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Abstract

Let G be an additive finite abelian group and S ⊂ G a subset. Let f(S) denote the
number of nonzero group elements which can be expressed as a sum of a nonempty
subset of S. It is proved that if |S| = 6 and there are no subsets of S with sum
zero, then f(S) ≥ 19. Obviously, this lower bound is best possible, and thus this
result gives a positive answer to an open problem proposed by R.B. Eggleton and P.
Erdős in 1972. As a consequence, we prove that any zero-sum free sequence S over
a cyclic group G of length |S| ≥ 6|G|+28

19 contains some element with multiplicity at

least 6|S|−|G|+1
17 .

1 Introduction and Main Results

Let G be an additive abelian group and S ⊂ G a subset. We denote by f(G, S) = f(S) the
number of nonzero group elements which can be expressed as a sum of a nonempty subset
of S. For a positive integer k ∈ N let F(k) denote the minimum of all f(A, T ), where the
minimum is taken over all finite abelian groups A and all zero-sum free subsets T ⊂ A
with |T | = k. This invariant F(k) was first studied by R.B. Eggleton and P. Erdős in 1972
(see [4]). For every k ∈ N they obtained a subset S in a cyclic group G with |S| = k such
that

F(k) ≤ f(G, S) =
⌊1

2
k2

⌋

+ 1 (1.1)

(a detailed proof may be found in [8, Section 5.3]), and J.E. Olson ([10]) proved that

F(k) ≥
1

9
k2 .
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Moreover, Eggleton and Erdős determined F(k) for all k ≤ 5, and they stated the following
conjecture (which holds true for k ≤ 5):

Conjecture 1.1. For every k ∈ N there is a cyclic group G and a zero-sum free subset
S ⊂ G with |S| = k such that F(k) = f(G, S).

Eggleton and Erdős conjectured that F(6) = 19, and it will be a main aim of the
present paper to verify this equality. Recently G. Bhowmik et. al. gave an example
showing that F(7) ≤ 24 (see [1]).

Apart from being of interest in their own rights, the invariants F(k), k ∈ N, are useful
tools in the investigation of various other problems in combinatorial and additive number
theory. At the end of Section 8 we outline the connection to Olson’s constant Ol(G). A
further application deals with the study of the structure of long zero-sum free sequences.
This is a topic going back to J.D. Bovey, P. Erdős and I. Niven ([2]) which found a lot
of interest in recent years (see contributions by Gao, Geroldinger, Hamidoune, Savchev,
Chen and others [5, 9, 11, 12], and [7, Section 7] for a recent survey). We will use the
crucial new result, that F(6) = 19, for further progress on this topic. For convenience we
now state our main results (the necessary terminology will be fixed in Section 2).

Theorem 1.2. F(6) = 19.

Theorem 1.3. Let G be a cyclic group of order n ≥ 3. If S is a zero-sum free sequence
over G of length

|S| ≥
6n + 28

19
,

then S contains an element g ∈ G with multiplicity

vg(S) ≥
6|S| − n + 1

17
.

In Section 2 we fix our notation and gather the tools needed in the sequel. In Section
3 we present the main idea for the proof of Theorem 1.2, formulate some auxiliary results
(Theorem 3.2, Lemmas 3.3 and Lemma 3.4) and show that they easily imply Theorem
1.2. The Sections 4 to 7 are devoted to the proofs of these auxiliary results. In Section 8
we prove Theorem 1.3

Throughout this paper, let G denote an additive finite abelian group.

2 Preliminaries

We denote by N the set of positive integers, and we put N0 = N ∪ {0}. For real numbers
a, b ∈ R we set [a, b] = {x ∈ Z | a ≤ x ≤ b}, and we define sup ∅ = max ∅ = min ∅ = 0.

We follow the conventions of [6] for the notation concerning sequences over an abelian
group. Let F(G) denote the multiplicative, free abelian monoid with basis G. The
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elements of F(G) are called sequences over G. An element S ∈ F(G) will be written in
the form

S = g1 · . . . · gl =
∏

g∈G

gvg(S)

where all vg(S) ∈ N0 are uniquely determined and called the multiplicity of g in S. We say
that S contains g if vg(S) > 0. A sequence T ∈ F(G) is called a subsequence of S if T |S
in F(G) (equivalently, vg(T ) ≤ vg(S) for all g ∈ G). Given any group homomorphism
ϕ : G → G′, we extend ϕ to a homomorphism of sequences, ϕ : F(G) → F(G′), by letting
ϕ(S) = ϕ(g1) · . . . · ϕ(gl). For a sequence S as above we call

|S| = l =
∑

g∈G

vg(S) ∈ N0 the length of S ,

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|] the maximum of the multiplicities of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

σ(S) =
l

∑

i=1

gi =
∑

g∈G

vg(S)g ∈ G the sum of S ,

Σ(S) =
{

∑

i∈I

gi

∣

∣∅ 6= I ⊂ [1, l]
}

the set of subsums of S ,

and
f(G, S) = f(S) = |Σ(S) \ {0}| the number of nonzero subsums of S .

We say that S is

• zero-sum free if 0 /∈ Σ(S),

• a zero-sum sequence if σ(S) = 0,

• squarefree if vg(S) ≤ 1 for all g ∈ G.

The unit element 1 ∈ F(G) is called the trivial sequence, and every other sequence is
called nontrivial. Clearly, S is trivial if and only if S has length |S| = 0. In this paper
we will deal with subsets of G and with sequences over G. For simplicity and consistency
of notation, we will address sets as squarefree sequences throughout this manuscript. For
k ∈ N we define

F(G, k) = min
{

|Σ(S)|
∣

∣ S ∈ F(G) is a zero-sum free and

squarefree sequence of length |S| = k} ,

and we denote by F(k) the minimum of all F(A, k) where A runs over all finite abelian
groups A having a squarefree and zero-sum free sequence of length k. We gather some
results on these invariants, which will be needed in the sequel.
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Lemma 2.1. [8, Theorem 5.3.1] It t ∈ N and S = S1 · . . . · St ∈ F(G) is zero-sum free,
then

f(S) ≥ f(S1) + . . . + f(St) .

Lemma 2.2.

1. F(1) = 1, F(2) = 3, F(3) = 5 and F(4) = 8.

2. If S ∈ F(G) is squarefree, zero-sum free of length |S| = 3 and contains no elements
of order 2, then f(S) ≥ 6.

3. F(k) ≥ 1
9
k2 for all k ∈ N.

Proof. 1. See [8, Corollary 5.3.4.1].
2. See [8, Proposition 5.3.2.2].
3. See [10].

Lemma 2.3. Let S = S1S2 ∈ F(G), H = 〈supp(S1)〉 and let ϕ : G → G/H denote the
canonical epimorphism. Then we have

f(S) ≥
(

1 + f(ϕ(S2))
)

f(S1) + f
(

ϕ(S2)
)

.

Proof. W set A =
∑

(S1) ∪ {0} and h =
∣

∣ϕ
(

Σ(S2) ∪ {0}
)

∣

∣. Then

|A| = 1 + f(S1) and h = 1 + f
(

ϕ(S2)
)

.

Suppose that

ϕ
(

{0} ∪
∑

(S2)
)

= {ϕ(a0), ϕ(a1), . . . , ϕ(ah−1)},

where a0 = 0 and ai ∈
∑

(S2) for all i ∈ [1, h − 1]. Since A ⊂ H = 〈supp(S1)〉, it follows
that

A \ {0}, a1 + A, . . . , ah−1 + A

are pairwise disjoint subsets of
∑

(S), and therefore

f(S) ≥ |A \ {0}| + |a1 + A| + . . . + |ah−1 + A|

= h
(

f(S1) + 1
)

− 1 .

Lemma 2.4. Let S ∈ F(G) be zero-sum free.

1. If T ∈ F
(

supp(S)
)

and U ∈ F(G) such that U |T and TU−1 |S, then σ(U) 6= σ(T ).

2. If T1, T2 ∈ F(G) are squarefree with |T1| = |T2| and | gcd(T1, T2)| = |T1| − 1, then
σ(T1) 6= σ(T2).

Proof. 1. Since S is zero-sum free and TU−1 |S, we have σ(TU−1) 6= 0. Since T =
(TU−1)U , we get σ(T ) = σ(TU−1) + σ(U) and hence σ(U) 6= σ(T ).

2. Obvious.
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3 Proof of Theorem 1.2

Let S = x1 · . . . ·xk ∈ F(G) be a squarefree, zero-sum free sequence of length |S| = k ∈ N,
and let A be the set of all nontrivial subsequences of S. We partition A as

A = A1 ] . . . ] Ar ,

where two subsequences T, T ′ of S are in the same class Aν, for some ν ∈ [1, r], if
σ(T ) = σ(T ′). Thus we have r = f(S) = |Σ(S)|. For a subset B ⊂ A we set

B = {ST−1 | T ∈ B} .

Then, for every ν ∈ [1, r], we clearly have Aν ∈ {A1, . . . ,Ar}, and Aν will be called the
dual class of Aν. For a nontrivial subsequence T of S we denote by [T ] the class of T .
The following easy observation will be useful.

Lemma 3.1. Let all notations be as above, and let i ∈ [1, r]. Then the following state-
ments hold :

1. For a subset B ⊂ A, we have B ∈ {A1, . . . ,Ar} if and only if B ∈ {A1, . . . ,Ar},
and |B| = |B|.

2. Ai is the dual class of itself if and only if σ(T ) = σ(ST−1) for some T ∈ Ai.

3. If Ai contains subsequences T and T ′ with |T | = 1 and |T ′| = k − 1, then S = TT ′

and Ai = {T, T ′}.

4. If Ai is the dual class of itself and Ai contains a subsequence of length 1, then
|Ai| = 2.

5. If Ai is the dual class of itself, then |Ai| is even.

6. [S] = {S}.

In order to prove Theorem 1.2, we need the following three results.

Theorem 3.2. Let S ∈ F(G) be a squarefree, zero-sum free sequence of length |S| = k ∈
[4, 7]. If S contains some element of order 2, then

f(S) ≥

⌊

k2

2

⌋

+ 1 .
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Lemma 3.3. Let S ∈ F(G) be a squarefree, zero-sum free sequence of length |S| = 6
which contains no elements of order 2. Then |[xk]| ≤ 4 for all k ∈ [1, 6]. Moreover, if
|[xi]| = |[xj]| = 4 for some i, j ∈ [1, 6] with i < j, then

f(S) ≥ 19 .

Lemma 3.4. Let S ∈ F(G) be a squarefree, zero-sum free sequence of length |S| = 6
which contains no elements of order 2, and let A1, . . . ,Ar be defined as above. Then
|Ai| ≤ 5 for all i ∈ [1, r], and if |Ai| = 5 for some i ∈ [1, r], then

f(S) ≥ 19 .

Proof of Theorem 1.2, based on 3.2, 3.3 and 3.4

By [8, Corollary 5.3.4.2] it follows that F(6) ≤ 19, and hence it suffices to verify the
reverse inequality. Let S = x1 · . . . · x6 ∈ F(G) be a squarefree zero-sum free sequence.
We need to show

f(S) ≥ 19 .

If S contains an element of order 2, then Theorem 3.2 implies that f(S) ≥ 19. So we may
assume that S contains no elements of order 2. By Lemma 3.3 and Lemma 3.4, we may
assume there exists at most one i ∈ [1, r] such that |[xi]| = 4 and that |Aj| ≤ 4 for all
j ∈ [1, r].

We set

L =

r
∑

i=1

|Ai| = 26 − 1 = 63 .

Assume that S ∈ Ar. Then Ar = {S} and thus Ar contributes 1 to the sum L. Next
let t be the number of those i ∈ [1, 6] with [xi] = [xi], say x1, . . . , xt have this property.
If i ∈ [1, t], then Lemma 3.1 implies that [xi] = {xi, x

−1
i S} and hence |[xi]| = 2. Thus

we get |[x1]| + . . . + |[xt]| = 2t. Since S is squarefree, i, j ∈ [1, 6] with i 6= j implies that
[xi] 6= [xj]. Excluding the above self-dual classes, the remaining [xi] and [xi] contribute
at most 4 × 2 + 3 × 2(6 − t − 1) = 38 − 6t to the sum L, that is

6
∑

i=t+1

(

|[xi]| + |[xi]|
)

≤ 38 − 6t .

Finally, by excluding Ar, all [xi] and their dual class [xi], we have r−1−t−2(6−t) classes
left. These remaining classes contribute at most 4× (r − 1− t − 2(6− t)) = 4r − 52 + 4t
to L. Adding up these numbers, we obtain

1 + 2t + (38 − 6t) + (4r − 52 + 4t) ≥ L = 63.

This gives that 4r ≥ 76 and therefore f(S) = r ≥ 19 as desired.
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The proofs of Theorem 3.2 and of the Lemmas 3.3 and 3.4 will be given in Sections 4
to 7. Throughout these sections, let

S = x1 · . . . · xk ∈ F(G)

be a squarefree, zero-sum free sequence of length |S| = k ∈ N, and let A1, . . . ,Ar be as
introduced in the beginning of this section.

4 Proof of Theorem 3.2

Without loss of generality we may assume that ord(x1) = 2. We set S = S1S2, where
S1 = x1 and S2 = x2 · . . . · xk. Then f(S1) = 1. Let H = 〈x1〉 = {0, x1} and ϕ : G → G/H
the canonical epimorphism. Then ϕ(S2) = ϕ(x2) · . . . · ϕ(xk).

First, we assert that ϕ(S2) is zero-sum free. Assume to the contrary that there is a
nontrivial subsequence U of S2 such that σ(ϕ(U)) = ϕ(σ(U)) = 0. Then σ(U) ∈ H. Since
S is zero-sum free, σ(U) 6= 0, so σ(U) = x1. Then σ(S1U) = σ(S1) + σ(U) = x1 + x1 = 0,
a contradiction. Thus ϕ(S2) is zero-sum free.

Next, we show that h(ϕ(S2)) ≤ 2. Assume to the contrary that ϕ(xi1) = ϕ(xi2) =
ϕ(xi3) for some pairwise distinct i1, i2, i3 ∈ [1, k]. Then ϕ(xi1 − xi2) = ϕ(xi1 − xi3) = 0,
so xi1 − xi2 , xi1 − xi3 ∈ H. Since S is squarefree, it follows that xi1 − xi2 6= 0 and
xi1 − xi3 6= 0. Thus xi1 − xi2 = xi1 − xi3 = x1, and so xi2 = xi3 , a contradiction. This
proves that h(ϕ(S2)) ≤ 2.

We distinguish four cases as follows.
Case 1: k = 4. Since h(ϕ(S2)) ≤ 2, ϕ(S2) allows a product decomposition ϕ(S2) =

U1U2 into squarefree sequences U1, U2 ∈ F(G/H) with |U1| = 2 and |U2| = 1. It follows
from Lemma 2.2 and Lemma 2.1 that

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 3 + 1 = 4.

By Lemma 2.3, we have

f(S) ≥ (1 + f(ϕ(S2)))f(S1) + f(ϕ(S2)) ≥ (1 + 4) × 1 + 4 = 9,

and we are done.
Case 2: k = 5. Since h(ϕ(S2)) ≤ 2, ϕ(S2) allows a product decomposition ϕ(S2) =

U1U2 into squarefree sequences U1, U2 ∈ F(G/H) with |U1| = |U2| = 2. By Lemma 2.2
and Lemma 2.1, we have

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 3 + 3 = 6.

By Lemma 2.3, we have

f(S) ≥ (1 + f(ϕ(S2)))f(S1) + f(ϕ(S2)) ≥ (1 + 6) × 1 + 6 = 13,

and we are done.
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Case 3: k = 6. By Lemma 2.3, we have f(S) ≥ (1 + f(ϕ(S2)))f(S1) + f(ϕ(S2)). If
we can show that f(ϕ(S2)) ≥ 9, then f(S) ≥ 19 as desired. Since h(ϕ(S2)) ≤ 2, we have
|supp(ϕ(S2))| ≥ 3.

If |supp(ϕ(S2))| ≥ 4, ϕ(S2) allows a product decomposition ϕ(S2) = U1U2 into square-
free sequences U1, U2 ∈ F(G/H) with |U1| = 4 and |U2| = 1. By Lemma 2.2 and Lemma
2.1,

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 8 + 1 = 9

and we are done.
Next, suppose |supp(ϕ(S2))| = 3 and ϕ(S2) = a2b2c. Since ϕ(S2) is zero-sum free,

we must have ord(a) 6= 2 and ord(b) 6= 2. If ord(c) 6= 2, then we set U1 = a · b · c and
U2 = a · b. By Lemma 2.1 and Lemma 2.2,

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 6 + 3 = 9,

and we are done. So we may assume that ord(c) = 2. Then

a, a + b, 2a + b, 2a + 2b, c, a + c, a + b + c, 2a + b + c, 2a + 2b + c

are pairwise distinct, whence f(ϕ(S2)) ≥ 9 and we are done.
Case 4: k = 7. If f(ϕ(S2)) ≥ 12, then by Lemma 2.3, f(S) ≥ (1 + f(ϕ(S2)))f(S1) +

f(ϕ(S2)) ≥ (1 + 12) × 1 + 12 = 25 as desired. It suffices to show f(ϕ(S2)) ≥ 12. Since
h(ϕ(S2)) ≤ 2, we have |supp(ϕ(S2))| ≥ 3.

If ϕ(S2) contains no elements of order 2, ϕ(S2) allows a product decomposition ϕ(S2) =
U1U2 into squarefree sequences U1, U2 ∈ F(G/H) with |U1| = |U2| = 3. By Lemma 2.1
and Lemma 2.2,

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 6 + 6 = 12

and we are done.
If ϕ(S2) contains an element of order 2. Then |supp(ϕ(S2))| ≥ 4. Since h(ϕ(S2)) ≤ 2,

ϕ(S2) allows a product decomposition ϕ(S2) = U1U2 into squarefree sequences U1, U2 ∈
F(G/H) such that |U1| = 4, |U2| = 2, and U1 contains some element of order 2. It follows
from Case 1 that f(U1) ≥ 9 . By Lemma 2.2 and Lemma 2.1,

f(ϕ(S2)) ≥ f(U1) + f(U2) ≥ 9 + 3 = 12

and we are done.

5 On The Maximal Size of Classes

The following result provides an upper bound for |A1|, . . . , |Ar|, under the assumption
that S contains no elements of order 2.

Lemma 5.1. Suppose that S contains no elements of order 2. Then the following hold.
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1. If k ≤ 4, then |Ai| ≤ 2 for every i ∈ [1, r].

2. If k = 5, then |Ai| ≤ 3 for every i ∈ [1, r].

3. If k = 6, then |[xi]| = |[xi]| ≤ 4 for every i ∈ [1, 6], and |Ai| ≤ 5 for every i ∈ [1, r].

Proof. Take an arbitrary i ∈ [1, r], and let

Ai = {S1, . . . , Sl}

where S1, . . . , Sl are subsequences of S and 1 ≤ |S1| ≤ |S2| ≤ · · · ≤ |Sl|. Then |Ai| = l.
Case 1: k ≤ 4. The result follows from Lemma 2.4.
Case 2: k = 5.
If Ai = [xj] for some j ∈ [1, 5], then we may assume that S1 = xj. By Lemma 2.4, we

have
Sν | x

−1
j x1 · . . . · x5 for every ν ∈ [2, l] .

Let B = {S2, . . . , Sl}. Then by Case 1 we have |B| ≤ 2 and thus l ≤ 3. Therefore,
|[xj]| = |[xj]| ≤ 3 for every j ∈ [1, 5].

Next we assume that Ai contains neither a sequence of length 1 nor a sequence of
length 4. So 2 ≤ |S1| ≤ · · · ≤ |Sl| ≤ 3. Assume to the contrary that l ≥ 4. If |S1| =
|S2| = |S3| = 2, then there exist m, n ∈ [1, 3] such that | gcd(Sm, Sn)| = 1, a contradiction.
So |S3| = 3. If |Sl−2| = |Sl−1| = |Sl| = 3, then there exist m, n ∈ {l − 2, l − 1, l} such
that | gcd(Sm, Sn)| = 2, a contradiction again. So |Sl−2| = 2. This forces that l = 4 and
|S1| = |S2| = 2, |S3| = |S4| = 3. Now, let S1 = x1 · x2, S2 = x3 · x4. By Lemma 2.4, x5 |S3

and x5 |S4. Without loss of generality, we may assume that x1 · x3 |S3, so x2 · x4 |S4.
Thus Ai = {x1 · x2, x3 · x4, x1 · x3 · x5, x2 · x4 · x5}, and then (x1 + x2) + (x3 + x4) =
(x1 + x3 + x5) + (x2 + x4 + x5). Therefore, 0 = 2x5, a contradiction.

Case 3: k = 6. Assume that Ai = [xj] for some j ∈ [1, 6] and S1 = xj. As before, we
have

Sν | x
−1
j x1 · . . . · x6 for every ν ∈ [2, l] .

Consider B = {S2, . . . , Sl}. By Case 2 we have |B| ≤ 3 and thus l ≤ 4. Therefore,
|[xj]| = |[xj]| ≤ 4 for every j ∈ [1, 6].

Next assume that Ai contains neither a sequence of length 1 nor of length 5, so
2 ≤ |S1| ≤ |S2| ≤ · · · ≤ |Sl| ≤ 4. We have to show that l ≤ 5. Assume to the contrary
that l ≥ 6. Define T = S1 · . . . · Sl.

For every a |S, we have that |{i | a |Si}| + |{i | a - Si}| = l ≥ 6. By Case 2,
|{i | a - Si}| ≤ 3 and |{i | a |Si}| ≤ 3. These force that |{i | a |Si}| = |{i | a - Si}| = 3
and l = 6. Thus,

va(T ) = 3

for every a ∈ S. Hence, |T | = 18.

Let rt = |{i | |Si| = t}| for every t ∈ [2, 4]. Then 2r2 +3r3 +4r4 = |T | = 18. Therefore,
r3 is even and hence r3 ∈ {0, 2, 4, 6}. We distinguish two subcases according to whether
r3 ≥ 4 or not.
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Subcase 3.1: r3 ≥ 4. We may assume that |S2| = |S3| = |S4| = |S5| = 3. From
|T | = 18 we infer that |S1| + |S6| = 6. If | gcd(S1, S6)| = 0, then S1 = SS−1

6 . By Lemma
3.1.2, Ai = Ai. So, we may assume that S2 = SS−1

5 . By Lemma 2.4.2, | gcd(S3, S2)| ≤ 1
and | gcd(S3, S5)| ≤ 1. Thus |S3| = | gcd(S3, S)| = | gcd(S3, S2)| + | gcd(S3, S5)| ≤ 2, a
contradiction. Therefore, | gcd(S1, S6)| > 0. Let a | gcd(S1, S6). Since va(T ) = 3 we may
assume that a - Si for every i ∈ [2, 4]. Therefore, S2, S3 and S4 divide a−1S and we must
have | gcd(Sn, Sm)| = 2 for some distinct m, n ∈ [2, 4], a contradiction to Lemma 2.4.2.

Subcase 3.2: r3 < 4. Then, r3 ∈ {0, 2}. From |T | = 18 we know that r2 ≥ 2 and
r4 ≥ 2. We may assume that |S1| = |S2| = 2 and |S5| = |S6| = 4. Furthermore, we
may assume that S1 = x1 · x2, S2 = x3 · x4. By Lemma 2.4 we infer that x5 · x6 |S5 and
x5 ·x6 |S6. So we may assume that S5 = x1 ·x3 ·x5 ·x6 and S6 = x2 ·x4 ·x5 ·x6. Again, by
Lemma 2.4 we know that |S3| 6= 2. It follows from |T | = 18 that |S3| = |S4| = 3. Since
va(T ) = 3 for every a |S, we have S3S4 = S, implying σ(S3) = σ(SS−1

3 ). By Lemma
3.1.2, Ai = Ai. But SS−1

1 = x3 · x4 · x5 · x6 6∈ Ai, a contradiction. This proves l ≤ 5.

6 Proof of F(5) = 13

R.B. Eggleton and Erdős stated in [4] that they gave a proof of F(5) = 13 in [3] as an
appendix. Since we could not find this note, we include a proof of F(5) = 13 here for
completeness. Moreover, the ideas and methods in our proof will be used frequently in
the sequel.

We denote by Pn the symmetric group on [1, n]. Note that it follows from [8, Corollary
5.3.4.2] that F(5) ≤ 13.

Lemma 6.1. Let T = (−2x) · x · (3x) · (4x) · (5x) ∈ F(G) be a squarefree, zero-sum free
sequence. Then f(T ) ≥ 13.

Proof. Obviously, kx ∈ Σ(T ) for all k ∈ [1, 13]. Since T is zero-sum free, kx 6= 0 holds
for every k ∈ [1, 13], and thus ix 6= jx for any i 6= j ∈ [1, 13]. Therefore, f(T ) ≥ 13.

Lemma 6.2. Let S = x1 · . . . · xk ∈ F(G) be as fixed at the end of Section 3, and suppose
that k = 5. If |[xi]| = 3 for some i ∈ [1, 5], then [xi] is of one of the following forms:

(1) {xτ(1), xτ(2) · xτ(3), xτ(4) · xτ(5)}.
(2) {xτ(1), xτ(2) · xτ(3), xτ(2) · xτ(4) · xτ(5)}

for some τ ∈ P5.

Proof. Without loss of generality, we may assume that i = 1 and [xi] = {x1, S2, S3} with
2 ≤ |S2| ≤ |S3|. By Lemma 3.1, we know that |S3| ≤ 3. Note that

S2 | x2 · . . . · x5 and S3 | x2 · . . . · x5 .

By Lemma 2.4.2, we infer that |S2| = 2. So, we may assume that S2 = x2 ·x3. If |S3| = 2,
then S3 = x4 · x5. Therefore, [x1] is of form (1) and we are done. Otherwise, |S3| = 3, by
Lemma 2.4, we know that S3 = x2 · x4 · x5 or S3 = x3 · x4 · x5. Therefore, [x1] is of form
(2).
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The following easy observation will also be useful.

Lemma 6.3. Let S = x1 · . . . · xk ∈ F(G) be as fixed at the end of Section 3, and suppose
that k ≥ 3. Let a, b, c be distinct in [1, k] such that xa = xb + xc. Suppose that S contains
no element of order 2. Then, xb − xa 6∈ supp(S).

Proof. Assume to the contrary that xb − xa = xd for some d ∈ [1, k]. This together with
xa = xb + xc gives that xc + xd = 0, a contradiction.

Proof of F(5) = 13.

Let S = x1 · . . . · xk ∈ F(G) be as fixed at the end of Section 3, and suppose that
k = 5. We have to show

f(S) ≥ 13 .

Assume to the contrary that f(S) < 13 for some S. By Theorem 3.2, S contains no
elements of order 2, and thus it follows from Lemma 5.1 that |Ai| ≤ 3 for all i ∈ [1, r].

Recall that Ar = [S] = {S}. We may assume that |A1| ≤ 2, . . . , |At| ≤ 2 and |At+1| =
. . . = |Ar−1| = 3. If t ≥ 4, since 2t + 3(r − 1 − t) + 1 ≥ 31, then r ≥ (33 + t)/3 ≥ 37/3.
Therefore r ≥ 13, a contradiction. Therefore, t ≤ 3.

Now |[xi]| = |[xj]| = 3 for some i, j ∈ [1, 5] with i 6= j. Without loss of generality, we
may assume that i = 1. We distinguish two cases.

Case 1. [x1] is of form (1) in Lemma 6.2. We may assume that [x1] = {x1, x2 ·x3, x4 ·
x5}. Without loss of generality, we may assume that j = 2. Let [x2] = {x2, S2, S3} with
2 ≤ |S2| ≤ |S3|. Since x1 = x2 + x3, by Lemma 6.3 we know that x2 − x1 - S. Thus
[x2] is not of form (1). Therefore, by Lemma 6.2, [x2] is of form (2) and |S2| = 2. Again
by Lemma 6.3 we know that x1 - S2. It follows from Lemma 2.4 that x2 - S2. Since
x1 = x4 + x5 we have S2 6= x4 · x5. Therefore, S2 = x3 · x4 or S2 = x3 · x5. So, we
may assume that S2 = x3 · x4. Now by Lemma 6.2 we obtain that S3 = x3 · x1 · x5 or
S3 = x4 · x1 · x5. Therefore, x3 + x4 = x3 + x1 + x5 or x3 + x4 = x4 + x1 + x5. Thus
x4 − x1 = x5 or x3 − x1 = x5. This together with x1 = x2 + x3 = x4 + x5 gives a
contradiction to Lemma 6.3.

Case 2. [x1] is of form (2) in Lemma 6.2. We may assume that [x1] = {x1, x2 · x3, x2 ·
x4 · x5}. Now we have x3 = x4 + x5. If [xj] is of form (1), then this reduces to Case 1. So
we may assume that [xj] is of form (2). Let [xj] = {xj, S2, S3} with |S2| = 2 and |S3| = 3.
We distinguish subcases.

Subcase 2.1 j = 2. [x2] = {x2, S2, S3}. Note that x3 = x4 + x5. By Lemma 6.3 and
Lemma 2.4, we obtain that S2 = x3 ·x4 or S2 = x3 ·x5. Without loss of generality, we may
assume that S2 = x3 · x4. Now by Lemma 6.2, we get S3 = x3 · x1 · x5 or S3 = x4 · x1 · x5.
If S3 = x4 · x1 · x5, then x3 + x4 = x4 + x1 + x5. Thus x4 + x5 = x3 = x1 + x5, a
contradiction. Therefore, S3 = x3 · x1 · x5. Now we have x1 = x2 + x3 = x2 + x4 + x5 and
x2 = x3 + x4 = x1 + x3 + x5. Thus x1 = 5x3, x2 = 4x3, x4 = 3x3, x5 = −2x3. It follows
from Lemma 6.1 that f(S) ≥ 13, a contradiction. Therefore, |[x2]| ≤ 2.

Subcase 2.2. j = 4. Now [x4] = {x4, S2, S3}. Since x3 = x4 + x5, by Lemma
6.3 we have x3 - S2. Therefore, S2 | x1 · x2 · x5. Hence, S2 = x1 · x2 or S2 = x2 · x5
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or S2 = x1 · x5. If S2 = x1 · x2, by Lemma 2.4 we obtain that S3 = x1 · x3 · x5 or
S3 = x2 · x3 · x5. Since x2 + x3 + x5 = x1 + x5 6= x1 + x2 we get S3 = x1 · x3 · x5. Now
we have x1 = 4x2, x3 = 3x2, x4 = 5x2, x5 = −2x2 and thus it follows from Lemma 6.1
that f(S) ≥ 13, a contradiction. Therefore, S2 6= x1 · x2. If S2 = x2 · x5, then by Lemma
2.4, we obtain that S3 = x2 · x1 · x3 or S3 = x5 · x1 · x3. Thus x2 + x5 = x2 + x1 + x3 or
x2 + x5 = x5 + x1 + x3. So, x5 − x3 = x1 or x2 − x1 = x3, contradicting x3 = x4 + x5

or x1 = x2 + x3 (in view of Lemma 6.3). Hence, S2 = x1 · x5. As above, we obtain that
S3 = x1 · x2 · x3 or S3 = x5 · x2 · x3. Since x1 + x5 6= x1 + x2 + x3 = 2x1, we obtain that
S3 = x5 · x2 · x3. Therefore,

[x4] = {x4, x1 · x5, x5 · x2 · x3}.
We assert that |[x5]| ≤ 2 in this subcase. Assume to the contrary that |[x5]| = 3. As

above, we may assume that [x5] = {x5, x1 · x4, x4 · x2 · x3}. Now we have x5 = x1 + x4, a
contradiction to x4 = x1 + x5 (in view of Lemma 6.3). This proves the assertion.

Next, we show that |[x3]| ≤ 2 in this subcase. Assume to the contrary that |[x3]| = 3.
Then [x3] = {x3, x4 · x5, T3} with |T3| = 3.

By Lemma 2.4, T3 = x4 ·x1 ·x2 or T3 = x5 ·x1 ·x2. Since x5+x1+x2 6= x1+2x5 = x4+x5,
we have T3 6= x5·x1 ·x2. Therefore, T3 = x4·x1·x2. Now we have x3 = x4+x5 = x4+x1+x2.
In view of [x1] and [x4], we derive that x1 = 3x5, x2 = −2x5, x3 = 5x5, x4 = 4x5 and thus
f(S) ≥ 13 by Lemma 6.1, a contradiction. Therefore, we must have |[x3]| ≤ 2.

Since x3 = x4 + x5, we have [x3] 6= [x3]. Now [x2], [x3], [x3] and [x5] are distinct and
all have length not exceeding two, contradicting t ≤ 3. Therefore, j 6= 4, or equivalently,
|[x4]| ≤ 2.

Similarly, we conclude that |[x5]| ≤ 2.
Subcase 2.3. j = 3. Since x3 = x4 +x5, we have [x3] = {x3, x4 ·x5, S3}. By Lemma

2.4, S3 = x4 · x1 · x2 or S3 = x5 · x1 · x2. We may assume that S3 = x4 · x1 · x2. Then
x4 + x5 = x4 + x1 + x2, and thus x5 = x1 + x2. Therefore, [x5], [x5], [x2] and [x4] are
distinct, contradicting t ≤ 3.

This completes the proof.

7 On the number of maximal classes

Let S = x1 · . . . · xk ∈ F(G) be as fixed at the end of Section 3, and suppose that k = 6.
We shall prove Lemma 3.3 and Lemma 3.4 through a series of lemmas.

Lemma 7.1. If S is of one of the following forms:

(i) S = (−7x) · (−6x) · (−5x) · (−2x) · x · (3x);

(ii) S = (−2x) · x · (3x) · (4x) · (5x) · (7x);

(iii) S = (−2x) · x · (3x) · (4x) · (5x) · (6x);

(iv) S = (−6x) · (−5x) · (−4x) · (−3x) · (−2x) · x;
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(v) S = x · (2x) · (3x) · (4x) · (5x) · (6x),

then f(S) ≥ 19.

Proof. We give only the proof for the case when S is of form (i). The proofs for other
cases are similar and are omitted.

Suppose that S = (−7x) · (−6x) · (−5x) · (−2x) · x · (3x). Clearly, kx ∈ Σ(S) for any
k ∈ [−19,−1]. Since S is zero-sum free, kx 6= 0 for any k ∈ [−19,−1]. Then ix 6= jx for
any i, j ∈ [−19,−1], and therefore, f(S) ≥ 19 as desired.

7.1. Classes of size 4 containing sequences of length 1

This subsection deals with classes of size 4 having a sequence of length 1, and it
provides a proof for Lemma 3.3.

Lemma 7.2. If |[xi]| = 4 for some i ∈ [1, 6], then there exists τ ∈ P6 such that [xi] is of
one of the following forms:

(b1) {xτ(1), xτ(2) · xτ(3) · xτ(4) · xτ(5), xτ(2) · xτ(6), xτ(3) · xτ(4) · xτ(6)};

(b2) {xτ(1), xτ(2) · xτ(3) · xτ(4) · xτ(5), xτ(2) · xτ(3) · xτ(6), xτ(4) · xτ(5) · xτ(6)};

(b3) {xτ(1), xτ(2) · xτ(3), xτ(4) · xτ(5), xτ(2) · xτ(4) · xτ(6)};

(b4) {xτ(1), xτ(2) · xτ(3) · xτ(4), xτ(2) · xτ(5) · xτ(6), xτ(3) · xτ(5)}.

Proof. Let [xi] = {S1, S2, S3, S4} where S1, S2, S3, S4 are subsequences of S and |S1| ≤
|S2| ≤ |S3| ≤ |S4|. Without loss of generality, we may assume that S1 = x1. By Lemma
2.4, we have

Sν | x
−1
1 S = x2 · . . . · x6 for every ν ∈ [2, 4]

and 2 ≤ |S2| ≤ |S3| ≤ |S4| ≤ 5.
We first show that 3 ≤ |S4| ≤ 4. If |S4| = 5, then S4 = x2 · . . . ·x6. But S2 | x2 · . . . ·x6 =

S4, a contradiction. If |S4| = 2, then |S2| = |S3| = 2. By Lemma 2.4.2, S2, S3 and S4 are
pairwise disjoint. But

Sν | x2 · . . . · x6 for every ν ∈ [2, 4] ,

a contradiction. Therefore, 3 ≤ |S4| ≤ 4.
We distinguish two cases.
Case 1: |S4| = 4. Without loss of generality, we may assume that S4 = x2 ·x3 ·x4 ·x5.

Since
S2 | x2 · . . . · x6 and S3 | x2 · . . . · x6 ,

by Lemma 2.4, x6 |S2 and x6 |S3.
We claim that |S3| = 3. If |S3| = 4, since

S3 | x2 · . . . · x6 and S4 | x2 · . . . · x6 ,
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then | gcd(S3, S4)| ≥ 3, a contradiction. If |S3| = 2, then |S2| = 2. Since x6 |S3 and
x6 |S2, then | gcd(S2, S3)| = 1, a contradiction again. So |S3| = 3.

If |S2| = 2, without loss of generality, we may assume that S2 = x2 · x6. Since x6 |S3,
we have x2 - S3. So

x6 |S3 | x3 · x4 · x5 · x6.

Without loss of generality, we may assume that S3 = x3 · x4 · x6. Then Ai is of form (b1).
If |S2| = 3, without loss of generality, we may assume that S2 = x2 · x3 · x6. Since

x6 |S3 and |S3| = 3, by Lemma 2.4.2 we have x2, x3 - S3. Then S3 = x4 · x5 · x6, and Ai is
of form (b2).

Case 2: |S4| = 3. Then |S2| ≤ |S3| ≤ 3.
If |S2| = 3, then |S3| = 3. Since

Sν | x2 · . . . · x6 for every ν ∈ [2, 4] ,

there exist m, n ∈ [2, 4] such that | gcd(Sm, Sn)| ≥ 2, a contradiction. So |S2| = 2.
If |S3| = 2, then |S2| = 2 and | gcd(S3, S2)| = 0. Without loss of generality, we may

assume that S2 = x2 · x3 and S3 = x4 · x5. Since S4 | x2 · . . . · x6, by Lemma 2.4, we have
| gcd(S4, S2)| = | gcd(S4, S3)| = 1. So x6 |S4. Without loss of generality, let S4 = x2 ·x4 ·x6.
Then Ai is of form (b3).

If |S3| = 3, without loss of generality, let S3 = x2 · x3 · x4. Since S4 | x2 · . . . · x6 and
|S4| = 3, we have | gcd(S4, S3)| = 1. Without loss of generality, let S4 = x2 · x5 · x6.
By Lemma 2.4, we have x2 - S2 and | gcd(S2, S3)| = | gcd(S2, S4)| = 1. Without loss of
generality let S2 = x3 · x5. Then Ai is of form (b4).

This completes the proof.

Lemma 7.3. If x1 = x2 + x3 + x4 + x5 = x2 + x3 + x6 = x4 + x5 + x6, then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x3 + x4 + x5 = x2 + x3 + x6 = x4 + x5 + x6,
a2 = x2,
a3 = x4,
a4 = x6 = x2 + x3 = x4 + x5,
a5 = x1 + x2 = x2 + x4 + x5 + x6,
a6 = x1 + x4 = x2 + x3 + x4 + x6,
a7 = x2 + x4,
a8 = x2 + x6 = x2 + x4 + x5,
a9 = x4 + x6 = x2 + x3 + x4,
a10 = x1 + x2 + x4 = x2 + x3 + x6 + x2 + x4,
a11 = x1 + x2 + x6 = x1 + x2 + x4 + x5 = x2 + x6 + x4 + x5 + x6,
a12 = x1 + x4 + x6 = x1 + x2 + x3 + x4 = x2 + x3 + x6 + x4 + x6,
a13 = x2 + x4 + x6,
a14 = x1 + x2 + x4 + x6,
a15 = x1+x2+x3+x4+x5 = x1+x2+x3+x6 = x1+x4+x5+x6 = x2+x3+x6+x4+x5+x6,
a16 = x1 + x2 + x3 + x4 + x6,
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a17 = x1 + x2 + x4 + x5 + x6,
a18 = x2 + x3 + x4 + x5 + x6 = x1 + x6 = x1 + x2 + x3 = x1 + x4 + x5,
a19 = x1 + x2 + x3 + x4 + x5 + x6.
A straightforward computation shows that

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19

are pairwise distinct, and we are done.

Lemma 7.4. If x1 = x2 + x3 = x4 + x5 = x2 + x4 + x6, then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x3 = x4 + x5 = x2 + x4 + x6,
a2 = x2,
a3 = x3 = x4 + x6,
a4 = x4,
a5 = x5 = x2 + x6,
a6 = x1 + x6 = x2 + x3 + x6 = x4 + x5 + x6 = x3 + x5,
a7 = x2 + x3 + x5 = x1 + x5 = x2 + x4 + x5 + x6 = x1 + x2 + x6,
a8 = x3 + x4 + x5 = x1 + x3 = x2 + x3 + x4 + x6 = x1 + x4 + x6,
a9 = x1 + x2 + x4 + x6 = x1 + x2 + x3 = x1 + x4 + x5 = x2 + x3 + x4 + x5,
a10 = x1 + x2 + x3 + x4 + x6 = x1 + x3 + x4 + x5,
a11 = x1 + x2 + x4 + x5 + x6 = x1 + x2 + x3 + x5,
a12 = x2 + x3 + x4 + x5 + x6 = x1 + x3 + x5 = x1 + x2 + x3 + x6 = x1 + x4 + x5 + x6,
a13 = x1 + x2 + x3 + x4 + x5 + x6,
a14 = x1 + x2 = x2 + x4 + x5 = 2x2 + x3,
a15 = x1 + x4 = x2 + x3 + x4 = 2x4 + x5,
a16 = x2 + x4,
a17 = x1 + x2 + x3 + x4 + x5,
a18 = x1 + x2 + x4,
a19 = x1 + x2 + x3 + x4,
a20 = x1 + x2 + x4 + x5,
a21 = x1 + x3 + x4 + x5 + x6,
a22 = x3 + x4,
a23 = x1 + x3 + x4 + x6,
a24 = x1 + x2 + x3 + x5 + x6,
a25 = x1 + x2 + x5 + x6.
By Lemma 5.1, we have ai 6∈ {a1, a12} for every i ∈ [1, 25] \ {1, 12}. Since S contains

no elements of order 2, by Lemma 2.4 we infer that a1, a2, . . . , a17 are pairwise distinct.
Let

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17}.

By Lemma 2.4 and noting that S contains no elements of order 2, we obtain
a18 6∈ A \ {a3, a5, a6},
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a19 6∈ A \ {a5, a6},
a20 6∈ A \ {a3, a6},
a21 6∈ A \ {a2, a14, a16},
a22 6∈ A \ {a2, a5, a7, a11, a14},
and
a23 6∈ A \ {a2, a5, a7, a11, a14, a16}.
We distinguish four cases.
Case 1: a18 = a3. That is x1 + x2 + x4 = x3 = x4 + x6. Then x6 = x1 + x2. By

Lemma 2.4, we infer that a19 6∈ A \ {a5}.
If a19 = a5, that is x1 +x2 + x3 + x4 = x5 = x2 + x6 = x2 + x1 + x2, then x2 = x3 + x4.

Thus x1 = 4x2, x3 = 3x2, x4 = −2x2, x5 = 6x2, x6 = 5x2. By Lemma 7.1, f(S) ≥ 19.
Next, we may assume that a19 6∈ A. By Lemma 2.4 and in view of x6 = x1+x2, we infer

that a21 6∈ (A\{a2})∪{a19}. If a21 6= a2, then A∪{a21, a19} is a set of 19 distinct elements
and we are done. So, we may assume that a21 = a2, that is x1 + x3 + x4 + x5 + x6 = x2.
Now, by Lemma 2.4, we obtain that a23 6∈ A ∪ {a19}. Hence, A ∪ {a23, a19} is a set of 19
distinct elements.

Case 2: a18 = a5. Then x6 = x1 + x4. By interchanging x2, x3, a21 and a23 with
x4, x5, a24 and a25 respectively, we can reduce this case to Case 1.

Case 3: a18 = a6. Then x1 +x2 +x4 = x1 +x6 = x2 +x3 +x6 = x4 +x5 +x6 = x3 +x5.
Thus x6 = x2 + x4. By Lemma 2.4 and noting that S contains no elements of order 2, we
obtain that A ∪ {a19, a20} is a set of 19 distinct elements.

Case 4: a18 6= a3, a5, a6, that is a18 6∈ A and x6 6= x1 + x2, x1 + x4, x2 + x4. Let

B = A ∪ {a18}.

Since x6 6= x1 + x4 we infer that a19 6= a6. Note that a19 6= a18 we have a19 6∈ B \ {a5}. If
a19 6= a5, then B∪{a19} is a set of 19 distinct elements and we are done. Since x6 6= x1+x2

we infer that, a20 6= a6 and a20 6∈ B \ {a3}. If a20 6= a3, then B ∪ {a20} is a set of 19
distinct elements and we are done. So, we may assume that a19 = a5 and a20 = a3. Then,
x6 = x1 + x3 + x4 = x1 + x2 + x5. Therefore, x3 + x4 6= x2, i.e. a22 6= a2. By Lemma 2.4,
and noting that x6 = x1+x3+x4 = x1 +x2+x5, we obtain that a22 6∈ {a5, a7, a11, a14, a18}.
Therefore, B ∪ {a22} is a set of 19 distinct elements. This completes the proof.

Lemma 7.5. If x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6 and x2 = x3 + x4 =
x4 + x5 + x6 = x1 + x3 + x5 + x6, then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6,
a2 = x2 = x3 + x4 = x4 + x5 + x6 = x1 + x3 + x5 + x6,
a3 = x4 = x1 + x3 = x2 + x3 + x6 = x1 + x5 + x6,
a4 = x1 + x6 = x1 + x2 + x5 = x1 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6,
a5 = x2 + x4 = x1 + x2 + x3 = x1 + x2 + x5 + x6 = x1 + x3 + x4 + x5 + x6,
a6 = x1 + x4 + x5 = x2 + x3 + x4 = x2 + x4 + x5 + x6 = x1 + x2 + x3 + x5 + x6,
a7 = x1 + x2 + x3 + x4 + x5 + x6,
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a8 = x3 = x5 + x6,
a9 = x5,
a10 = x6 = x2 + x5 = x3 + x4 + x5,
a11 = x1 + x2 = x1 + x3 + x4 = x1 + x4 + x5 + x6 = x2 + x3 + x4 + x6,
a12 = x1 + x5 = x2 + x3 = x2 + x5 + x6 = x3 + x4 + x5 + x6,
a13 = x4 + x6 = x1 + x3 + x6 = x2 + x4 + x5 = x1 + x2 + x3 + x5,
a14 = x1 + x2 + x6 = x1 + x3 + x4 + x6 = x1 + x2 + x3 + x4 + x5,
a15 = x1 + x2 + x3 + x4 = x1 + x2 + x4 + x5 + x6,
a16 = x4 + x5 = x1 + x3 + x5 = x2 + x3 + x5 + x6,
a17 = x1 + x4 = x2 + x4 + x6 = x1 + x2 + x3 + x6,
a18 = x1 + x4 + x6 = x1 + x2 + x4 + x5 = x1 + x2 + x3 + 2x6,
a19 = x3 + x6 = x2 + x3 + x5.
By using Lemma 2.4, we can check that a1, a2, . . . , a16 are pairwise distinct. Also, we

have

a17 6= a1, . . . , a8, a10, . . . , a16;

a18 6= a1, . . . , a7, a9, . . . , a17;

a19 6= a1, . . . , a14, a16, a17, a18.

If a17 = a9, then x5 = x1 + x4 = x1 + x1 + x5 + x6, so 0 = 2x1 + x6 = x1 + x2 + x3 +
x4 + x5 + x6, a contradiction. Thus x5 6= x1 + x4. Therefore, x5 + x6 6= x1 + x4 + x6 and
x2 + x3 + x5 6= x1 + x2 + x3 + x4. This implies that

a17 6= a9, a18 6= a8, a19 6= a15.

Therefore,
a1, a2, . . . , a19

are pairwise distinct, giving f(S) ≥ 19.

Lemma 7.6. If x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6 and x3 = x5 + x6 =
x1 + x4 + x6 = x1 + x2 + x4 + x5, then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6,
a2 = x1 + x6 = x1 + x2 + x5 = x1 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6,
a3 = x3 = x5 + x6 = x1 + x4 + x6 = x1 + x2 + x4 + x5,
a4 = x6 = x2 + x5 = x3 + x4 + x5 = x1 + x2 + x4,
a5 = x1 + x2 + x6 = x1 + x3 + x4 + x6 = x3 + x5 + x6 = x1 + x2 + x3 + x4 + x5,
a6 = x3 + x6 = x2 + x3 + x5 = x1 + x2 + x3 + x4 = x1 + x2 + x4 + x5 + x6,
a7 = x1 + x2 = x1 + x3 + x4 = x2 + x3 + x4 + x6 = x1 + x4 + x5 + x6 = x3 + x5,
a8 = x1 + x5 = x2 + x3 = x2 + x5 + x6 = x1 + x2 + x4 + x6 = x3 + x4 + x5 + x6,
a9 = x1 + x2 + x3 + x4 + x5 + x6,
a10 = x2 = x3 + x4 = x4 + x5 + x6,
a11 = x5 = x1 + x4 = x2 + x4 + x6,
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a12 = x1 +x3 = x2 +x3+x6 = x1+x5 +x6 = x1 +2x2+x4 +x5 +x6 = x1+x3 +x4 +2x5,
a13 = x1 + x2 + x3 = x1 +x2 + x5 + x6 = x1 +x3 +x4 + x5 + x6 = 2x1 + x2 +x4 + x6 =

x1 + 2x2 + x3 + 2x4 + x5 + x6,
a14 = x1 + x3 + x5 = x2 + x3 + x5 + x6 = x1 + x2 + x3 + x4 + x6 = x1 + 2x5 + x6 =

2x1 + x4 + x5 + x6 = x1 + x2 + x3 + 2x4 + 2x5 + x6,
a15 = x1 + x4 + x5 = x2 + x3 + x4 = x2 + x4 + x5 + x6,
a16 = x2 + x4,
a17 = x4 + x5,
a18 = x4 + x6 = x2 + x4 + x5,
a19 = x1+x3+x6 = x1+x2+x3+x5 = x1+x3+x4+2x5+x6 = x1+2x2+x3+x4+x6 =

x1 + x2 + x3 + 2x4 + x5 + 2x6.
By Lemma 5.1, we know that |Ai| ≤ 5 for all i ∈ [1, r]. Thus aj 6= ai for every i ∈ [1, 9]

and every j ∈ [1, 19] \ {i}. Also, by Lemma 2.4, we have

a10, a11, . . . , a19

are pairwise distinct. Therefore, a1, a2, . . . , a19 are distinct, giving f(S) ≥ 19.

Lemma 7.7. If x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6 and x5 = x1 + x2 =
x1 + x3 + x4 = x2 + x3 + x4 + x6, then f(S) ≥ 19.

Proof. Note that either x4 6= x1 + x5 + x6 or x3 6= x1 + x5 + x6. By the symmetry of x3

and x4 in [x1] and [x5], we may assume that x4 6= x1 + x5 + x6. Let
a1 = x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6,
a2 = x1 + x6 = x1 + x2 + x5 = x1 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6,
a3 = x5 = x1 + x2 = x1 + x3 + x4 = x2 + x3 + x4 + x6,
a4 = x1 + x5 = x2 + x5 + x6 = x3 + x4 + x5 + x6 = x1 + x2 + x3 + x4 + x6,
a5 = x6 = x2 + x5 = x3 + x4 + x5 = x1 + x2 + x3 + x4,
a6 = x5 + x6 = x1 + x2 + x6 = x1 + x3 + x4 + x6 = x1 + x2 + x3 + x4 + x5,
a7 = x1 + x2 + x3 + x4 + x5 + x6,
a8 = x2 = x3 + x4,
a9 = x1 + x3 = x2 + x3 + x6,
a10 = x3 + x5 = x1 + x2 + x3,
a11 = x3 + x6 = x2 + x3 + x5,
a12 = x1 + x3 + x5 = x2 + x3 + x5 + x6 = x1 + x2 + 2x3 + x4 + x6,
a13 = x1 + x3 + x6 = x1 + x2 + x3 + x5 = x2 + 2x3 + x4 + x5 + x6,
a14 = x3 + x5 + x6 = x1 + x2 + x3 + x6 = x1 + x2 + 2x3 + x4 + x5,
a15 = x1 + x3 + x5 + x6 = 2x1 + x2 + x3 + x6 = x1 + 2x2 + 2x3 + x4 + x5 + x6,
a16 = x1 + x2 + x3 + x5 + x6,
a17 = x2 + x3,
a18 = x3

a19 = x2 + x3 + x4,
As before, by Lemma 5.1 we know that aj 6= ai for every i ∈ [1, 7] and every j ∈

[1, 19] \ {i}.
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Since x4 6= x1 + x5 + x6, using Lemma 2.4 we can verify that

a8, . . . , a19

are pairwise distinct. Therefore a1, a2, . . . , a19 are pairwise distinct and we are done.

Lemma 7.8. If x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6 and x6 = x2 + x5 =
x3 + x4 + x5 = x1 + x2 + x3, then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6,
a2 = x4,
a3 = x6 = x2 + x5 = x3 + x4 + x5 = x1 + x2 + x3,
a4 = x1 + x2 = x1 + x3 + x4 = x2 + x3 + x4 + x6 = x4 + x5,
a5 = x1 + x4 = x2 + x4 + x6,
a6 = x1 + x5 = x2 + x5 + x6 = x3 + x4 + x5 + x6 = x1 + x2 + x3 + x6,
a7 = x1 + x6 = x1 + x2 + x5 = x1 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6,
a8 = x4 + x6 = x2 + x4 + x5 = x1 + x2 + x3 + x4,
a9 = x1 + x2 + x6 = x4 + x5 + x6 = x1 + x3 + x4 + x6 = x1 + x2 + x3 + x4 + x5,
a10 = x1 + x4 + x5 = x2 + x4 + x5 + x6 = x1 + x2 + x3 + x4 + x6,
a11 = x1 + x4 + x6 = x1 + x2 + x4 + x5,
a12 = x1 + x2 + x4 + x6,
a13 = x1 + x2 + x5 + x6 = x1 + x3 + x4 + x5 + x6,
a14 = x1 + x4 + x5 + x6,
a15 = x1 + x2 + x4 + x5 + x6,
a16 = x1 + x2 + x3 + x4 + x5 + x6,
a17 = x2 = x3 + x4,
a18 = x2 + x3 + x4,
a19 = x5 = x1 + x3 = x2 + x3 + x6.
Using Lemma 2.4, we can verify that

a1, a2, . . . , a16

are pairwise distinct, and we also have

a17 6= a1, . . . , a13, a15, a16;

a18 6= a1, . . . , a5, a7, . . . , a10, a16, a17.

If a17 = a14, then x3 + x4 = x1 + x4 + x5 + x6 = x1 + x4 + x1 + x3 + x6, so 0 =
x1 + x1 + x6 = x1 + x2 + x3 + x4 + x5 + x6, a contradiction. Thus a17 6= a14.

Since

x3 + x4 + x5 + x6 = x3 + x4 + x5 + x2 + x5 6= x2 + x3 + x4,

x1 + x2 + x4 + x5 = x1 + x2 + x4 + x1 + x3 6= x2 + x3 + x4,

x1 + x2 + x4 + x6 = x2 + x3 + x4 + x5 + x2 + x4 + x6 6= x2 + x3 + x4,
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x1 + x2 + x5 + x6 = x2 + x3 + x4 + x5 + x2 + x1 + x3 + x6 6= x2 + x3 + x4,

x1 + x4 + x5 + x6 = x2 + x3 + x4 + x5 + x4 + x1 + x3 + x6 6= x2 + x3 + x4,

x1 + x2 + x4 + x5 + x6 =

x2 + x3 + x4 + x5 + x2 + x4 + x1 + x3 + x6 6= x2 + x3 + x4,

we have a18 6= a6, a11, a12, a13, a14, a15. Therefore

a1, a2, . . . , a18

are pairwise distinct.
By Lemma 2.4, we have a19 6= a1, . . . , a11, a13, . . . , a18. If a19 6= a12, then a1, . . . , a18, a19

are distinct and we are done. So we may assume a19 = a12. Thus x5 = x1 + x3 =
x2 + x3 + x6 = x1 + x2 + x4 + x6. This implies that

x1 = −5x2, x3 = −2x2, x4 = 3x2, x5 = −7x2, x6 = −6x2.

By Lemma 7.1, we have f(S) ≥ 19.

We are now ready to provide a proof of Lemma 3.3.

Proof of Lemma 3.3.

For every k ∈ [1, 6], |[xk]| ≤ 4 follows from Lemma 5.1.
If [xi] or [xj] has form (b2) or (b3) described in Lemma 7.2, then by Lemma 7.3 or

Lemma 7.4, f(S) ≥ 19. So we may assume that [xi] and [xj ] have forms (b1) or (b4).
Without loss of generality, we assume that i = 1. Let [xj] = {S1, S2, S3, S4} where
S1, S2, S3, S4 are subsequences of S and 1 = |S1| ≤ |S2| ≤ |S3| ≤ |S4|. We distinguish
cases.

Case 1: both [x1] and [xj] are of form (b1). Then

|S1| = 1, |S2| = 2, |S3| = 3, |S4| = 4.

and

[x1] = {x1, x2 · x3 · x4 · x5, x2 · x6, x3 · x4 · x6}.

Thus,

x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6;

x2 = x3 + x4;

x6 = x2 + x5 = x3 + x4 + x5.

Subcase 1.1: j = 2. Then S1 = x2 and S2 = x3 ·x4. By Lemma 7.2, S4 = x1 ·x3 ·x5 ·x6

or S4 = x1 · x4 · x5 · x6. Without loss of generality, let S4 = x1 · x3 · x5 · x6. Also, by
Lemma 7.2, S3 = x1 · x4 · x5, or S3 = x1 · x4 · x6, or S3 = x4 · x5 · x6. If S3 = x1 · x4 · x5,
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then x2 = x1 + x4 + x5 = x2 + x4 + x5 + x6, a contradiction. If S3 = x1 · x4 · x6, then
x2 = x1 + x4 + x6 = x1 + x2 + x4 + x5, a contradiction again. So, S3 = x4 · x5 · x6. Then
x2 = x3 + x4 = x4 + x5 + x6 = x1 + x3 + x5 + x6. Therefore, f(S) ≥ 19 by Lemma 7.5.

Subcase 1.2: j = 3. By Lemma 7.2, we have

Sν | x1 · x2 · x4 · x5 · x6 for every ν ∈ [2, 4] .

Since x1 + x2 + x5 + x6 = x1 + x3 + x4 + x5 + x6 6= x3, we have S4 6= x1 · x2 · x5 · x6. Thus,
S4 = x1 · x2 · x4 · x5 or S4 = x1 · x2 · x4 · x6 or S4 = x1 · x4 · x5 · x6 or S4 = x2 · x4 · x5 · x6.

(i) S4 = x1 · x2 · x4 · x5. By Lemma 7.2, x6 | gcd(S2, S3). Since

x1 + x6 = x2 + x3 + x4 + x5 + x6 6= x3,

x2 + x6 = x1 6= x3,

x4 + x6 = x2 + x4 + x5 6= x1 + x2 + x4 + x5,

we have S2 6= x1·x6, x2·x6 or x4·x6. So S2 = x5·x6. Note that x1+x2+x4+x5 = x1+x4+x6.
We conclude that S3 = x1 ·x4 ·x6. Therefore, x3 = x5+x6 = x1+x4+x6 = x1+x2+x4+x5.
Now, f(S) ≥ 19 by Lemma 7.6.

(ii) S4 = x1 · x2 · x4 · x6. Then x5 | gcd(S2, S3). Since

x1 + x5 = x3 + x4 + x5 + x6 6= x3,

x2 + x5 = x3 + x4 + x5 6= x3,

we have S2 6= x1 · x5 or S2 6= x2 · x5. If S2 = x4 · x5, then x4 + x5 = x1 + x2 + x4 + x6 =
x1 + x2 + x4 + x2 + x5, so 0 = x1 + x2 + x2 = x1 + x2 + x3 + x4, a contradiction. Thus
S2 6= x4 · x5, and then S2 = x5 · x6. By Lemma 7.2, x6 - S3 and

x5 |S3 | x1 · x2 · x4 · x5.

Therefore, S3 = x1 · x2 · x5, x1 · x4 · x5 or x2 · x4 · x5. But
x1 + x2 + x5 = x1 + x3 + x4 + x5 6= x3,
x1 + x4 + x5 = x2 + x4 + x5 + x6 6= x1 + x2 + x4 + x6,
and
x2 + x4 + x5 6= x2 + x3 + x4 + x5 + x2 + x4 + x6 = x1 + x2 + x4 + x6,
a contradiction. Therefore, S4 6= x1 · x2 · x4 · x6.
(iii) S4 = x1 · x4 · x5 · x6. Then x2 | gcd(S2, S3). Since S contains no elements of order

2, we have x3 6= x2 + x4, so S2 6= x2 · x4. Since

x1 + x2 = x1 + x3 + x4 6= x3,

x2 + x5 = x3 + x4 + x5 6= x3,

x2 + x6 = x3 + x4 + x6 6= x3,

we have S2 6= x1 · x2, or S2 6= x2 · x5 or S2 6= x2 · x6, a contradiction. Therefore S4 6=
x1 · x4 · x5 · x6.
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(iv) S4 = x2 · x4 · x5 · x6. Then x1 | gcd(S2, S3). Since

x1 + x2 = x1 + x3 + x4 6= x3,

x1 + x5 = x3 + x4 + x5 + x6 6= x3,

x1 + x6 = x2 + x3 + x4 + x5 + x6 6= x3,

we have S2 6= x1 · x2, or S2 6= x1 · x5 or S2 6= x1 · x6. Then S2 = x1 · x4, and thus x4 - S3.
So

x1 |S3 | x1 · x2 · x5 · x6.

Since

x1 + x2 + x5 = x1 + x3 + x4 + x5 6= x3,

x1 + x2 + x6 = x1 + x3 + x4 + x6 6= x3,

x1 + x5 + x6 = x2 + x3 + x4 + x5 + x5 + x6 6= x2 + x4 + x5 + x6,

we have S3 6= x1 · x2 · x5, S3 6= x1 · x2 · x6 or S3 6= x1 · x5 · x6, a contradiction. Therefore,
S4 6= x2 · x4 · x5 · x6.

Subcase 1.3: j = 4. By the symmetry of x3 and x4 in [x1], This reduces to subcase
1.2.

Subcase 1.4: j = 5. Then

Sν | x1 · x2 · x3 · x4 · x6 for every ν ∈ [2, 4] .

Since x1 + x3 + x4 + x6 = x1 + x2 + x3 + x4 + x5 6= x5, we have S4 6= x1 · x3 · x4 · x6. Thus,
S4 = x1 · x2 · x3 · x4 or S4 = x1 · x2 · x3 · x6 or S4 = x1 · x2 · x4 · x6 or S4 = x2 · x3 · x4 · x6.

(i) S4 = x1 · x2 · x3 · x4. Then x6 | gcd(S2, S3). Since

x1 + x6 = x2 + x3 + x4 + x5 + x6 6= x5,

x2 + x6 = x2 + x2 + x5 6= x5,

x3 + x6 = x2 + x3 + x5 6= x5,

x4 + x6 = x2 + x4 + x5 6= x5,

we have S2 6= x1 · x6, or S2 6= x2 · x6 or S2 6= x3 · x6, x4 · x6, a contradiction. Therefore
S4 6= x2 · x4 · x5 · x6.

(ii) S4 = x1 · x2 · x3 · x6. Then x4 | gcd(S2, S3). Since

x3 + x4 = x2 6= x5,

x4 + x6 = x2 + x4 + x5 6= x5,

we have S2 6= x3 · x4 or S2 6= x4 · x6. Then S2 = x1 · x4 or S2 = x2 · x4.
If S2 = x2 · x4, then x2 - S3. So

x4 |S4 | x1 · x3 · x4 · x6.
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Since

x1 + x3 + x4 = x1 + x2 6= x2 + x4,

x1 + x4 + x6 = x1 + x2 + x4 + x5 6= x2 + x4,

x3 + x4 + x6 = x2 + x3 + x4 + x5 6= x2 + x4,

we have S3 6= x1 · x3 · x4, S3 6= x1 · x4 · x6 or S3 6= x3 · x4 · x6, a contradiction. Therefore,
S2 = x1 ·x4. Note that x1 +x4 = x2 +x4 +x6. We have S3 = x2 ·x4 ·x6, so x5 = x1 +x4 =
x2 + x4 + x6 = x1 + x2 + x3 + x6. This implies that

x1 = −5x2, x3 = 3x2, x4 = −2x2, x5 = −7x2, x6 = −6x2.

By Lemma 7.1, we have f(S) ≥ 19.
(iii) S4 = x1 · x2 · x4 · x6. By the symmetry of x3 and x4 in [x1], This reduces to the

case when S4 = x1 · x2 · x3 · x6.
(iv) S4 = x2 · x3 · x4 · x6. Note that x2 + x3 + x4 + x6 = x1 + x2 = x1 + x3 + x4, so

S2 = x1 · x2, S3 = x1 · x3 · x4. Then x5 = x1 + x2 = x1 + x3 + x4 = x2 + x3 + x4 + x6. By
Lemma 7.7, we have f(S) ≥ 19.

Subcase 1.5: j = 6. Then S1 = x6, S2 = x2 · x5, S3 = x3 · x4·5. By Lemma 7.2,
S4 = x1 · x2 · x3 · x4. Thus,

x6 = x2 + x5 = x3 + x4 + x5 = x1 + x2 + x3 + x4

and
x5 = x1 + x2 = x1 + x3 + x4 = x2 + x3 + x4 + x6.

By Lemma 7.7, we have f(S) ≥ 19.
Case 2: [x1] is of form (b1) and [xj] is of form (b4). Then

|S1| = 1, |S2| = 2, |S3| = 3, |S4| = 3.

By Lemma 7.2, we have

supp(S3S4) = supp(SS−1
1 ),

| gcd(S3, S4)| = 1,

| gcd(S2, S3)| ≥ 1,

| gcd(S2, S4)| ≥ 1,

| gcd(S2, S3, S4)| = 0.

Now
[x1] = {x1, x2 · x3 · x4 · x5, x2 · x6, x3 · x4 · x6}

and

x1 = x2 + x3 + x4 + x5 = x2 + x6 = x3 + x4 + x6;

x2 = x3 + x4;
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x6 = x2 + x5 = x3 + x4 + x5.

Subcase 2.1: j = 2. Let S1 = x2 and S2 = x3 · x4. Then

S3 | x1 · x3 · x4 · x5 · x6 and S4 | x1 · x3 · x4 · x5 · x6 .

Without loss of generality, let x3 |S3. Then x4 - S3, and thus x4 |S4 and x3 - S4. So,
S3 = x1 · x3 · x5 or S3 = x1 · x3 · x6 or S3 = x3 · x5 · x6.

Since

x1 + x3 + x5 = x3 + x4 + x6 + x3 + x5 6= x3 + x4,

x1 + x3 + x6 = x2 + x3 + x4 + x5 + x3 + x6 6= x3 + x4,

we have S3 6= x1 · x3 · x5 or S3 6= x1 · x3 · x6. So S3 = x3 · x5 · x6, and then S4 = x1 · x4 · x5

or S4 = x1 · x4 · x6. But

x1 + x4 + x5 = x3 + x4 + x6 + x4 + x5 6= x3 + x4,

x1 + x4 + x6 = x2 + x3 + x4 + x5 + x4 + x6 6= x3 + x4,

a contradiction.
Subcase 2.2: j = 3. Then

Sν | x1 · x2 · x4 · x5 · x6 for every ν ∈ [2, 4] .

Since x2 = x3 + x4, we have x3 6= x1 + x2, x2 + x4, x2 + x5, x2 + x6, so x2 - S2. Then
S2 | x1 · x4 · x5 · x6. Since

x1 + x5 = x3 + x4 + x5 + x6 6= x3,

x1 + x6 = x2 + x3 + x4 + x5 + x6 6= x3,

we have S2 6= x1 · x5 or S2 6= x1 · x6. Thus, S2 = x1 · x4 or S2 = x4 · x5 or S2 = x4 · x6 or
S2 = x5 · x6.

Next, we show that if x2 |S3 (resp. S4), then x4 |S3 (resp. S4). Suppose on the
contrary that x2 |S3, but x4 - S3. Then x3 = σ(S3) = σ(x−1

2 x3x4S3), a contradiction. So
if x2 |S3 (resp. S4), then x4 |S3 (resp. S4).

(i) S2 = x1·x4. Note that x1+x4 = x2+x4+x6. So we may assume S3 = x2·x4·x6. Then
x2 - S4, otherwise x2 |S4 and x4 |S4, a contradiction. Since supp(S3S4) = supp(SS−1

1 ),
then x1 |S4 and x4 - S4. Then S4 = x1 ·x5 ·x6. So x3 = x1+x4 = x2+x4+x6 = x1+x5+x6.
Thus

x1 = −7x4, x2 = −5x4, x3 = −6x4, x5 = 3x4, x6 = −2x4.

Therefore, f(S) ≥ 19 by Lemma 7.1.
(ii) S2 = x4 · x5. Now, let x4 |S3. Then x5 - S3, x5 |S4 and x4 - S4. Thus x2 - S4, and

therefore, S4 = x1 · x5 · x6. But x1 + x5 + x6 = x2 + x3 + x4 + x5 + x5 + x6 6= x4 + x5, a
contradiction.
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(iii) S2 = x4·x6. Note that x4+x6 = x2+x4+x5, so we may assume that S3 = x2 ·x4·x5.
Then x2 - S4, x4 - S4, and thus S4 = x1 ·x5 ·x6. But x1 +x5 +x6 = x3 +x4 +x6 +x5 +x6 6=
x4 + x6, a contradiction.

(iv) S2 = x5 · x6. Let x5 |S3. Then x6 - S3, x6 |S4 and x5 - S4. Thus S3 = x1 · x4 · x5

or S3 = x2 · x4 · x5 or S3 = x1 · x2 · x5 . But

x1 + x4 + x5 = x2 + x6 + x4 + x5 6= x5 + x6,

x2 + x4 + x5 = x4 + x6 6= x5 + x6,

x1 + x2 + x5 = 2x2 + x6 + x5 6= x5 + x6,

a contradiction.
Subcase 2.3: j = 4. By the symmetry of x3 and x4 in [x1], this reduces to subcase

2.2.
Subcase 2.4: j = 5. Then

Sν | x1 · x2 · x3 · x4 · x6 for every ν ∈ [2, 4] .

Since x6 = x2 + x5, we have x5 6= x1 + x6, x2 + x6, x3 + x6, x4 + x6, so x6 - S2. Thus
S2 | x1 · x2 · x3 · x4. Since x3 + x4 = x2 6= x5, we have S2 6= x3 · x4. Then S2 = x1 · x2 or
S2 = x1 · x3 or S2 = x1 · x4 or S2 = x2 · x3 or S2 = x2 · x4.

(i) S2 = x1 ·x2. Note that x1 +x2 = x2 +x3 +x4 +x6, a contradiction. So S2 6= x1 ·x2.
(ii) S2 = x1 · x3. Note that x1 + x3 = x2 + x3 + x6. We may assume S3 = x2 · x3 · x6.

Since supp(S3S4) = supp(SS−1
1 ) = {x1, x2, x3, x4, x6}, we have x1 · x4 |S4. If x3 |S4, then

S2 |S4, a contradiction. So x3 - S4. Since x1 + x2 + x4 = x1 + x3 + x4 + x4 6= x1 + x3, we
have S4 6= x1 · x2 · x4. So S4 = x1 · x4 · x6. However, x1 + x4 + x6 = x1 + x2 + x4 + x5, a
contradiction. So S2 6= x1 · x3.

By the symmetry of x3 and x4 in [x1], we may also assume that S2 6= x1 · x4.
(iii) S2 = x2 · x3. Without loss of generality, let x2 |S3. Then x3 - S3, x3 |S4 and

x2 - S4. Thus S3 = x1 · x2 · x4 or S3 = x1 · x2 · x6 or S3 = x2 · x4 · x6. Since x1 + x2 + x6 =
x2 + x3 + x4 + x5 + x2 + x6 6= x2 + x3, we have S3 6= x1 · x2 · x6.

If S3 = x1 · x2 · x4, then x3 · x6 |S4. Thus S4 = x1 · x3 · x6 or S4 = x3 · x4 · x6. But

x1 + x3 + x6 = x2 + x3 + x4 + x5 + x3 + x6 6= x2 + x3,

x3 + x4 + x6 = x1 6= x5,

a contradiction. So S3 6= x1 · x2 · x4.
If S3 = x2 · x4 · x6, then x1 · x3 |S4. Thus S4 = x1 · x3 · x4 or S4 = x1 · x3 · x6. But

x1 + x3 + x6 = x2 + x3 + x4 + x5 + x3 + x6 6= x2 + x3,

x1 + x3 + x4 = x1 + x2 6= x2 + x3,

a contradiction, so S3 6= x2 · x4 · x6. Thus S2 6= x2 · x3. By the symmetry of x3 and x4 in
[x1], we also conclude that S2 6= x2 · x4, a contradiction again.

Subcase 2.5: j = 6. Let S1 = x6, S2 = x2 · x5 and S3 = x3 · x4 · x5. By Lemma 7.2,
S4 = x1 · x2 · x3 or S4 = x1 ·x2 · x4. By the symmetry of x3 and x4 in [x1], we may assume
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S4 = x1 · x2 · x3. Thus x6 = x2 + x5 = x3 + x4 + x5 = x1 + x2 + x3. By Lemma 7.8, we
have f(S) ≥ 19.

Case 3: both [x1] and [xj] are of form (b4). Then

|S1| = 1, |S2| = 2, |S3| = 3, |S4| = 3.

As in Case 3, we have

supp(S3S4) = supp(SS−1
1 ),

| gcd(S3, S4)| = 1,

| gcd(S2, S3)| ≥ 1,

| gcd(S2, S4)| ≥ 1,

| gcd(S2, S3, S4)| = 0.

Now,
[x1] = {x1, x2 · x3 · x4, x2 · x5 · x6, x3 · x5}

and

x1 = x2 + x3 + x4 = x2 + x5 + x6 = x3 + x5;

x3 = x2 + x6;

x5 = x2 + x4.

Subcase 3.1: j = 2. Then

Sν | x1 · x3 · x4 · x5 · x6 for every ν ∈ [2, 4] .

Since x3 = x2+x6, x5 = x2+x4, we have x2 6= x1+x3, x3+x4, x3+x5, x3+x6, x1+x5, x4+x5,
or x5 + x6, so x3, x5 - S2. Thus S2 = x1 · x4 or S2 = x1 · x6 or S2 = x4 · x6. But

x1 + x4 = x2 + x5 + x6 + x4 6= x2,

x1 + x6 = x2 + x3 + x4 + x6 6= x2,

so S2 = x4 · x6.
Without loss of generality, let x4 |S3. Then x6 - S3. So S3 = x1 ·x3 ·x4 or S3 = x1 ·x4 ·x5

or S3 = x3 · x4 · x5. But

x1 + x3 + x4 = x2 + x5 + x6 + x3 + x4 6= x2,

x3 + x4 + x5 = x2 + x6 + x4 + x5 6= x2,

so S3 = x1 · x4 · x5. Since supp(S3S4) = supp(SS−1
1 ) and | gcd(S3, S4)| = 1, we have

S4 = x1 · x3 · x6 or S4 = x3 · x5 · x6. But x3 + x5 + x6 = x3 + x2 + x4 + x6 6= x2, so
S4 = x1 · x3 · x6. That gives x2 = x4 + x6 = x1 + x4 + x5 = x1 + x3 + x6. Therefore,

x5 = x2 + x4 = x2 + x1 + x3 = x4 + x6 + x1 + x3.
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This reduces to Case 2.
Subcase 3.2: j = 3. Let S1 = x3 and S2 = x2 · x6. Then

S3 | x1 · x2 · x4 · x5 · x6 and S4 | x1 · x2 · x4 · x5 · x6 .

If x5 - S3 then |x5S3| = 4 and σ(x5S3) = x3 + x5 = x1, a contradiction. Therefore x5 |S3.
Similarly, x5 ∈ S4. Let S ′

3 = x−1
5 S3 and S ′

4 = x−1
5 S4. Then, S ′

3S
′
4 = x1 · x2 · x4 · x6 and

gcd(S ′
3, S

′
4) = 1. Since S2 = x2 · x6, we may assume that x2 |S

′
3 and x6 |S

′
4. Therefore,

S ′
3 = x1 · x2 and S ′

4 = x4 · x6, or S ′
3 = x2 · x4 and S ′

4 = x1 · x6. Hence, S3 = x1 · x2 · x5 and
S4 = x4 · x5 · x6, or S3 = x2 · x4 · x5 and S4 = x1 · x5 · x6. Thus, x2 + x6 = x4 + x5 + x6

or x2 + x6 = x1 + x5 + x6. But x1 + x5 + x6 = x2 + x3 + x4 + x5 + x6 6= x2 + x6 and
x4 + x5 + x6 = 2x4 + x2 + x6 6= x2 + x6, a contradiction.

Subcase 3.3: j = 4. Then

Sν | x1 · x2 · x3 · x5 · x6 for every ν ∈ [2, 4] .

Since x5 = x2 + x4 and x3 = x2 + x6, we have x4 6= x1 + x5, x2 + x5, x3 + x5, x5 + x6 or
x2 + x6. So S2 = x1 · x2 or x1 · x3 or x1 · x6 or x2 · x3 or x3 · x6. Since |S3| = |S4| = 3 and

x1 + x3 = x2 + x5 + x6 + x3,

x1 + x6 = x2 + x3 + x4 + x6,

S2 6= x1 · x3 or S2 6= x1 · x6.
(i) S2 = x1 · x2. Note that x1 + x2 = x3 + x5 + x2, so we may assume that S3 =

x2 · x3 · x5. Since gcd(S2, S3, S4) = 1 and supp(S3S4) = supp(SS−1
1 ) = {x1, x2, x3, x5, x6}

and | gcd(S3, S4)| = 1, we have S4 = x1 · x3 · x6 or S4 = x1 · x5 · x6. But

x1 + x3 + x6 = x1 + x2 + x6 + x6 6= x1 + x2,

x1 + x5 + x6 = x1 + x2 + x4 + x6 6= x4,

a contradiction. So S2 6= x1 · x2.
(ii) S2 = x2 ·x3. Without loss of generality, let x2 |S3. Then x3 - S3. So S3 = x1 ·x2 ·x5

or S3 = x1 · x2 · x6 or S3 = x2 · x5 · x6. But

x1 + x2 + x6 = x1 + x3 6= x2 + x3,

x2 + x5 + x6 = x1 6= x4,

so S3 = x1 · x2 · x5. Since x2 - S4 and x3 |S4, we have S4 = x1 · x3 · x5 or S4 = x1 · x3 · x6

or S4 = x3 · x5 · x6. But

x1 + x3 + x5 = x1 + x3 + x2 + x4 6= x2 + x3,

x3 + x5 + x6 = x3 + x2 + x4 + x6 6= x4,

so S4 = x1 · x3 · x6. This gives that x4 = x2 + x3 = x1 + x2 + x5 = x1 + x3 + x6. Then

x3 = x1 + x5 = x1 + x2 + x4 = x3 + x5 + x2 + x4.

the electronic journal of combinatorics 15 (2008), #R116 27



This reduces to Case 2.
(iii) S2 = x3 · x6. Without loss of generality, let x3 |S3, then x6 |S4 and x3 - S4. So

S4 = x1 · x2 · x6 or S4 = x1 · x5 · x6 or S4 = x2 · x5 · x6. But

x1 + x2 + x6 = x3 + x5 + x2 + x6 6= x3 + x6,

x1 + x5 + x6 = x2 + x3 + x4 + x5 + x6 6= x4,

x2 + x5 + x6 = x1 6= x4,

a contradiction.
Subcase 3.4: j = 5. By the symmetry of x3, x6 and x5, x4 in [x1], this reduces to

subcase 3.2.
Subcase 3.5: j = 6. By the symmetry of x3, x6 and x5, x4 in [x1], this reduces to

subcase 3.3.
This completes the proof.

7.2. Classes of size 5

This subsection deals with classes of size 5, and it provides a proof of Lemma 3.4.

Lemma 7.9. If |Ai| = 5, then there exists τ ∈ P6 such that Ai or the dual class of Ai is
of one of the following forms:

(c1). {xτ(1)·xτ(2), xτ(3)·xτ(4), xτ(5)·xτ(6)·xτ(1)·xτ(3), xτ(5)·xτ(6)·xτ(2)·xτ(4), xτ(5)·xτ(1)·xτ(4)};

(c2). {xτ(1) ·xτ(2), xτ(3) ·xτ(4), xτ(5) ·xτ(6) ·xτ(1) ·xτ(3), xτ(5) ·xτ(6) ·xτ(2), xτ(5) ·xτ(1) ·xτ(4)};

(c3). {xτ(1) ·xτ(2), xτ(3) ·xτ(4), xτ(5) ·xτ(6) ·xτ(1) ·xτ(3), xτ(5) ·xτ(1) ·xτ(4), xτ(6) ·xτ(2) ·xτ(4)};

(c4). {xτ(1) · xτ(2), xτ(3) · xτ(4), xτ(5) · xτ(6) · xτ(1), xτ(5) · xτ(2) · xτ(3), xτ(6) · xτ(2) · xτ(4)};

(c5). {xτ(1)·xτ(2), xτ(1)·xτ(3)·xτ(6)·xτ(5), xτ(1)·xτ(4)·xτ(3), xτ(2)·xτ(6)·xτ(3), xτ(5)·xτ(4)·xτ(6)};

(c6). {xτ(1)·xτ(2), xτ(1)·xτ(3)·xτ(6)·xτ(5), xτ(1)·xτ(4)·xτ(3), xτ(2)·xτ(6)·xτ(3), xτ(5)·xτ(2)·xτ(4)};

(c7). {xτ(1) ·xτ(2), xτ(1) ·xτ(3) ·xτ(4), xτ(1) ·xτ(5) ·xτ(6), xτ(2) ·xτ(3) ·xτ(5), xτ(2) ·xτ(4) ·xτ(6)}.

Proof. Let
Ai = {S1, . . . , S5}

where S1, . . . , S5 are subsequences of S and 1 ≤ |S1| ≤ . . . ≤ |S5|.
Let T = S1S2S3S4S5. As in the proof of Lemma 5.1, we have supp(T ) = S and

2 ≤ va(T ) ≤ 3 for every a ∈ S.
By Lemma 5.1 we have

2 ≤ |S1| ≤ · · · ≤ |S5| ≤ 4.

By Lemma 2.4, we infer that Ai contains at most three sequences of length 2, and
three sequences of length 4.
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Next, we distinguish cases.
Case 1: Ai contains three sequences of lengths 2. Then |S1| = |S2| = |S3| = 2. Let

S1 = x1 · x2, S2 = x3 · x4 and S3 = x5 · x6. Then by Lemma 2.4, we have |S4| = |S5| = 3.
Since va(T ) ≥ 2 for every a |S, we have S4S5 = S. Thus σ(S4) = σ(S5) = σ(S−1

4 S). Then
Ai is the dual class of itself, but |Ai| = 5, a contradiction.

Case 2: Ai contains two sequences of length 2. Than |S1| = |S2| = 2. Without loss
of generality, let

S1 = x1 · x2, S2 = x3 · x4.

If |Sj| ≥ 3 for some j ∈ [3, 5], then gcd(Sj, x5 · x6) 6= 1. Furthermore, if |Sj| = 4, then
x5 · x6 |Sj and | gcd(S1, Sj)| = | gcd(S2, Sj)| = 1. Also, we may assume that Ai contains
at most two sequences of length 4. Otherwise, we may consider Ai instead and it contains
three sequences of length 2. This reduces to Case 1, and we are done.

Subcase 2.1: Ai contains two sequences of lengths 4. Then |S3| = 3 and |S4| = |S5| =
4. Since x5·x6 |S4 and | gcd(S1, S4)| = | gcd(S2, S4)| = 1, we may assume S4 = x5·x6·x1·x3.
Since x5 · x6 |S5 and | gcd(S5, S4)| ≤ 2, we have S5 = x5 · x6 · x2 · x4.

Without loss of generality, let x5 |S3. Then x6 - S3. If x1, x2 - S3, then S3 = x3 · x4 · x5

and S2 |S3, a contradiction. If x1 |S3, then x2, x3 - S3. Therefore, S3 = x5 · x1 · x4 and Ai

is of form (c1). If x2 |S3, then similarly we have S3 = x5 · x2 · x3, and thus Ai is of form
(c1) again.

Subcase 2.2: Ai contains one sequence of length 4. Then |S5| = 4 and |S3| = |S4| = 3.
Since x5 ·x6 |S5 and | gcd(S1, S5)| = | gcd(S2, S5)| = 1, we may assume S5 = x5 ·x6 ·x1 ·x3.
Note that gcd(S3, x5 · x6) 6= 1 and gcd(S4, x5 · x6) 6= 1. We may assume that | gcd(S3, x5 ·
x6)| ≥ | gcd(S4, x5 · x6)|.

If x5·x6 |S3, then x1, x3 - S3. Without loss of generality, let x2 |S3. Then S3 = x5·x6·x2.
Next, we may assume x5 |S4. Then x2, x6 - S4. If x1 - S4, then S4 = x5 ·x3 ·x4 and S2 |S4,
a contradiction. So x1 |S4. By Lemma 2.4, | gcd(S4, S5)| ≤ 2, so x3 - S4. Therefore
S4 = x5 · x1 · x4. Then Ai is of form (c2).

Now, suppose gcd(S3, x5 · x6) = x5, and then | gcd(S4, x5 · x6)| = 1. Since vx6
(T ) ≥ 2,

then x6 |S4 and thus x5 - S4. Hence, S4 | x1 · x2 · x3 · x4 · x6. If x1 |S3, then x2, x3 - S3,
so S3 = x5 · x1 · x4. Since vx1

(T ) ≤ 3, x1 - S4. and thus S4 | x2 · x3 · x4 · x6. Note that
| gcd(x3 · x4, S4)| ≤ 1. We have S4 = x6 · x2 · x3 or S4 = x6 · x2 · x4. If S4 = x6 · x2 · x3,
then S4 = SS−1

3 , so Ai is the dual class of itself. Since |Ai| = 5, Ai is not self-dual, a
contradiction. Thus S4 = x6 · x2 · x4 and then Ai is of form (c3).

Next, assume that x1 - S3. By the symmetry of x1 and x3 in {S1, S2, S5}, we may also
assume that x3 - S3. By the symmetry of S3 and S4, we also have x1, x3 - S4. Then,

S3 | x2 · x4 · x5 · x6 and S4 | x2 · x4 · x5 · x6 ,

so | gcd(S3, S4)| ≥ 2, a contradiction.
Subcase 2.3: Ai contains no sequence of length 4. Then |S3| = |S4| = |S5| = 3. Since

gcd(Sj, x5 · x6) 6= 1 for every j = 3, 4, 5, we may assume x5 | gcd(S3, S4). If x5 |S5, then

x−1
5 Sν | x1 · x2 · x3 · x4 · x6 for every ν ∈ [3, 5] .
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Since |x−1
5 S3| = |x−1

5 S4| = |x−1
5 S5| = 2, there exist m, n ∈ [3, 5] such that | gcd(x−1

5 Sm,
x−1

5 Sn)| ≥ 1, so | gcd(Sm, Sn)| ≥ 2, a contradiction. Thus x5 - S5, and therefore x6 |S5.
By the symmetry of S3, S4, we may assume x6 |S3 and x6 - S4. This gives that x5 ·x6 |S3.
By the symmetry of x1, x2, x3 and x4 in {S1, S2}, we may assume S3 = x5 · x6 · x1. Since
x5 |S4, we have x6, x1 - S4. so S4 = x5 · x2 · x3 or S4 = x5 · x2 · x4 or S4 = x5 · x3 · x4. But
S2 - S4, so S4 6= x5 ·x3 ·x4. By the symmetry of x3 and x4 in {S1, S2, S3}, we may assume
that S4 = x5 · x2 · x3. Since x6 |S5, we have x1 - S5, so S5 = x6 · x2 · x3 or S5 = x6 · x2 · x4

or S5 = x6 ·x3 ·x4. Note that x6 +x2 +x3 6= x5 +x2 +x3, x6 +x3 +x4 6= x3 +x4, we must
have S5 = x6 · x2 · x4. Hence, Ai is of form (c4).

Case 3: Ai contains exactly one sequence of length 2. We may also assume Ai

contains at most one sequence of length 4 (otherwise, we may consider Ai instead and we
are back to one of the above cases). Let S1 = x1 · x2.

Subcase 3.1: Ai contains exactly one sequence of length 4. Then |S5| = 4. If
gcd(S5, S1) = 1, then Ai is the dual class of itself, giving a contradiction. So gcd(S5, S1) 6=
1. Without loss of generality, we may assume that S5 = x1 · x3 · x5 · x6.

If x1 - S2S3S4, then we have

Sν | x2 · x3 · x4 · x5 · x6 for every ν ∈ [2, 4] .

Since |S2| = |S3| = |S4| = 3, there exist m, n ∈ [2, 4] such that | gcd(Sm, Sn)| ≥ 2, a
contradiction. So x1 |S2S3S4. But va(T ) ≤ 3 for every a |S, so we have vx1

(S2S3S4) = 1.
Without loss of generality, let x1 |S2. Then x2 - S2 and x1 - S3S4. If x4 - S2, then
S2 | x1 · x3 · x6 · x5 = S5, a contradiction. So x4 |S2. By the symmetry of x3, x6 and x5 in
{S1, S5}, we may assume x3 |S2, so S2 = x1 · x4 · x3.

Note that x1 - S3S4, and thus we have

S3 | x2 · x3 · x4 · x5 · x6 and S4 | x2 · x3 · x4 · x5 · x6 .

Since vx2
(T ) ≥ 2, we have vx2

(S3S4) ≥ 1. Let x2 |S3. If x6, x5 - S3, then S3 = x2 · x3 · x4,
and thus | gcd(S2, S3)| = 2, a contradiction. So x6 |S3 or x5 |S3. Without loss of generality,
let x6 |S3. If x5 |S3, then S3 = x2 · x6 · x5 = SS−1

2 , so Ai is the dual class of itself, a
contradiction. Then x5 - S3. Therefore, S3 = x2 · x6 · x3 or S3 = x2 · x4 · x6.

First assume that S3 = x2 ·x6 ·x3. If x2 - S4, we have S4 | x3 ·x4 ·x5 ·x6. So S4 = x3 ·x6 ·x5

or S4 = x3 · x4 · x6 or S4 = x3 · x5 · x4 or S4 = x4 · x5 · x6. But

x3 + x6 + x5 6= x1 + x3 + x6 + x5;

x3 + x4 + x6 6= x1 + x4 + x3;

x3 + x5 + x4 6= x1 + x4 + x3,

so S4 = x4 · x5 · x6. Then Ai is of form (c5). If x2 |S4, then x3, x6 - S4, so S4 = x2 · x5 · x4.
Again, Ai is of form (c6).

Next, assume that S3 = x2 · x4 · x6. If x2 - S4, we have S4 | x3 · x4 · x5 · x6. So
S4 = x3 · x6 · x5 or x3 · x4 · x6 or x3 · x5 · x4 or S4 = x4 · x5 · x6. Since

x3 + x6 + x5 6= x1 + x3 + x6 + x5;
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x3 + x4 + x6 6= x1 + x4 + x3;

x3 + x5 + x4 6= x1 + x4 + x3;

x4 + x5 + x6 6= x2 + x4 + x6,

none of the above cases are possible. So x2 |S4. Then x4, x6 - S4 and thus S4 = x2 ·x5 ·x3.
By the symmetry of x6 and x5 in {S1, S2, S5}, we have Ai is of form (c6).

Subcase 3.2: Ai contains no sequence of length 4. Then |S2| = |S3| = |S4| = |S5| = 3.
Recall that S1 = x1 · x2. Since va(T ) ≥ 2 for every a |S, we have supp(S2S3S4S5) =

supp(S).
We assert that va(S2S3S4S5) = 2 for every a ∈ S.
If there exists a |S such that va(S2S3S4S5) = 3, we may assume a | gcd(S2, S3, S4).

Since
a−1Sν | a

−1S for every ν ∈ [2, 4] ,

there exist m, n ∈ [2, 4] such that
∣

∣gcd
(

a−1Sm, a−1Sn

)
∣

∣ ≥ 1. This implies that | gcd(Sm,
Sn)| ≥ 2, a contradiction. Thus va(S2S3S4S5) ≤ 2 for every a ∈ S. Since |S2S3S4S5| = 12,
we have va(S2S3S4S5) = 2 for every a ∈ S. This proves the assert.

Re call that T = S1S2S3S4S5. By the above assertion, we have vx1
(T ) = vx2

(T ) =
3. So we may assume x1 | gcd(S2, S3) and x2 | gcd(S4, S5). Then x2 - gcd(S2, S3) and
x1 - gcd(S4, S5). Without loss of generality, let S2 = x1 · x3 · x6 and S3 = x1 · x5 · x4.
Since | gcd(S4, S2)| ≤ 1 and | gcd(S4, S3)| ≤ 1, we may assume S4 = x2 · x3 · x5. Then
S5 = x2 · x4 · x6 and therefore, Ai is of form (c7).

Case 4: Ai contains no sequence of length 2. As before, we may assume Ai contains
no sequence of length 4. Then |S1| = · · · = |S5| = 3 and |T | = 15. Since |S| = 6, we
must have va(T ) = 3 for some a |S. As in Subcase 3.2, there exist m 6= n such that
∣

∣gcd(Sm, Sn)
∣

∣ ≥ 2, giving a contradiction.
This completes the proof.

Lemma 7.10. If x1 +x2 = x3 +x4 = x5 +x6 +x1 +x3 = x5 +x6 +x2 +x4 = x5 +x1 +x4,
then f(S) ≥ 19.

Proof. Let
a1 = x1 = x2 + x6 = x4 + x5 + x6,
a2 = x2 = x4 + x5 = x3 + x5 + x6,
a3 = x3 = x1 + x5 = x2 + x5 + x6,
a4 = x4 = x3 + x6 = x1 + x5 + x6,
a5 = x1 + x2 = x3 + x4 = x5 + x6 + x1 + x3 = x5 + x6 + x2 + x4 = x5 + x1 + x4,
a6 = x1 + x3 = x2 + x4 = x1 + x2 + x5 + x6 = x3 + x4 + x5 + x6 = x2 + x3 + x6,
a7 = x1 + x2 + x3 = x1 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6,
a8 = x1 + x2 + x4 = x1 + x2 + x3 + x6 = x1 + x3 + x4 + x5 + x6,
a9 = x1 + x3 + x4 = x2 + x3 + x4 + x6 = x1 + x2 + x4 + x5 + x6,
a10 = x2 + x3 + x4 = x1 + x2 + x4 + x5 = x1 + x2 + x3 + x5 + x6,
a11 = x1 + x2 + x3 + x4 = x1 + x2 + 2x3 + x6 = x1 + x3 + 2x4 + x5,
a12 = x1 + x2 + x3 + x4 + x5 + x6,
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a13 = x1 + x4 = x1 + x3 + x6 = x2 + x4 + x6 = x2 + x3 + 2x6,
a14 = x2 + x3 = x3 + x4 + x5 = x1 + x2 + x5,
a15 = x1 + x2 + x6 = x3 + x4 + x6 = x1 + x4 + x5 + x6 = x1 + x3 + x5 + 2x6,
a16 = x1 + x3 + x5 = x2 + x4 + x5 = x2 + x3 + x5 + x6,
a17 = x5 + x6,
a18 = x5,
a19 = x6,
a20 = x1 + x2 + x3 + x4 + x5,
a21 = x1 + x6.
By Lemma 2.4, we have

a1, a2, . . . , a16

are pairwise distinct.
In view of x1 + x2 = x3 + x4 = x5 + x6 + x1 + x3 = x5 + x6 + x2 + x4, we obtain that

2(x5 + x6) = 0. So a17 6= a1, . . . , a11, a13, a14. By Lemma 2.4, we have a17 6= a12, a15, a16.
Therefore,

a1, . . . , a17

are pairwise distinct.
By Lemma 2.4, we have

a18 6= a1, . . . , a10, a12, a14, . . . , a17;

a19 6= a1, . . . , a10, a12, a13, a15, . . . , a18.

If a18 = a13, then x5 = x1 + x4 = x1 + x3 + x6 = x2 + x4 + x6, so x2 = x4 + x5 =
x3 + x5 + x6 = x1 + x3 + x4 + x6. It follows from Lemma 3.3 that f(S) ≥ 19. So, we may
assume a18 6= a13. Similarly, we may assume that a19 6= a14 , so x6 6= x2 + x3.

If a18 6= a11 and a19 6= a11, then a1, a2, . . . , a19 are pairwise distinct and we are done.
Without loss of generality, let a18 = a11. Then a19 6= a11 and thus a1, a2, . . . , a17, a19 are
pairwise distinct.

By Lemma 2.4, we have a20 6= a1, . . . , a14, a16. Since x6 6= x2 + x3, we have x1 + x2 +
x3 + x4 + x5 6= x1 + x4 + x5 + x6, that is a20 6= a15. Note that x1 + x2 + x3 + x4 + x5 =
x5 + x5 6= x5 + x6. We have a20 6= a17. If a20 6= a19, then a1, . . . a17, a19, a20 are pairwise
distinct and we are done. So, we may assume that a20 = a19, so x1 +x2 +x3 +x4+x5 = x6.
Then we have

a21 = x1 + x6 = x2 + x6 + x6 = x1 + x1 + x2 + x3 + x4 + x5.

Since S has no elements of order 2, again, by Lemma 2.4, we have a21 6= a1, . . . , a17, a19.
Therefore

a1, a2, . . . , a17, a19, a21

are pairwise distinct and we are done.

Lemma 7.11. If x1 + x2 = x1 + x3 + x4 = x1 + x5 + x6 = x2 + x3 + x5 = x2 + x4 + x6,
then f(S) ≥ 19.
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Proof. Let
a1 = x1 = x3 + x5 = x4 + x6,
a2 = x2 = x3 + x4 = x5 + x6,
a3 = x3,
a4 = x4,
a5 = x5,
a6 = x6,
a7 = x1 + x2 = x1 + x3 + x4 = x1 + x5 + x6 = x2 + x3 + x5 = x2 + x4 + x6,
a8 = x3 + x4 + x5 + x6 = x2 + x5 + x6 = x2 + x3 + x4 = x1 + x4 + x6 = x1 + x3 + x5,
a9 = x1 + x3 + x4 + x5 + x6 = x1 + x2 + x5 + x6 = x1 + x2 + x3 + x4,
a10 = x2 + x3 + x4 + x5 + x6 = x1 + x2 + x4 + x6 = x1 + x2 + x3 + x5,
a11 = x1 + x2 + x3 + x4 + x5 + x6,
a12 = x1 + x3 = x3 + x4 + x6 = x2 + x6,
a13 = x1 + x4 = x3 + x4 + x5 = x2 + x5,
a14 = x1 + x5 = x4 + x5 + x6 = x2 + x4,
a15 = x1 + x6 = x3 + x5 + x6 = x2 + x3,
a16 = x2 + x4 + x5 + x6 = x1 + x2 + x5 = x1 + x3 + x4 + x5,
a17 = x2 + x3 + x5 + x6 = x1 + x2 + x6 = x1 + x3 + x4 + x6,
a18 = x2 + x3 + x4 + x6 = x1 + x2 + x3 = x1 + x3 + x5 + x6,
a19 = x2 + x3 + x4 + x5 = x1 + x2 + x4 = x1 + x4 + x5 + x6.
Since S contains no elements of order 2, we have a3 6= a14, a12 6= a19, a13 6= a18,

a14 6= a17, a15 6= a16. This together with Lemma 2.4 shows that

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19

are pairwise distinct and we are done.

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4.

By Lemma 5.1, |Ak| ≤ 5 for all k ∈ [1, r]. If Ai has the form (c1) or (c7) described
in Lemma 7.9, then by Lemma 7.10 or Lemma 7.11, we have f(S) ≥ 19. Next, we may
assume Ai has one of the forms (c2), (c3), (c4), (c5) and (c6). Then we have one of the
following holds correspondingly.

xτ(2) = xτ(3) + xτ(5) + xτ(6) = xτ(4) + xτ(5) = xτ(1) + xτ(3),

xτ(3) = xτ(4) + xτ(5) + xτ(6) = xτ(1) + xτ(5) = xτ(2) + xτ(6),

xτ(1) = xτ(2) + xτ(5) + xτ(6) = xτ(3) + xτ(5) = xτ(4) + xτ(6),

xτ(2) = xτ(3) + xτ(5) + xτ(6) = xτ(1) + xτ(5) = xτ(3) + xτ(4),

and

xτ(2) = xτ(3) + xτ(5) + xτ(6) = xτ(1) + xτ(5) = xτ(3) + xτ(4).

It follows from Lemma 5.1, Lemma 7.2 that Ai induces a class [xτ(j)] of form (b3) described
in Lemma 7.2, and therefore, the lemma follows from Lemma 7.4.
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8 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on Theorem 1.2, and it uses ideas of P. Erdős, W. Gao,
A. Geroldinger, Y. ould Hamidoune et.al. (see [8, Sections 5.3 and 5.4]).

Let G be cyclic of order n ≥ 3 and let S ∈ F(G) be zero-sum free with

|S| ≥
6n + 28

19
.

Let q ∈ N0 be maximal such that S has a representation in the form S = S0S1 · . . . · Sq

with squarefree, zero-sum free sequences S1, . . . , Sq ∈ F(G) of length |Sν| = 6 for all
ν ∈ [1, q]. Among all those representations of S choose one for which d = | supp(S0)| is
maximal, and set S0 = gr1

1 · . . . · grd

d , where g1, . . . , gd ∈ G are pairwise distinct, d ∈ N0

and r1 ≥ · · · ≥ rd ∈ N. Since q is maximal, we have d ∈ [0, 5].
Assume to the contrary that r1 ≤ 1. Then either d = 0 or r1 = . . . = rd = 1, and for

convenience we set F(0) = 0. By Theorem 1.2, Lemmas 2.1 and 2.2, it follows that

|Σ(S)| ≥ |Σ(S0)| +

q
∑

i=1

|Σ(Si)| ≥ |Σ(S0)| + 19q

≥ 19
|S| − d

6
+ F(d) =

19|S| − 19d + 6F(d)

6
≥

19|S| − 28

6
≥ n ,

a contradiction.
Thus it follows that r1 ≥ 2, and we set g = g1. We assert that vg(Si) ≥ 1 for all

i ∈ [1, q]. Assume to the contrary that there exists some i ∈ [1, q] with g - Si. Then there
is an h ∈ supp(Si) with h - S0. Since S may be written in the form

S = (hg−1S0)S1 · . . . · Si−1(gh−1Si)Si+1 · . . . · Sq ,

and | supp(hg−1S0)| > | supp(S0)|, we get a contradiction to the maximality of | supp(S0)|.
Clearly S0 allows a product decomposition of the form

S0 =
5

∏

i=1

T
(i)
1 · . . . · T (i)

qi
,

where all T
(i)
ν ∈ F(G) are squarefree with vg(T

(i)
ν ) = 1, q1, . . . , q5 ∈ N0 and |T

(i)
1 | = . . . =

|T
(i)
qi | = i for all i ∈ [1, 5]. Thus we get

|S| = |S0| + 6q = q1 + 2q2 + 3q3 + 4q4 + 5q5 + 6q ,

vg(S0) = q1 + . . . + q5 and hence vg(S) ≥ q + q1 + . . . + q5 .

Since

n − 1 ≥ |Σ(S)| ≥ |Σ(S0)| +
5

∑

i=1

|Σ(T
(i)
1 · . . . · T (i)

qi
)|

≥ qF(6) +

5
∑

i=1

qiF(i) = 19q + q1 + 3q2 + 5q3 + 8q4 + 13q5 ,
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we infer that

6|S| − (n − 1) ≤ 6(q1 + 2q2 + 3q3 + 4q4 + 5q5 + 6q) − (q1 + 3q2 + 5q3 + 8q4 + 13q5 + 19q)

= 17q + 17q5 + 16q4 + 13q3 + 9q2 + 5q1

≤ 17vg(S) .

We close the paper with a remark on Olson’s constant. Let ol(G) denote the maximal
length of a squarefree, zero-sum free sequence over G, and let Ol(G) be the smallest integer
l ∈ N such that every squarefree sequence S ∈ F(G) of length |S| ≥ l satisfies 0 ∈ Σ(S).
Then 1 + ol(G) = Ol(G), and Ol(G) is called Olson’s constant. If

F(G, k) ≥ 1 + c−2k2 for some k ∈ N and c ∈ R>0 ,

then a simple argument shows that ol(G) < c
√

|G| − 1 (see [8, Lemma 5.1.17] for details).
A survey on Olson’s constant can be found in [6, Section 10].
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