since β, β ′ are roots of a simply laced root system, 〈β, β ′〉 ∈ {−1, 0, 1}, thus
〈β, β ′〉 = 0 ⇐⇒ 〈β, β ′〉 = 0 (mod p) ⇐⇒ (f(β)|f(β ′)) = 0.

We now restrict the domain of f to ∆ if p > 2 and to ∆+ if p = 2.

Theorem 2.2.3. If p > 2, the map f : ∆ → V is injective, and its image lies in Γ. If
p = 2, the map f : ∆+ → V is injective, and its image lies in Γ.

Proof. We first suppose p > 2. Note that the fact that f(∆) ⊂ Γ is clear from the fact
that every β ∈ ∆ satisfies 〈β, β〉 = 2.

Now, suppose that β, β ′ ∈ ∆, f(β) = f(β ′). We show that β = β ′.
For all γ ∈ ∆ we have (f(β)|f(γ)) = (f(β ′)|f(γ)), so 〈β, γ〉 = 〈β ′, γ〉 (mod p). In

particular the set of roots perpendicular to β and β ′ are equal. This implies β and β ′

belong to the same simple component of ∆.
There are two cases: if the component is of type A2, then it is easy to check that if

p 6= 3, (f(β)|f(γ)) = (f(β ′)|f(γ)) for all γ ∈ ∆(A2) implies β = β ′; if p = 3 we need the
additional hypothesis that ai 6= aj for i 6= j to draw the same conclusion. If the component
is not of type A2, then the fact that β and β ′ have the same set of perpendicular roots
implies that β = ±β ′. (In types D and E, the roots perpendicular to any given root span
an entire hyperplane, and in type A it is easily checked.) However, for all x ∈ Γ, x 6= −x.
Since f(β) = f(β ′) ∈ Γ, we cannot have β ′ = −β. Thus β = β ′.

For p = 2, the fact that every β ∈ ∆+ satisfies 〈β, β〉 = 2, implies that f(∆+) ⊂

Γ ∪ {
−→
0 }. It is therefore enough to show that f : ∆+ ∪ {

−→
0 } → Γ ∪ {

−→
0 } is injective.

Suppose β, β ′ ∈ ∆+ ∪ {
−→
0 }, f(β) = f(β ′). We show that β = β ′.

As in the p > 2 case, for all γ ∈ ∆, we have 〈β, γ〉 = 〈β ′, γ〉 (mod 2). Thus the sets
P (β) and P (β ′), where

P (β) := {γ ∈ ∆ | 〈β, γ〉 = 0} ∪ {±β},

coincide.
Note that P (β) = ∆ if and only if β =

−→
0 or β belongs to an A1 component. If

P (β) = P (β ′) = ∆, then β and β ′ both belong to A1 components, and hence are simple

roots, or are zero; since f restricted to {
−→
0 , α1, . . . , αn} is injective, we deduce β = β ′.

So assume this is not the case. Then the elements of ∆ \ P (β) belong to a single simple
component of ∆, namely the component containing β. Thus β and β ′ belong to the same
simple component of ∆. Hence we may assume that ∆ is a simple root system.

If ∆ is of type A2, then P (β) = {±β}, hence β = β ′.
If ∆ is of type Ak, k ≥ 4, or of type E6, E7 or E8, then P (β) is a root system of type

Ak−2 × A1, A5 × A1, D6 × A1 or E7 × A1, respectively, where β, β ′ are both in the A1

component. Thus in these cases β = β ′.
If ∆ is of type Dk, k ≥ 3 (including D3 = A3), then P (β) is a root system of type

Dk−2 × A1 × A1, where β, β ′ are both in an A1 component (a priori, not necessarily the
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same one). If β, β ′ belong to the same A1 component, then β = β ′. So suppose they do
not. The roots of Dk are {ei ± ej | i 6= j} ⊂ Rk, for some orthonormal basis e1, . . . , ek of

Rk. It is easy to see that if β = ei±ej, then β ′ = ei∓ej. Now f(2ej) = f(β)−f(β ′) =
−→
0 ;

thus for all l, we have f(2el) = 2f(el − ej) + f(2ej) =
−→
0 . So f(em + el) = f(em − el),

for all m 6= l. But among these must be a pair of simple roots, namely the two simple
roots conjugate under the Dynkin diagram automorphism. We conclude that f restricted
to the simple roots is not injective, contrary to (1).

Remark 2.2.4. Although we will not have use for it here, if p is not a prime, one could
also allow the possibility that V is not a free module. In this case Theorem 2.2.3 remains
true provided f(β) 6= f(−β) for all β ∈ ∆. This will be the case whenever 2 - p or when
Dyn has no component of type A1.

We now show that the most interesting cases are when p is a prime, p = 4, or p = 6.
Suppose p is composite, and not equal to 4, 6 or 9. Let p′ /∈ {2, 3} be a proper divisor of
p. Let V ′ = V ⊗Z/p Z/p′. Let ρ : V → V ′ denote the reduction modulo p′ map. V ′ comes
with a symmetric bilinear form (·|·)′, the reduction of (·|·) modulo p′.

Corollary 2.2.5. The composite map f ′ := ρ ◦ f : ∆ → V ′ is injective, and its image lies
in Γ′ = {x ∈ V ′ | (x|x)′ = 2}. Moreover 〈β, β ′〉 = (f ′(β)|f ′(β ′))′ (mod p′).

Proof. As p′ /∈ {2, 3}, we do not need the assumption that the ai are distinct; hence this
follows from the fact that ρ preserves inner products modulo p′.

With some additional work, one can check that Corollary 2.2.5 is also true with p = 9
and p′ = 3.

2.3 Compression

The most interesting case of Theorem 2.2.3 occurs when rank m of V is smaller than the
rank n of Λ. If this is the case, we will call the map f a compression of the root system.
Here we give a necessary and nearly sufficient condition for compression to be possible.

Let A be the Coxeter matrix of ∆, Aij = 〈αi, αj〉.

Proposition 2.3.1. If we have S as in (1), and m < n, then p divides det(A).

Proof. Let s be the m × n matrix whose columns are the ai in some basis, and let g be
the m×m matrix representing the bilinear form (·|·) in the same basis. Then

Aij = (ai|aj) = (sT gs)ij (mod p).

If m < n then det(sT gs) = 0, so p| det(A).

Conversely, if p is prime and p| det(A), and Ap denotes the reduction of A modulo
p, then one can define V = (Z/p)n/ ker(Ap). Let ai is the image of the standard basis
vector ei under the natural map. This will satisfy (1), provided the ai are all distinct and
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non-zero. The same construction works if p is not prime, though V will not necessarily
be a free Z/p-module.

In particular, we cannot hope for compression in E8, a root system for which det(A) =
1. For E7, however, det(A) = 2, and for E6, det(A) = 3. Thus we should expect
compression of the E7 and E6 root systems to be possible, taking p = 2 or 3 respectively.

2.4 Structures on V

Define O(V ) to be the graph whose vertex set is V and whose edges are pairs (x, y), x 6= y
such that (x|y) = 0. The graph N(V ) is defined to be the complement of O(V ), having
vertex set V and edges (x, y) such that (x|y) 6= 0. If X ⊂ V , we denote the restrictions
of O(V ) and N(V ) to X by O(X) and N(X), respectively.

As our two main examples involve p = 2 and p = 3, we consider some special inner
products (·|·) in these case.

If p = 2, we let V be an even dimensional vector space over Z/2 with a symplectic
form (·|·). By symplectic form, we mean an (anti)symmetric non-degenerate bilinear form

for which (x|x) = 0 for all x. Thus Γ = V \ {
−→
0 }. We see that S ⊂ V \ {

−→
0 } satisfies the

condition (1) iff the graph N(S) is isomorphic to Dyn. In this case, the associated map f

gives an injective map from ∆+ to V \ {
−→
0 }.

If p = 3, we take V to be an m-dimensional vector space over Z/3, with the standard
symmetric form

(
(x1, . . . , xm)

∣∣(y1, . . . , ym)
)

=
m∑

i=1

xiyi. (3)

3 Application to E7 and E6

3.1 The E-sequence

Consider R8 with the standard Euclidean inner product 〈·, ·〉. Let α1, . . . , α8 be the vectors

α1 = (1,−1, 0, 0, 0, 0, 0, 0)

α2 = (1
2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
)

α3 = (0, 1,−1, 0, 0, 0, 0, 0)

α4 = (0, 0, 1,−1, 0, 0, 0, 0)

α5 = (0, 0, 0, 1,−1, 0, 0, 0)

α6 = (0, 0, 0, 0, 1,−1, 0, 0)

α7 = (0, 0, 0, 0, 0, 1,−1, 0)

α8 = (0, 0, 0, 0, 0, 0, 1,−1).

5 6 7 81 3 4

2

These are the simple roots of E8, which span the E8 lattice. They correspond to the
vertices v1, . . . , v8 of Dyn(E8), in the order shown on the right. This ordering of simple
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roots of E8 corresponds to the inclusion of root systems below.

A1 −−−→ D2 −−−→ E3 −−−→ E4 −−−→ E5 −−−→ E6 −−−→ E7 −−−→ E8∥∥∥
∥∥∥

∥∥∥
∥∥∥

A1×A1 −−−→ A2×A1 −−−→ A4 −−−→ D5

For 3 ≤ n ≤ 8 the simple roots of En are α1, . . . , αn. These span the En lattice Λ(En).
In general, the roots of En are the lattice vectors α ∈ Λ(En) such that 〈α, α〉 = 2.

The positive roots ∆+(E8) of E8 are stratified as ∆+(E8) =
∐

∆+
s . For s 6= 2, 3,

∆+
s = {β ∈ ∆+(E8) | β ≥ αs, and β � αt for all t > s}. (4)

Equation (4) makes sense for s = 2, and s = 3; however it is convenient for our purposes
(and arguably correct) to put these into the same stratum:

∆+
3 = {α3, α3 + α1, α2}.

We also have a stratification of all roots of E8, ∆(E8) =
∐

∆s, where ∆s = ∆+
s ∪−∆+

s .
This stratification has the property that the roots of En, 3 ≤ n ≤ 8 are precisely

∆(En) =
∐

s≤n

∆s.

For notational convenience, we define s′ = max{3, s+ 1}, so that ∆s and ∆s′ always
denote consecutive strata.

For each stratum let Hs denote the graph whose vertices are ∆+
s and whose edges form

the Hasse diagram of the poset structure on ∆+, restricted ∆+
s . Thus we have an edge

joining β and β ′ if one of ±(β − β ′) is a simple root. These are shown in Figure 2.
Finally, it is worth noting the size of each stratum. The stratification ∆+(E8) =

∐
∆+

s

has strata of sizes 1 (s = 1), 3 (s = 3), 6 (s = 4), 10 (s = 5), 16 (s = 6), 27 (s = 7) and
57 (s = 8).

3.2 A compression of E7

We now take ∆ to be the E7 root system.
Let F = (Z/2 × Z/2,⊕) denote the non-cyclic four element group. We denote the

elements of this group {0, 1, 2, 3}, and the operation a⊕b is binary addition without carry
(also known as bitwise-xor). Thus F is a two-dimensional vector space over Z/2 and thus
hence admits a unique symplectic form:

(a|a′) =

{
0 if a = 0, a′ = 0 or a = a′

1 otherwise.

We shall take V = F 3, and whenever possible we write a triple (a, b, c) ∈ V simply as
abc. We endow V with the symplectic form

(abc|a′b′c′) = (a|a′) + (b|b′) + (c|c′).
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Figure 2: The Hasse diagrams Hs, 3 ≤ s ≤ 8.

We take as our subset S ⊂ V , the set S = {a1, . . . , a7}, where

a1 = 100, a2 = 030,

a3 = 300, a4 = 111,

a5 = 003, a6 = 001, a7 = 033.

030

100 003 033300 111 001

Proposition 3.2.1. The graph N(S) is Dyn(E7). The natural homomorphism f takes αi

to ai.

Proof. This just needs to be checked.

As a consequence of we obtain the following corollary of Theorem 2.2.3.

Corollary 3.2.2. The map f : ∆+ ∪ {
−→
0 } → V is a bijection.

Proof. It is an injection by Theorem 2.2.3. But #(∆+ ∪ {
−→
0 }) = #(V ) = 64, thus it is a

bijection.

3.3 Restriction to strata

Let Γs denote the image of the stratum ∆+
s under f . Here we show how natural structures

on ∆+
s are preserved under f , and are more palatable in Γs.

We define a new graph structure on V . Let T(V ) be the graph with vertex set V = F 3,
and abc adjacent to a′b′c′, if exactly one of {a = a′, b = b′, c = c′} holds. For X ⊂ V , let
T(X) denote the restriction of T(V ) to X.
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Unlike O(V ), the graph T(V ) has translation symmetries: for any x ∈ V , the map
y 7→ x⊕ y is an automorphism. It is a strongly regular graph. In particular every vertex
has valence 27.

Definition 3.3.1. For v ∈ V , the link on v in the T(V ), denoted L(v), is the set of
vertices of T(V ) that are adjacent to v. Let Lc(v) denote the set of vertices of T(V ) that
are non-adjacent to v, excluding v itself.

Lemma 3.3.2. The image of the largest stratum Γ7 is L(
−→
0 ).

In other words, Γ7 is the set of abc ∈ V such that exactly one of {a = 0, b = 0, c = 0}
holds.

Note that this result is not independent of the choice of S for the images of the simple
roots. We have chosen S quite carefully, in part to make this lemma hold. It is possible
(and not difficult) to check this result on each of the 27 roots of ∆+

7 ; however, since a
symmetry argument is available, we present it here.

Proof. We know that f(α7) = 033 ∈ Γ7, thus it suffices to show that Γ7 is invariant under
the following symmetries:

(a, b, c) 7→ ([2 ↔ 3] · a, b, c) (a, b, c) 7→ ([1 ↔ 2] · a, b, c) (5)

(a, b, c) 7→ (c, b, a) (a, b, c) 7→ (a, c, b) (6)

The first two symmetries (5) are just the reflections in the simple roots v1 and v2

respectively, which are automorphisms of ∆+
7 (c.f. Section 3.5). The second two symme-

tries (6) come from a Dynkin diagram construction, which we first describe for any En.
A similar construction can also be used for types A and D.

Let D = Dyn(En). We decorate each vertex of D with the corresponding simple root
in ∆. Choose a vertex vi ∈ D, where i /∈ {1, 2, 8}. If we delete the edge (vi, vi+1) from D,
the diagram breaks up into two components D′,D′′ where D′ is the component containing
v1. If i = n, D′′ will be empty. Note that D′ is a sub-Dynkin diagram of D, and hence
corresponds to a sub-root system ∆′ ⊂ ∆.

We apply the following construction to obtain a new Dynkin diagram D̃:

1. Add to D′ the affine vertex v̂i, to form the affine Dynkin diagram D̂′. This vertex is
decorated with the lowest root α̂i ∈ ∆′.

2. For every vertex D̂′, replace the root which decorates the vertex by its negative.

3. Delete the vertex vi.

4. If D′′ is not empty, reattach it by forming an edge (v̂i, vi+1). The result is D̃.

The underlying graph D̃ is isomorphic to D: we identify the graphs D and D̃ in such
a way that D′′ is fixed, and vi ∈ D corresponds to v̂i ∈ D̃. Under this isomorphism,
the roots decorating the vertices will have changed. Furthermore, the construction of D̃

respects the fact that the edges in the Dynkin diagram represent the inner products of the
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roots decorating the vertices; hence the roots decorating D̃ correspond to a new system
of simple roots for ∆. Thus this process corresponds gives an automorphism of ∆, and
hence to an automorphism of Γ.

Returning now to the E7 case, we note each of these automorphisms is actually an
extension of an automorphism of ∆(E6). For i ≤ 6 this is clear, and for i = 7 it is the
outer automorphism of ∆(E6), given by reflecting the Dynkin diagram (Figure 3 (left)).
Thus each automorphism restricts to an automorphism of ∆7, and hence of Γ7 = f(∆+

7 ) =
f(∆7). The symmetries (6) are the automorphisms of Γ7 given by the construction above,
using vertices v7 and v6 respectively. It is sufficient to check this on the images of the
simple roots. See Figure 3.

033

010

111 001100 003300 001

030

330 003 033300 111100

030

Figure 3: The automorphisms of Γ7 described in the proof of Lemma 3.3.2, for v7 (left)
and v6 (right).

Theorem 3.3.3. The graphs T(Γ7) and O(Γ7) coincide. Furthermore, the graphs T(Γ\Γ7)
and O(Γ \ Γ7) coincide. Thus, if either β, β ′ ∈ ∆7, or β, β ′ ∈ ∆(E6), we have 〈β, β ′〉 = 0
if and only if f(β) and f(β ′) agree in exactly one coordinate.

Proof. We have (abc|a′b′c′) = (a|a′) + (b|b′) + (c|c′). Thus (abc|a′b′c′) = 0 ⇐⇒ an odd
number of {(a|a′), (b|b′), (c|c′)} are zero. Write abc ∼ a′b′c′ if abc and a′b′c′ agree in exactly
one coordinate.

First, let abc and a′b′c′ be distinct elements of Γ7. By Lemma 3.3.2 exactly one
of {a, b, c} and exactly one of {a′, b′, c′} is zero. Suppose a = a′ = 0. Then we have
(abc|a′b′c′) = 0 ⇐⇒ b 6= b′ and c 6= c′ ⇐⇒ abc ∼ a′b′c′. Suppose a = b′ = 0. Then
(abc|a′b′c′) = 0 ⇐⇒ c = c′ ⇐⇒ abc ∼ a′b′c′. The remaining cases are the same by
symmetry.

Now, let abc and a′b′c′ be distinct elements of Γ\Γ7. By Lemma 3.3.2 an even number
of {a, b, c} are zero, and an even number of {a′, b′, c′} are zero. Suppose a, b, c, a′, b′, c′

are all nonzero. Then (abc|a′b′c′) = 0 ⇐⇒ abc and a′b′c′ disagree in an even number of
coordinates ⇐⇒ abc ∼ a′b′c′. Suppose a, b, c, a′ are nonzero and b′ = c′ = 0. (abc|a′b′c′) =
0 ⇐⇒ a = a′ ⇐⇒ abc ∼ a′b′c′. Suppose a, a′ are nonzero and b = c = b′ = c′ = 0. Then
(abc|a′b′c) 6= 0 and abc � a′b′c′. Suppose a, b′ are nonzero and b = c = a′ = c′ = 0. Then
(abc|a′b′c) = 0 and abc ∼ a′b′c′. The remaining cases are the same by symmetry.

The following construction provides a useful way of relating the other strata to ∆+
7 .

Put z7 =
−→
0 , ζs =

∑7
i=s′ αi, and zs = f(ζs) for s = 1, 3, 4, 5, 6. If β ∈ ∆+

s , define β̃ = β+ζs.
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Proposition 3.3.4. If β, β ′ ∈ ∆+
s , then

(i) 〈β, ζs〉 = −1, and 〈β, ζt〉 = 0, for t > s′;

(ii) β̃, β̃ ′ ∈ ∆+
7 ;

(iii) 〈β, β ′〉 = 〈β̃, β̃ ′〉;

(iv) β < β ′ if and only if β̃ < β̃ ′.

Proof. We have 〈β, ζs〉 = 〈
∑s

j=1 β
jαj,

∑7
i=s′ αi〉 = 〈βsαs, αs′〉 = −βs = −1; similarly for

t > s′, 〈β, ζt〉 = 〈
∑s

j=1 β
jαj,

∑7
i=t αi〉 = 0; this proves (i). Thus we see that β̃ = β + ζs

is a root, and since β̃7 = β7 + ζ7
s = 1, (ii) follows. We also deduce (iii), since 〈β̃, β̃ ′〉 =

〈β, β ′〉 + 〈β, ζs〉 + 〈ζs, β
′〉 + 〈ζs, ζs〉 = 〈β, β ′〉 + (−1) + (−1) + 2 = 〈β, β ′〉. Finally, (iv)

follows from the fact that β̃ − β̃ ′ = β − β ′.

In general, all of the strata can be described in terms of links in T(V ). In view of
Proposition 3.3.4, we also describe Γs ⊕ zs = {f(β̃) | β ∈ ∆+

s }, which is often easier to
work with.

Theorem 3.3.5. We have the following identifications:

(i) Γs = L(zs) ∩
( ⋂

7≥t>s

Lc(zt)
)
;

(ii) Γs ⊕ zs = L(
−→
0 ) ∩

( ⋂

7>t≥s

Lc(zt)
)
.

In particular, for s ≤ 6, Γs ⊕ zs = (Γs′ ⊕ zs′) ∩ Lc(zs). It is a pleasant fact, which the
reader can check, that zs is always a minimal element (unique for s 6= 1) in the partial
order in zs′ ⊕ Γs′.

Proof. We already know this is true for s = 7, so assume s ≤ 6.
First, we calculate L(

−→
0 ) ∩ Lc(zt) and L(zt) ∩ Lc(

−→
0 ). By Lemma 3.3.2 and Theo-

rem 3.3.3 we have
L(

−→
0 ) ∩ Lc(zt) = {x ∈ Γ7 | (x|zt) = 1}. (7)

Now L(zt) ∩ Lc(
−→
0 ) = zt ⊕ (L(

−→
0 ) ∩ Lc(zt)). Hence by (7), y ∈ L(zt) \ L(

−→
0 ) ⇐⇒

y ⊕ zt ∈ Γ7 and (y|zt) = (y ⊕ zt|zt) = 1. Now if (y|zt) = 1, then since zt ∈ Γ7 we have
y ⊕ zt ∈ Γ7 if and only if y /∈ Γ7. Thus we see that

L(zt) ∩ Lc(
−→
0 ) = {y ∈ V | y /∈ Γ7, (y|zt) = 1}. (8)

By Proposition 3.3.4(i), the set Γs is characterized by

y ∈ Γs ⇐⇒ (y|zi) =

{
1 if i = s

0 if i > s.
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Thus, using (8) we see that

Γs = {y ∈ Γ | y /∈ Γ7, (y|zs) = 1, (y|zt) = 0 for all t > s}

= {y ∈ Γ | y /∈ Γ7, (y|zs) = 1} \
7⋃

t=s′

{y ∈ Γ | y /∈ Γ7, (y|zt) = 1}

=
(
L(zs) ∩ Lc(

−→
0 )

)
\

( 7⋃

t=s′

L(zt) ∩ Lc(
−→
0 )

)

=
(
L(zs) ∩ Lc(z7)

)
\

( 7⋃

t=s′

L(zt) ∩ Lc(z7)
)

= L(zs) ∩
( ⋂

7≥t>s

Lc(zt)
)
.

On the other hand, using (7) and the fact that (zs|zt) = 1 for t 6= s,

Γs ⊕ zs = {x ∈ Γ7 | (x⊕ zs|zs) = 1, (x⊕ zs|zt) = 0 for all t > s}

= {x ∈ Γ7 | (x|zt) = 1, for all t ≥ s}

=
⋂

7>t≥s

L(
−→
0 ) ∩ Lc(zt)

= L(
−→
0 ) ∩

( ⋂

7>t≥s

Lc(zt)
)
.

3.4 Partial ordering

We now show how one can recover the partial ordering on ∆+
s from Γs.

Lemma 3.4.1. Let x1, x2 ∈ Γ7. If x1 and x2 are orthogonal, there exists a unique vector
x3 ∈ Γ7 such that {x1, x2, x3} are pairwise orthogonal, and moreover, x1 ⊕ x2 ⊕ x3 =

−→
0 .

Conversely, if x1 ⊕ x2 ∈ Γ7 then x1 and x2 are orthogonal.

In light of Theorem 3.3.3, this is quite easy to show for our preferred choice of S.
Nevertheless, this result is true for any S satisfying (1), and so we give a more general
proof.

Proof. Let β1 = f−1(x1) ∈ ∆+
7 and β2 = f−1(x2) ∈ ∆+

7 . View β1 and β2 as roots in the
E8 root system. Assume that x1 and x2 are orthogonal; hence 〈β1, β2〉 = 0.

To begin, for any β ∈ ∆+
7 , we have 〈α8, β〉 = −1 so α8 + β is a root of E8. Similarly,

〈α8 + β1, β2〉 = −1 so α8 + β1 + β2 is a root of E8.
To show existence, let α̂8 denote the affine (lowest) root of E8, which has the property

that 〈α̂8, γ〉 = 0 for all roots γ ∈ ∆(E7). Then 〈α8 +β1 +β2, α8 + α̂8〉 = −1 so α̂8 +2α8 +
β1 + β2 is a root. Let

β3 = −(α̂8 + 2α8 + β1 + β2), (9)
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and x3 = f(β3). Note that β8
3 = 0, β7

3 = 1, so β3 ∈ ∆+
7 , hence x3 ∈ Γ7. And we can

explicitly check 〈β3, β1〉 = 〈β3, β2〉 = 0, so {x1, x2, x3} are pairwise orthogonal. Thus, for
all γ ∈ ∆(E7), we have

(x1 ⊕ x2 ⊕ x3|f(γ)) = 〈β1 + β2 + β3, γ〉 (mod 2)

= 〈α̂8 − 2α8, γ〉 (mod 2)

= 0.

Thus x1 ⊕ x2 ⊕ x3 =
−→
0 .

For uniqueness, let x3 be any vector orthogonal to x1 and x2, and let β3 = f−1(x3) ∈
∆+

7 . We have 〈α8 + β1 + β2, α8 + β3〉 = −1, so γ = −(2α8 + β1 + β2 + β3) is a root of
E8. But (γ)8 = −2, and the only root of E8 with this property is the affine root α̂8,
since α̂8 + α8 � α̂ is the unique element covering the affine root and already satisfies
(α̂8 + α8)

8 > −2. We conclude that (9) must hold.
For the converse, note that if x1 and x2 are not orthogonal, then β1 − β2 is a root not

in ∆7, hence x1 ⊕ x2 /∈ Γ7.

Corollary 3.4.2. Suppose x, y ∈ Γs. Then (x|y) = 0 if and only if x⊕ y ∈ Γ7.

Proof. By Proposition 3.3.4(ii), x⊕zs, y⊕zs ∈ Γ7. Thus (x|y) = 0 ⇐⇒ (x⊕zs|y⊕zs) = 0
⇐⇒ x⊕ y = (x⊕ zs) ⊕ (y ⊕ zs) ∈ Γ7, by Lemma 3.4.1.

Theorem 3.4.3. Let α ∈ ∆+
t , β ∈ ∆+

s with t < s. Then f(β) ⊕ f(α) ∈ Γs if and only if
either β + α ∈ ∆+

s or β − α ∈ ∆+
s .

Proof. Certainly if one of β ± α ∈ ∆+
s , then f(β) ⊕ f(α) ∈ Γs. Suppose that neither

β + α nor β − α is in ∆+
s . Then in fact, neither is a root, so 〈β, α〉 = 0. Suppose that

f(β) ⊕ f(α) ∈ Γs. Then

(f(β) ⊕ f(α)|f(β)) = (f(α)|f(β))

= 〈β, α〉 (mod 2)

= 0.

By Corollary 3.4.2, we conclude f(α) ∈ Γ7, which is impossible, since α ∈ ∆+
t and

t < s ≤ 7.

One can visualise Γ7 as the squares one sees looking at the corner of a 3× 3× 3 cube.
The elements are arranged as shown in Figure 4. We can recover the Hasse diagram
H7 of the poset structure on ∆+

7 in this picture, as follows. For each simple root image
ai = f(αi), i = 1, . . . , 6, we draw an edge joining x and y if y = x⊕ ai. By Theorem 3.4.3
we will draw such an edge if and only if the corresponding roots in Γ7 are related by
addition of a simple root, which is exactly how the Hasse diagram is constructed. A
similar procedure also works on the smaller strata.

In this picture, orthogonality is easy to determine as well. By Theorem 3.3.3 this is
determined by the links in T(V ). For any x ∈ Γ7, the set of y ∈ Γ7 orthogonal to x can
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be described as follows: if y is on the same face of the 3 × 3 × 3 cube as x, then y is not
in the same row or column as x; if y is on a different face from x then y is in the same
extended row/column as x. Figure 4 shows L(021) ∩ Γ7, which is the set of root images
orthogonal to 021.
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Figure 4: Orthogonality and partial order in Γ7.

More generally, one can compare α ∈ ∆+
s and β ∈ ∆+

t by considering α̃ and β̃.

Theorem 3.4.4. Suppose α ∈ ∆+
s and β ∈ ∆+

t , and s ≤ t. Then α < β if and only if
α̃ < β̃. If s = t then α is orthogonal to β if and only if α̃ is orthogonal to β̃. If s < t then
α is orthogonal to β if and only if β̃ is orthogonal to both α̃ and ζs, or to neither.

Proof. For the first statement, the ‘if’ direction is clear, as β − α > β̃ − α̃. Conversely, if
β > α then βi ≥ 1 for i = s′, . . . , t, hence β̃ − α̃ = β − α−

∑t
i=s′ αi is still positive.

The statements about orthogonality follow from the following calculation:

(f(α)|f(β)) =

{
(f(α̃)|f(β̃)) if s = t

(f(α̃)|f(β̃)) ⊕ (zs|f(β̃)) if s < t.

The orthogonality and order structures on Γ7 interact in curious ways, as exemplified
by the following question.

Question 3.4.5. For all x ∈ Γ7, the poset structure on L(x) ∩ Γ7 is isomorphic to the
partial order on the weights of the 10-dimensional defining representation of SO(5). Why
does this happen?
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3.5 Action of the Weyl group of E6 on Γ7

The graph O(Γ7) is a well known object; its complement is the Schläfli graph (see e.g.
[1, 3, 4] for alternate descriptions), which describes the incidence relations of the 27 lines
on a cubic surface. It is well known that the full automorphism group of the Schläfli graph
is the Weyl group of E6. Many of these automorphisms are manifest from our description.

If φ1, φ2, φ3 are automorphisms of F , then

(a1, a2, a3) 7→ (φ1(a1), φ2(a2), φ3(a3)) (10)

is manifestly an automorphism of the Schläfli graph. If π ∈ S3 is a permutation of {1, 2, 3}
then we have the automorphism

(a1, a2, a3) 7→ (aπ(1), aπ(2), aπ(3)). (11)

If α ∈ ∆(E6), then the action of the reflection rα on Γ7 is given by

rα(f(β)) = f(rα(β)) =

{
f(β ± α) if 〈α, β〉 = ∓1

f(β) if 〈α, β〉 = 0.

Using Theorem 3.4.3, we see that for x ∈ Γ7,

rα(x) =

{
x⊕ f(α) if x⊕ f(α) ∈ Γ7

x otherwise.
(12)

Each rα swaps six pairs x ↔ x⊕ f(α) and the restriction of O(V ) to these 12 vertices is
a union of two K6 graphs, which are maximal cliques. These pairs are known as Schläfli
double sixes—there are 36 in total, each arising in this way for some unique α ∈ ∆+(E6).

From (12), it is easy to verify that the automorphisms (10) are generated by reflections
in the roots α1, α3 (generating all possible φ1); α̂6, α2 (for φ2); α6, α5 (for φ3); whereas the

automorphism (11) corresponds to S3 symmetry of the affine Dynkin diagram D̂yn(E6).
These alone do not generate the Weyl group of E6; however, together with rα4

they do,
since this extended list includes all reflections in simple roots.

3.6 A compression of E6

The discussion in Sections 3.3 and 3.4 gives a description of the strata ∆+
s for all s ≤ 7,

but it is not the most symmetrical one for s ≤ 6. For s ≤ 5, it is easy to obtain nice
description of the strata, as they are subsets of the D5 root system. For s = 6, we can
obtain a pleasant description by compressing modulo 3.

Let ∆ be the E6 root system. Let V = (Z/3)5, with the standard symmetric form (3).
Let S = {a1, . . . , a6}, where

a1 = 12000 a2 = 00012

a3 = 01200 a4 = 00120

a5 = 00011 a6 = 11111

00012

12000 01200 00120 00011 11111
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Proposition 3.6.1. For S as above the relations (1) hold.

As a consequence of we obtain the following corollary of Theorem 2.2.3, we have

Corollary 3.6.2. The map f : ∆ → Γ is a bijection.

Proof. It is an injection by Theorem 2.2.3. To show it is a bijection, we must calculate
the size of Γ. The vectors in Γ have either 2 or 5 non-zero coordinates, each of which
can be ±1. Thus there are 22

(
5
2

)
+ 25

(
5
5

)
= 72 elements in Γ. But #(∆) = 72, so f is a

bijection.

Let Γs = f(∆s), and Γ+
s = f(∆+

s ) denote the images of the strata under f .

Theorem 3.6.3. The image of the top stratum, Γ+
6 , is the set of vectors in V with all

coordinates non-zero, and an even number of coordinates equal to 2:

Γ+
6 =

{
(x1, . . . , x5) ∈ V

∣∣∣
5∏

i=1

xi = 1
}
.

Thus the elements of Γ6 are those for which all five coordinates are non-zero, and the
elements of Γ \ Γ6 are those which have exactly two non-zero coordinates.

Proof. The argument is parallel to the proof of Lemma 3.3.2. The automorphisms of
∆(E6) defined in Lemma 3.3.2 restrict to automorphisms of Γ+

6 , for similar reasons. As
shown in Figure 5, the automorphisms corresponding to Dynkin diagram vertices v3, v4

and v5 are

(x1, x2, x3, x4, x5) 7→





(x2, x1, x3, x4, x5) for v3

(x3, x2, x1, x5, x4) for v4

(x5, x4, x3, x2, x1) for v5.

Each of these is a permutation of the symbols coordinates of V . If we call these permuta-
tions a, b and c, respectively, we see that a, bab, cbabc and cac are the standard generators
of the symmetric group S5. Thus S5 acts on the coordinates of Γ+

6 . Furthermore, the auto-
morphism corresponding to v6 is (x1, x2, x3, x4, x5) 7→ (−x1,−x2,−x3,−x4, x5). Applying
these automorphisms to 11111 = f(α6), we see that all 16 elements of Γ+

6 are indeed of
the correct form.

We define T(V ) to be the graph whose vertex set is V , and x = (x1, . . . , x5) is adjacent
to y = (y1, . . . , y5) if either xi = yi for exactly one i or xi 6= yi for exactly one i. As before,
for X ⊂ V , let T(X) denote the restriction of T(V ) to X.

Theorem 3.6.4. The graphs T(Γ) and O(Γ) coincide. Thus x, y ∈ Γ+
6 are orthogonal if

and only if xi = yi for exactly one i.
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Figure 5: The automorphisms of Γ+
6 , corresponding (from left to right) to E6 Dynkin

diagram vertices v3, v4, v5 and v6. The top figure is the diagram after Step 1, and the
bottom is after Step 4.

Proof. Suppose x, y are distinct elements of Γ6. Then x1y1, x2y2, x3y3, x4y4, x5y5 ∈ {±1},
and their sum is zero if and only if one of these products is not equal to the other four.
Thus (x|y) = 0 ⇐⇒ x and y are adjacent in T(Γ6).

Suppose x, y are distinct elements of Γ \ Γ6. Then exactly two coordinates of x are
non-zero, say xi and xi′ , and exactly two coordinates of y are non-zero, say yj and yj′.
If {i, i′} ∩ {j, j ′} = ∅ then (x|y) = 0 and x and y agree in exactly one coordinate. If
#({i, i′} ∩ {j, j ′}) = 1 then (x|y) 6= 0 and x and y agree in two or three coordinates. If
{i, i′} = {j, j ′} then (x|y) = 0 ⇐⇒ x 6= ±y ⇐⇒ x and y disagree in exactly one
coordinate.

Now suppose x ∈ Γ6 and y ∈ Γ \ Γ6. Let yj and yj′ be the nonzero coordinates of y.
Then (x|y) = xjyj + xj′yj′ = 0 ⇐⇒ either xj = yj or xj′ = yj, but not both ⇐⇒ x and
y disagree in exactly one coordinate.

Finally, if x, y ∈ Γ+
6 , by Theorem 3.6.3 we cannot have xi 6= yi for exactly one i. Thus

x and y are adjacent in T(Γ+
6 ) iff xi = yi for exactly one i.

Theorem 3.6.5. Let α be a positive root. Let β ∈ ∆+
s . Then f(β) + f(α) ∈ Γ+

s if and
only if β + α ∈ ∆+

s .

Proof. Certainly if β + α ∈ ∆+
s , then f(β) + f(α) ∈ Γ+

s . Suppose that β + α /∈ ∆+
s . If

β + α is a root, then it belongs to some stratum other than ∆+
s , so f(β) + f(α) /∈ Γ+

s .
If β = α, then f(β) + f(α) = f(−β) is the image of a negative root, so f(β) + f(α) /∈
Γ+

s . Otherwise, since β + α is not a root, we must have 〈β, α〉 ∈ {0, 1}. In this case,
〈β + α, β + α〉 = 4 + 2〈β, α〉 6= 2 (mod 3), so in fact f(β) + f(α) /∈ Γ.

As we did with ∆+
7 , we can recover the partial order structure on ∆+

6 (and the smaller
strata) using Theorem 3.6.5. If the elements of Γ+

6 are arranged as shown in Figure 6, we
join x and y if x − y is the image of a simple root. Using Theorem 3.6.4, orthogonality
is also easily determined in this picture. Figure 6 shows the example of L(11122) ∩ Γ+

6 ,
which gives the set of root images orthogonal to 11122.
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Figure 6: Orthogonality and partial order in Γ+
6 .

4 Order ideals

4.1 Relating type E posets through order ideals

Definition 4.1.1. If (Y,≤) is a poset, an order ideal in Y is a subset J ⊂ Y such that
if x ∈ J , and y ≤ x then y ∈ J . The set of all order ideals in Y is denoted J (Y ) and is
itself a poset, ordered by inclusion.

It is a remarkable fact that the posets (∆+
s ,≤) are related by such a construction:

there is an isomorphism

J (∆+
s ) ∼=

{
∆+

s′ if s = 3, 4, 5, 6

∆+
8 \ {−α̂8} if s = 7.

(13)

We refer the reader to [7] for an explanation of this phenomenon.

Definition 4.1.2. If P and R are graphs, an open map from P to R is a function
h : vert(P) → vert(R) such that

1. h is a homomorphism of graphs, i.e. if (u, u′) ∈ edge(P), then (h(u), h(u′)) ∈
edge(R);

2. h is locally surjective, i.e. for every v ∈ vert(P), h maps the neighbours of v
surjectively to the neighbours of h(v).

Equivalently, h induces an open map on the topological spaces of the graphs.

Proposition 4.1.3. For 3 ≤ s ≤ 7, there is a unique function

hs : ∆+
s → {1, . . . , s}

such that hs(αs) = s, and β 7→ vhs(β) is an open map of graphs from Hs to Dyn(Es). For
s = 8 no such function exists.
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The only complete proof we know of this fact is to check it case by case, which is
straightforward but unenlightening. We invite the reader to check, for instance, that if one
attempts to construct h8, it is possible to build the function halfway from both the bottom
up and the top down, but the results don’t match up. Note that the only “mysterious”
part here is uniqueness for 3 ≤ s ≤ 7. Existence can be deduced from Proposition 4.1.4,
below. Uniqueness can be proven more coherently if one takes an alternate definition for
hs (see, e.g. [10, 11])—the disadvantage in taking such an approach is that we forsake
this open map description, which is much easier to work with.

Proposition 4.1.4. The isomorphism (13) is canonical, and given by ψs : J (∆+
s ) → ∆+

s′

where
ψs(J) = αs′ +

∑

β∈J

αhs(β).

Proof. It is clear that any isomorphism (13) must be of the form ψ(J) = αs′ +
∑

β∈J αh(β)

for some function h : ∆+
s → {1, . . . , s}. Since the αs is the minimal element of ∆+

s and
αs′ and αs′ +αs are the two smallest elements of ∆s′, we must have h(αs) = s. In light of
Proposition 4.1.3, it suffices to show that h must induce an open map from Hs to Dyn(Es).

Suppose β � β ′, is an edge of Hs, and let i = h(β), i′ = h(β ′). We show that
(vi, vi′) is an edge in the Dynkin diagram, i.e. 〈αi, αi′〉 = −1. Consider the order ideals
J = {γ ∈ ∆+

s | γ ≤ β ′}, J ′ = J\{β} and J ′′ = J\{β, β ′}. We have ψ(J) � ψ(J ′) � ψ(J ′′),
where ψ(J) − αi = ψ(J ′) = ψ(J ′′) + αi′. Hence 〈ψ(J) − αi, αi′〉 = 1. However, note that
ψ(J) − αi′ is not a root. If it were then there would two order ideals between J and J ′′,
namely J ′ and ψ−1(ψ(J) − αi′), which is impossible if β � β ′. Thus 〈ψ(J), αi′〉 ≤ 0. It
follows that 〈αi, αi′〉 = 〈ψ(J), αi′〉− 〈ψ(J)−αi, αi′〉 ≤ −1. Since αi 6= −αi′ , we must have
〈αi, αi′〉 = −1.

Now, suppose β ∈ ∆+
s , and let i = h(β). Let (vi, vj) be an edge in the Dynkin diagram.

We show that there exists an edge (β, γ) ∈ Hs such that h(γ) = j.
For every J ∈ J (∆+

s ), let J ′ = J \ {β}, and define

Jβ = {J ∈ J (∆+
s ) | J ′ ∈ J (∆+

s )}.

This set is non-empty: in particular, Jmax = {β ′ ∈ ∆+
s | β ′ ≯ β} is the maximal element

of Jβ, and Jmin = {β ′ ∈ ∆+
s | β ′ ≤ β} is the minimal element.

Consider any pair of order ideals I, J ∈ Jβ. First note that ψ(I) − ψ(J) 6= αj. If this
were the case, we would have ψ(J ′) + αi = ψ(J), ψ(J ′) + αj = ψ(I ′), ψ(J ′) + (αi + αj) =
ψ(I), and since these are all roots, 〈ψ(J ′), αi〉 = 〈ψ(J ′), αj〉 = 〈ψ(J ′), αi + αj〉 = −1,
which is impossible. Since the poset Jβ is connected, it follows that ψ(I) − ψ(J) is a
linear combination of simple roots not equal to αj. In particular ψ(Jmax) − ψ(Jmin) is a
positive linear combination of roots not equal to αj. Thus,

〈ψ(Jmax) − ψ(J ′
min), αj〉 = 〈ψ(Jmax) − ψ(Jmin), αj〉 + 〈ψ(Jmin) − ψ(J ′

min), αj〉

= 〈ψ(Jmax) − ψ(Jmin), αj〉 + 〈αi, αj〉

= 〈ψ(Jmax) − ψ(Jmin), αj〉 − 1

≤ −1.
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We deduce that either 〈ψ(Jmax), αj〉 = −1 or 〈ψ(J ′
min), αj〉 = 1.

In the first case, ψ(Jmax) + αj is a root. Let K = ψ−1(ψ(Jmax) + αj). We have
K = Jmax t{γ}, where h(γ) = j. By the definition of Jmax, we must have γ � β, so (γ, β)
is an edge of Hs. In the second case, ψ(J ′

min)−αj is a root. Letting K = ψ−1(ψ(J ′
min)−αj),

we have J ′
min = K t {γ}, where h(γ) = j, and γ ≺ β, so (γ, β) is an edge of Hs.

4
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6 6

1 12
2

2

5 5

555
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3 3
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77
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Figure 7: The map h7.

The maps hs can be rapidly computed using Proposition 4.1.3. Figure 7 shows h7

pictured on the corner of the 3× 3× 3 cube. There is a striking symmetry in this picture.
If we impose the equivalence relation 1 ∼ 6 and 3 ∼ 5 on {1, . . . , 7}, the numbers have full
S3 symmetry. This equivalence relation comes from the involution on the affine Dynkin
diagram D̂yn(E7). Furthermore the S3 symmetry is exactly broken by the rule that 5s
and 6s are connected to a 7 by a path in H7 on the same face of the cube, whereas 1s and
3s are not. This symmetry reflects a number of features of the structure of the poset ∆+

8 ;
we invite the reader to explore this further.
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