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Abstract

We study new statistics on permutations that are variations on the descent and
the inversion statistics. In particular, we consider the alternating descent set of a
permutation σ = σ1σ2 · · · σn defined as the set of indices i such that either i is odd
and σi > σi+1, or i is even and σi < σi+1. We show that this statistic is equidis-
tributed with the odd 3-factor set statistic on permutations σ̃ = σ1σ2 · · · σn+1 with
σ1 = 1, defined to be the set of indices i such that the triple σiσi+1σi+2 forms an
odd permutation of size 3. We then introduce Mahonian inversion statistics corre-
sponding to the two new variations of descents and show that the joint distributions
of the resulting descent-inversion pairs are the same, establishing a connection to
two classical Mahonian statistics, maj and stat, along the way. We examine the
generating functions involving alternating Eulerian polynomials, defined by analogy
with the classical Eulerian polynomials

∑

σ∈Sn
tdes(σ)+1 using alternating descents.

For the alternating descent set statistic, we define the generating polynomial in two
non-commutative variables by analogy with the ab-index of the Boolean algebra
Bn, providing a link to permutations without consecutive descents. By looking at
the number of alternating inversions, which we define in the paper, in alternating
(down-up) permutations, we obtain a new q-analog of the Euler number En and
show how it emerges in a q-analog of an identity expressing En as a weighted sum
of Dyck paths.

1 Introduction

Specifying the descent set of a permutation can be thought of as giving information on
how the elements are ordered locally, namely, which pairs of consecutive elements are
ordered properly and which are not, the latter constituting the descents. The original
idea that became the starting point of this research was to generalize descent sets to
indicators of relative orders of k-tuples of consecutive elements, the next simplest case
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being k = 3. In this case there are 6 possible relative orders, and thus the analog of the
descent set enumerator Ψn(a,b), also known as the ab-index of the Boolean algebra Bn,
would involve 6 non-commuting variables. In order to defer overcomplication, to keep
the number of variables at 2, and to stay close to classical permutation statistics, we
can divide triples of consecutive elements into merely “proper” or “improper”, defined as
having the relative order of an even or an odd permutation of size 3, respectively. We call
the improper triples odd 3-factors, and denote the set of positions at which odd 3-factors
occur in a permutation σ by D3(σ). Thus we obtain a concept generalizing classical
permutation descents, which could by analogy be called odd 2-factors. It would certainly
be very interesting to develop a general theory around the odd k-factor statistic, but in
this paper we only focus on the k = 3 case.

Computing the number of permutations with a given odd 3-factor set S yields a few
immediate observations. For example, the number of permutations σ ∈ Sn with D3(σ)
equal to a fixed subset S ⊆ [n − 2] is divisible by n. This fact becomes clear upon the
realization that D3(σ) is preserved when the elements of σ are cyclically shifted, so that
1 becomes 2, 2 becomes 3, and so on. As a result, it makes sense to focus on the set S̃n

of permutations of [n] with the first element equal to 1. A second, less trivial observation
arising from early calculations is that the number of permutations in S̃n whose odd 3-
factor set is empty is the Euler number En−1.

This second observation follows from the equidistribution of the statistic D3 on the
set S̃n+1 with another variation on the descent set statistic, this time on Sn, which we
call the alternating descent set (Theorem 2.3). It is defined as the set of positions i at
which the permutation has an alternating descent, which is a regular descent if i is odd
or an ascent if i is even. Thus the alternating descent set D̂(σ) of a permutation σ is the
set of places where σ deviates from the alternating pattern.

Many of the results in this paper that were originally motivated by the odd 3-factor
statistic d3(σ) = |D3(σ)| are actually given in terms of the alternating descent statistic
d̂(σ) = |D̂(σ)|. We show that the alternating Eulerian polynomials, defined as Ân(t) :=
∑

σ∈Sn
td̂(σ)+1 by analogy with the classical Eulerian polynomials, have the generating

function
∑

n≥1

Ân(t) · un

n!
=

t
(

1 − h
(

u(t − 1)
))

h
(

u(t − 1)
)

− t

where h(x) = tan x + sec x, so that the difference with the classical formula (2) below
(specialized at q = 1) is only in that the exponential function is replaced by tangent plus
secant (Theorem 4.2).

A similar parallel becomes apparent in our consideration of the analog of the well
known identity

An(t)

(1 − t)n+1
=
∑

m≥1

mntm (1)

for Ân(t). Given a formal power series f(x) = 1+
∑

n≥1 anxn/n!, we define the symmetric
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function

gf,n :=
∑

γ|=n

(

n

γ

)

· aγ1
aγ2

· · · · Mγ ,

where γ runs over all compositions of n, and

Mγ :=
∑

i1<i2<···

xγ1

i1
xγ2

i2
· · · .

Then (1) can be written as

An(t)

(1 − t)n+1
=
∑

m≥1

gexp,n(1
m) · tm,

and we have
Ân(t)

(1 − t)n+1
=
∑

m≥1

gtan + sec,n(1m) · tm,

where 1m denotes setting the variables x1, x2, . . . , xm to 1 and the remaining variables
to 0 (Proposition 5.2).

In Section 7 we discuss the generating function Ψ̂(a,b) for the number of permutations
in Sn with a given alternating descent set S ⊆ [n− 1], denoted β̂n(S), which is analogous
to the generating polynomial Ψn(a,b) for the regular descent set statistic mentioned ear-
lier. The polynomial Ψn(a,b) can be expressed as the cd-index Φn(c,d) of the Boolean
algebra Bn, where c = a+b and d = ab+ba. We show that Ψ̂n can also be written in
terms of c and d as Φ̂n(c,d) = Φn(c, c2 −d) (Proposition 7.2), and that the sum of ab-
solute values of the coefficients of this (c,d)-polynomial, which is the evaluation Φn(1, 2),
is the n-th term of a notable combinatorial sequence counting permutations in Sn with
no consecutive descents and no descent at the end (Theorem 7.6). This sequence has
properties relevant to this work; in particular, the logarithm of the corresponding expo-
nential generating function is an odd function, which is a crucial property of both ex and
tan x + sec x that emerges repeatedly in the derivations of the results mentioned above.
We discuss the similarities with Euler numbers and alternating permutations in Section 8.

It is natural to wonder if the variations of descents introduced thus far can be ac-
companied by corresponding variations of inversions. For alternating descents it seems
reasonable to consider alternating inversions defined in a similar manner as pairs of in-
dices i < j such that either i is odd and the elements in positions i and j form a regular
inversion, or else i is even and these two elements do not form a regular inversion. As
for odd 3-factors, we define the accompanying 3-inversion statistic, where a 3-inversion
is defined as the number of pairs of indices (i, j) such that i + 1 < j and the elements in
positions i, i + 1, and j, taken in this order, constitute an odd permutation of size 3. Let
ı̂(σ) and i3(σ) be the number of alternating inversions and 3-inversions of a permutation
σ, respectively. We find that the joint distribution of the pair (d̂, ı̂) of statistics on the
set Sn is identical to the distribution of the pair (d3, i3) of statistics on the set S̃n+1

(Theorem 3.7).
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It is important to note that odd 3-factors and 3-inversions can each be defined as
occurrences of a set of generalized permutation patterns: an odd 3-factor is an occurrence
of one of the generalized patterns {132, 213, 321}, and a 3-inversion is an occurrence of one
of the generalized patterns {13-2, 21-3, 32-1}. Connections with results in permutation
pattern theory are briefly discussed at the end of Sections 2 and 3.

Stanley [10] derived a generating function for the joint distribution of the classical
descent and inversion statistics on Sn:

1 +
∑

n≥1

∑

σ∈Sn

td(σ)qinv(σ) · un

[n]q!
=

1 − t

Expq

(

u(t − 1)
)

− t
, (2)

where Expq(x) =
∑

n≥0 q(
n

2)xn/[n]q!, and d(σ) and inv(σ) denote the number of descents
and inversions of σ, respectively. (Another good reference on the subject is a recent pa-
per [9] of Shareshian and Wachs.) It would be nice to produce an analog of the generating
function (2) for these descent-inversion pairs, but this task appears to be challenging, and
it is not even clear what form such a generating function should have, as the q-factorials
in the denominators of (2) are strongly connected to q-binomial coefficients, which have
a combinatorial interpretation of the number of inversions in a permutation obtained by
concatenating two increasing runs of fixed size. Nevertheless the bivariate polynomial
Ân(t, q) :=

∑

σ∈Sn
td̂(σ)q ı̂(σ) seems to be of interest, and in Section 9 we direct our atten-

tion to the q-polynomials that result if we set t = 0. This special case concerns up-down
permutations and, more precisely, their distribution according to the number of alternat-
ing inversions. For down-up permutations this distribution is essentially the same, the
only difference being the order of the coefficients in the q-polynomial, and for our pur-
poses it turns out to be more convenient to work with down-up permutations, so we use
the distribution of ı̂ on them to define a q-analog Ên(q) of Euler numbers. The formal
definition we give is

Ên(q) := q−bn2/4c
∑

σ∈Altn

q ı̂(σ),

where Altn is the set of down-up permutations of [n]. The polynomial Ên(q) is monic
with constant term equal to the Catalan number cbn/2c (Proposition 9.2), which hints at

the possibility to express Ên(q) as the sum of cbn/2c “nice” polynomials with constant
term 1. We discover such an expression in the form of a q-analog of a beautiful identity
that represents En as the sum of weighted Dyck paths of length 2bn/2c. In this identity
we imagine Dyck paths as starting at (0, 0) and ending at (2bn/2c, 0). We set the weight
of an up-step to be the level at which that step is situated (the steps that touch the
“ground” are at level 1, the steps above them are at level 2, and so on) and the weight
of a down-step to be either the level of the step (for even n) or one plus the level of the
step (for odd n). We set the weight of the path to be the product of the weights of all
its steps. The sum of the weights taken over all cbn/2c paths then equals En, and if we

replace the weight of a step with the q-analog of the respective integer, we obtain Ên(q)
(Theorem 9.5).
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The original q = 1 version of the above identity provides a curious connection be-
tween Catalan and Euler numbers. A notable difference between these numbers is in
the generating functions: one traditionally considers the ordinary generating function for
the former and the exponential one for the latter. An interesting and hopefully solvable
problem is the following:

Problem 1.1. Find a generating function interpolating between the classical generating
functions for Catalan and Euler numbers using the above q-analog Ên(q) of Euler numbers.
More specifically, is there a nice expression for the power series

H(q, x) :=
∑

n≥0

Ên(q) · xn

[n]q!
,

so that H(1, x) = tan x + sec x and

H(0, x) =
∑

n≥0

cbn/2cx
n =

(1 + x)
(

1 −
√

1 − 4x2
)

2x2
?

2 Variations on the descent statistic

Let Sn be the set of permutations of [n] = {1, . . . , n}, and let S̃n be the set of permu-
tations σ1σ2 · · ·σn of [n] such that σ1 = 1. For a permutation σ = σ1 · · ·σn, define the
descent set D(σ) of σ by D(σ) = {i | σi > σj} ⊆ [n − 1], and set d(σ) = |D(σ)|.

We say that a permutation σ has an odd 3-factor at position i if the permutation
σiσi+1σi+2, viewed as an element of S3, is odd, namely, is either 132, 213, or 321. Let
D3(σ) be the set of positions at which a permutation σ has an odd 3-factor, and set
d3(σ) = |D3(σ)|. An important property of the odd 3-factor statistic is the following.

Lemma 2.1. Let ωc
n be the cyclic permutation (2 3 . . . n 1), and let σ ∈ Sn. Then

D3(σ) = D3(σωc
n).

Proof. Multiplying σ on the right by ωc
n replaces each σi < n by σi + 1, and the element

of σ equal to n by 1. Thus the elements of the triples σiσi+1σi+2 that do not include n
maintain their relative order under this operation, and in the triples that include n, the
relative order of exactly two pairs of elements is altered. Thus the odd 3-factor set of σ
is preserved.

Corollary 2.2. For all i, j, k, ` ∈ [n] and B ⊆ [n−2], the number of permutations σ ∈ Sn

with D3(σ) = B and σi = j is the same as the number of permutations with D3(σ) = B
and σk = `.

Proof. The set Sn splits into orbits of the form {σ, σωc
n, σ(ωc

n)
2, . . . , σ(ωc

n)n−1}, and each
such subset contains exactly one permutation with a j in the i-th position for all i, j ∈
[n].
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Next, we define another variation on the descent statistic. We say that a permutation
σ = σ1 · · ·σn has an alternating descent at position i if either σi > σi+1 and i is odd,
or else if σi < σi+1 and i is even. Let D̂(σ) be the set of positions at which σ has an
alternating descent, and set d̂(σ) = |D̂(σ)|.

Our first result relates the last two statistics by asserting that the odd 3-factor sets
of permutations in S̃n+1 are equidistributed with the alternating descent sets of permu-
tations in Sn.

Theorem 2.3. Let B ⊆ [n − 1]. The number of permutations σ ∈ S̃n+1 with D3(σ) = B
is equal to the number of permutations ω ∈ Sn with D̂(ω) = B.

Proof (by Pavlo Pylyavskyy, private communication). We construct a bijection between
S̃n+1 and Sn mapping permutations with odd 3-factor set B to permutations with alter-
nating descent set B.

Start with a permutation in σ ∈ S̃n. We construct the corresponding permutation ω
in Sn by the following procedure. Consider n + 1 points on a circle, and label them with
numbers from 1 to n + 1 in the clockwise direction. For convenience, we refer to these
points by their labels. For 1 ≤ i ≤ n, draw a line segment connecting σi and σi+1. The
segment σiσi+1 divides the circle into two arcs. Define the sequence C1, . . . , Cn, where
Ci is one of the two arcs between σi and σi+1, according to the following rule. Choose C1

to be the arc between σ1 and σ2 corresponding to going from σ1 to σ2 in the clockwise
direction. For i > 1, given the choice of Ci−1, let Ci be the arc between σi and σi+1 that
either contains or is contained in Ci−1. The choice of such an arc is always possible and
unique. Let `(i) denote how many of the i points σ1, . . . , σi, including σi, are contained
in Ci.

Now, construct the sequence of permutations ω(i) = ω
(i)
1 . . . ω

(i)
i ∈ Si, 1 ≤ i ≤ n,

as follows. Let ω(1) = `(1). Given ω(i−1), set ω
(i)
i = `(i), and let ω

(i)
1 . . . ω

(i)
i−1 be the

permutation obtained from ω(i−1) by adding 1 to all elements which are greater than or
equal to `i. Finally, set ω = ω(n).

Next, we argue that the map σ 7→ ω is a bijection. Indeed, from the subword ω1 . . . ωi

of ω one can recover `(i) since ωi is the `(i)-th smallest element of the set {ω1, . . . , ωi}.
Then one can reconstruct one by one the arcs Ci and the segments connecting σi and
σi+1 as follows. If `(i) > `(i − 1) then Ci contains Ci−1, and if `(i) ≤ `(i − 1) then Ci

is contained in Ci−1. Using this observation and the number `(i) of the points σ1, . . . , σi

contained in Ci, one can determine the position of the point σi+1 relative to the points
σ1, . . . , σi.

It remains to check that D3(σ) = D̂(ω). Observe that σ has a odd 3-factor in position
i if and only if the triple of points σi, σi+1, σi+2 on the circle is oriented counterclockwise.
Also, observe that ωi > ωi−1 if and only if Ci−1 ⊂ Ci. Finally, note that Ci−1 ⊂ Ci ⊃ Ci+1

or Ci−1 ⊃ Ci ⊂ Ci+1 if and only if triples σi−1, σi, σi+1 and σi, σi+1, σi+2 have the same
orientation. We now show by induction on i that i ∈ D3(σ) if and only if i ∈ D̂(ω). From
the choice of C1 and C2, it follows that C1 ⊂ C2 if and only if σ3 > σ2, and hence ω has an
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(alternating) descent at position 1 if and only if σ1σ2σ3 = 1σ2σ3 is an odd permutation.
Suppose the claim holds for i − 1. By the above observations, we have ωi−1 < ωi > ωi+1

or ωi−1 > ωi < ωi+1 if and only if the permutations σi−1σiσi+1 and σiσi+1σi+2 have the
same sign. In other words, i − 1 and i are either both contained or both not contained
in D̂(ω) if and only if they are either both contained or both not contained in D3(σ). It
follows that i ∈ D3(σ) if and only if i ∈ D̂(ω).

An important special case of Theorem 2.3 is B = ∅. A permutation σ ∈ Sn has
D̂(σ) = ∅ if and only if it is an alternating (up-down) permutation, i.e. σ1 < σ2 > σ3 <
· · · . The number of such permutations of size n is the Euler number En. Thus we get the
following corollary:

Corollary 2.4. (a) The number of permutations in S̃n+1 with no odd 3-factors is En.

(b) The number of permutations in Sn+1 with no odd 3-factors is (n + 1)En.

Proof. Part (b) follows from Corollary 2.2: for each j ∈ [n+1], there are En permutations
in Sn+1 beginning with j.

Permutations with no odd 3-factors can be equivalently described as simultaneously
avoiding generalized patterns 132, 213, and 321 (meaning, in this case, triples of consecu-
tive elements with one of these relative orders). Corollary 2.4(b) appears in the paper [5]
of Kitaev and Mansour on simultaneous avoidance of generalized patterns. Thus the
above construction yields a bijective proof of their result.

3 Variations on the inversion statistic

In this section we introduce analogs of the inversion statistic on permutations correspond-
ing to the odd 3-factor and the alternating descent statistics introduced in Section 2. First,
let us recall the standard inversion statistic. For σ ∈ Sn, let ai be the number of indices
j > i such that σi > σj, and set code(σ) = (a1, . . . , an−1) and inv(σ) = a1 + · · · + an−1.

For a permutation σ ∈ Sn and i ∈ [n− 2], let c3
i (σ) be the number of indices j > i+1

such that σiσi+1σj is an odd permutation, and set code3(σ) = (c3
1(σ), c3

2(σ), . . . , c3
n−2(σ)).

Let Ck be the set of k-tuples (a1, . . . , ak) of non-negative integers such that ai ≤ k +1− i.
Clearly, code3(σ) ∈ Cn−2.

Lemma 3.1. Let ωc
n be the cyclic permutation (2 3 . . . n 1), and let σ ∈ Sn. Then

code3(σ) = code3(σωc
n).

Proof. The proof is analogous to that of Lemma 2.1.

Proposition 3.2. The restriction code3 : S̃n → Cn−2 is a bijection.
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Proof. Since |S̃n| = |Cn−2| = (n − 1)!, it suffices to show that the restriction of code3 to
S̃n is surjective. We proceed by induction on n. The claim is trivial for n = 3. Suppose it
is true for n− 1, and let (a1, . . . , an−2) ∈ Cn−2. Let τ be the unique permutation in S̃n−1

such that code3(τ) = (a2, . . . , an−2). For 1 ≤ ` ≤ n, let ` ∗ τ be the permutation in Sn

beginning with ` such that the relative order of last n− 1 elements of ` ∗ τ is the same as
that of the elements of τ . Setting ` = n− a1 we obtain code3(` ∗ τ) = (a1, . . . , an−2) since
` 1 m is an odd permutation if and only if ` < m, and there are exactly a1 elements of `∗τ
that are greater than `. Finally, by Lemma 3.1, the permutation σ = (`∗ τ)(ωc

n)
1−a1 ∈ S̃n

satisfies code3(σ) = (a1, . . . , an−2).

Let i3(σ) = c3
1(σ) + c3

2(σ) + · · · + c3
n−2(σ). An immediate consequence of Proposition

3.2 is that i3(1 ∗ σ) is a Mahonian statistic on permutations σ ∈ Sn:

Corollary 3.3. We have

∑

σ∈Sn

qi3(1∗σ) = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · · + qn−1).

For a permutation σ ∈ Sn and i ∈ [n − 1], define ĉi(σ) to be the number of indices
j > i such that σi > σj if i is odd, or the number of indices j > i such that σi < σj if i is

even. Set ˆcode(σ) = (ĉ1(σ), . . . , ĉn−1(σ)) ∈ Cn−1 and ı̂(σ) = ĉ1(σ) + · · ·+ ĉn−1(σ).

Proposition 3.4. The map ˆcode : Sn → Cn−1 is a bijection.

Proof. The proposition follows easily from the fact that if code(σ) = (a1, . . . , an−1) is the
standard inversion code of σ, then ˆcode(σ) = (a1, n− 2− a2, a3, n− 4− a4, . . .). Since the
standard inversion code is a bijection between Sn and Cn−1, so is ˆcode.

Corollary 3.5. We have

∑

σ∈Sn

q ı̂(σ) = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · · + qn−1).

Another way to deduce Corollary 3.5 is via the bijection σ ↔ σ∨, where

σ∨ = σ1σ3σ5 · · ·σ6σ4σ2.

Proposition 3.6. We have ı̂(σ) = inv(σ∨).

Proof. It is easy to verify that a pair (σi, σj), i < j, contributes to ı̂(σ) if and only if it
contributes to inv(σ∨).

Next, we prove a fundamental relation between the variants of the descent and the
inversion statistics introduced thus far.
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Theorem 3.7. We have

∑

σ∈S̃n+1

td3(σ)qi3(σ) =
∑

ω∈Sn

td̂(ω)q ı̂(ω).

Proof. The theorem is a direct consequence of the following proposition.

Proposition 3.8. If code3(σ) = ˆcode(ω) for some σ ∈ S̃n+1 and ω ∈ Sn, then D3(σ) =
D̂(ω).

Proof. The alternating descent set of ω can be obtained from ˆcode(ω) as follows:

Lemma 3.9. For ω ∈ Sn, write (a1, . . . , an−1) = ˆcode(ω), and set an = 0. Then D̂(ω) =
{i ∈ [n − 1] | ai + ai+1 ≥ n − i}.

Proof. Suppose i is odd; then if ωi > ωi+1, i.e. i ∈ D̂(ω), then for each j > i we have
ωi > ωj or ωi+1 < ωj or both, so ai + ai+1 is not smaller than n − i, which is the number

of elements of ω to the right of ωi; if on the other hand ωi < ωi+1, i.e. i /∈ D̂(ω), then
for each j > i, at most one of the inequalities ωi > ωj and ωi+1 < ωj holds, and neither
inequality holds for j = i + 1, so ai + ai+1 ≤ n − i − 1, which is the number of elements
of ω to the right of ωi+1. The case of even i is analogous.

We now show that the odd 3-factor set of σ can be obtained from (a1, . . . , an−1) in the
same way.

Lemma 3.10. For σ ∈ S̃n+1, write (a1, . . . , an−1) = code3(σ), and set an = 0. Then
D3(σ) = {i ∈ [n − 1] | ai + ai+1 ≥ n − i}.

Proof. Let B = D3(σ), and let σ′ = σ(ωc
n+1)

1−σi ∈ Sn+1. Then σ′
i = 1, and by Lemmas

2.1 and 3.1, we have D3(σ
′) = D3(σ) = B and code3(σ

′) = code3(σ).

Suppose that 1 = σ′
i < σ′

i+1 < σ′
i+2. Then i /∈ B, and for each j > i+2, at most one of

the permutations σ′
iσ

′
i+1σ

′
j = 1σ′

i+1σ
′
j and σ′

i+1σ
′
i+2σ

′
j is odd, because 1σ′

i+1σ
′
j is odd if and

only if σ′
i+1 > σ′

j, and σ′
i+1σ

′
i+2σ

′
j is odd if and only if σ′

i+1 < σ′
j < σ′

i+2. Hence ai + ai+1

is at most n − 1 − i, which is the number of indices j ∈ [n + 1] such that j > i + 2.

Now suppose that 1 = σ′
i < σ′

i+1 > σ′
i+2. Then i ∈ B, and for each j > i + 2, at least

one of the permutations σ′
iσ

′
i+1σ

′
j = 1σ′

i+1σ
′
j and σ′

i+1σ
′
i+2σ

′
j is odd, because σ′

i+1 > σ′
j

makes 1σ′
i+1σ

′
j odd, and σ′

i+1 < σj makes σ′
i+1σ

′
i+2σ

′
j odd. Thus each index j > i + 1

contributes to at least one of ai and ai+1, so ai + ai+1 ≥ n − i, which is the number of
indices j ∈ [n + 1] such that j > i + 1.

Proposition 3.8 follows from Lemmas 3.9 and 3.10.
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Combining the results of the above discussion, we conclude that both polynomials of
Theorem 3.7 are equal to

∑

(a1 ,...,an−1)∈Cn−1

t|D̂(a1 ,...,an−1)| qa1+···+an−1 ,

where D̂(a1, . . . , an−1) = {i ∈ [n − 1] | ai + ai+1 ≥ n − i}.

Note that the bijective correspondence

σ ∈ Sn

ˆcode−−−−−→ c ∈ Cn−1
(code3)−1

−−−−−−−−→ ω ∈ S̃n+1

satisfying D̂(σ) = D3(ω) yields another bijective proof of Theorem 2.3.

Besides the inversion statistic, the most famous Mahonian statistic on permutations
is the major index. For σ ∈ Sn, define the major index of σ by

maj(σ) =
∑

i∈D(σ)

i.

Our next result reveals a close relation between the major index and the 3-inversion
statistic i3.

Proposition 3.11. For σ ∈ Sn, write σrc = σ′
n · · ·σ′

2σ
′
1, where σ′

i = n + 1 − σi. Then

i3(1 ∗ σ) = maj(σrc).

Proof. Let σ = 1 ∗ ω ∈ S̃n+1. Let D(σ) = {b1 < · · · < bd}. Write σ = τ (1)τ (2) · · · τ (d+1),
where τ (k) = σbk−1+1σbk−1+2 · · ·σbk

and b0 = 0 and bd+1 = n. In other words, we split σ
into ascending runs between consecutive descents. Fix an element σj of σ, and suppose
σj ∈ τ (k). We claim that there are exactly k − 1 indices i < j − 1 such that σiσi+1σj is
an odd permutation. For each ascending run τ (`), ` < k, there is at most one element
σi ∈ τ (`) such that σi < σj < σi+1, in which case σiσi+1σj is odd. There is no such element
in τ (`) if and only if the first element σb`−1+1 of τ (`) is greater than σj, or the last element
σb`

of τ (`) is smaller than σj. In the former case we have σb`−1 > σb`
> σj, so σb`−1σb`

σj

is odd, and in the latter case, σj > σb`
> σb`+1, so σb`

σb`+1σj is odd. Thus we obtain a
one-to-one correspondence between the k−1 ascending runs τ (1), . . . , τ (k−1) and elements
σi such that σiσi+1σj is an odd permutation.

We conclude that for each τ (k), there are (k− 1) · (bk − bk−1) odd triples σiσi+1σj with
σj ∈ τ (k), and hence

i3(σ) =

d+1
∑

k=1

(k − 1) · (bk − bk−1)

= (bd+1 − bd) + (bd+1 − bd + bd − bd−1) + (bd+1 − bd + bd − bd−1 + bd−1 − bd−2) + · · ·

=
d
∑

m=1

(n − bm).
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We have D(ω) = {b1 − 1, b2 − 1, . . . , bd − 1}, from where it is not hard to see that
D(ωrc) = {n − bd, n − bd−1, . . . , n − b1}. The proposition follows.

Observe that for a permutation π with πrc = π′
m · · ·π′

1, the triple πiπi+1πi+2 is odd if
and only if the triple πi+2πi+1πi is even, which in turn is the case if and only if the triple
π′

i+2π
′
i+1π

′
i of consecutive elements of πrc is odd. Thus d3(π) = d3(π

rc), and we obtain the
following corollary.

Corollary 3.12. We have

∑

σ∈S̃n+1

td3(σ)qi3(σ) =
∑

ω∈Sn

td3(ω◦(n+1))qmaj(ω),

where ω ◦ (n + 1) is the permutation obtained by appending (n + 1) to the right of ω.

Proof. To deduce the identity from Proposition 3.11, write σ = 1 ∗ π and set ω = πrc, so
that ω ◦ (n + 1) = σrc.

In the language of permutation patterns, the statistic i3(σ) can be defined as the total
number of occurrences of generalized patterns 13-2, 21-3, and 32-1 in σ. (An occurrence
of a generalized pattern 13-2 in a permutation σ = σ1σ2 · · · is a pair of indices (i, j) such
that i + 1 < j and σi, σi+1, and σj have the same relative order as 1, 3, and 2, that is,
σi < σj < σi+1, and the other two patterns are defined analogously.) In [1] Babson and
Steingŕımsson mention the Mahonian statistic stat(σ), which is defined as i3(σ) (treated
in terms of the aforementioned patterns) plus d(σ). In the permutation σ ◦ (n+1), where
σ ∈ Sn, the descents of σ and the last element n + 1 constitute all occurrences of the
pattern 21-3 involving n + 1, and hence i3

(

σ ◦ (n + 1)
)

= stat(σ).

4 Variations on Eulerian polynomials

Having introduced two new descent statistics, it is natural to look at the analog of the
Eulerian polynomials representing their common distribution on Sn. First, recall the
definition of the classical n-th Eulerian polynomial:

An(t) :=
∑

σ∈Sn

td(σ)+1 =
n
∑

k=1

A(n, k) · tk,

where A(n, k) is the number of permutations in Sn with k − 1 descents. There is a
well-known formula for the exponential generating function for Eulerian polynomials:

E(t, u) =
∑

n≥1

An(t) · un

n!
=

t(1 − eu(t−1))

eu(t−1) − t
. (3)
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In this section we consider analogs of Eulerian numbers and polynomials for our vari-
ations of the descent statistic. Define the alternating Eulerian polynomials Ân(t) by

Ân(t) :=
∑

σ∈Sn

td̂(σ)+1 =

n
∑

k=1

Â(n, k) · tk,

where Â(n, k) is the number of permutations in Sn with k − 1 alternating descents. Our
next goal is to find an expression for the exponential generating function

F (t, u) :=
∑

n≥1

Ân(t) · un

n!
.

We begin by deducing a formula for the number of permutations in Sn with a given
alternating descent set. For S ⊆ [n−1], let β̂n(S) be the number of permutations σ ∈ Sn

with D̂(σ) = S, and let α̂n(S) =
∑

T⊆S β̂n(T ) be the number of permutations σ ∈ Sn

with D̂(σ) ⊆ S. For S = {s1 < · · · < sk} ⊆ [n − 1], let co(S) be the composition
(s1, s2 − s1, s3 − s2, . . . , sk − sk−1, n − sk) of n, and for a composition γ = (γ1, . . . , γ`) of
n, let Sγ be the subset {γ1, γ1 + γ2, . . . , γ1 + · · ·+ γ`−1} of [n − 1]. Also, define

(

n

γ

)

:=

(

n

γ1, . . . , γ`

)

=
n!

γ1! · · ·γ`!

and
(

n

γ

)

E

:=

(

n

γ1, . . . , γ`

)

· Eγ1
· · ·Eγ`

.

Lemma 4.1. We have

α̂n(S) =

(

n

co(S)

)

E

and

β̂n(S) =
∑

T⊆S

(−1)|S−T |

(

n

co(T )

)

E

.

Proof. Let S = {s1 < · · · < sk} ⊆ [n − 1]. Set s0 = 0 and sk+1 = n for convenience. The
alternating descent set of a permutation σ ∈ Sn is contained in S if and only if for all
1 ≤ i ≤ k + 1, the subword τi = σsi−1+1σsi−1+2 · · ·σsi

forms either an up-down (if si−1 is
even) or a down-up (if si−1 is odd) permutation. Thus to construct a permutation σ with
D̂(σ) ⊆ S, one must choose one of the

(

n
s1−s0,s2−s1,...,sk+1−sk

)

=
(

n
co(S)

)

ways to distribute

the elements of [n] among the subwords τ1, . . . , τk+1, and then for each i ∈ [k + 1],
choose one of the Esi−si−1

ways of ordering the elements within the subword τi. The first
equation of the lemma follows. The second equation is obtained from the first via the
inclusion-exclusion principle.
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Now consider the sum

∑

S⊆[n−1]

(

n

co(S)

)

E

x|S| =
∑

S⊆[n−1]

α̂n(S) · x|S| =
∑

σ∈Sn

∑

T⊇D̂(σ)

x|T | (4)

(a permutation σ contributes to α̂n(T ) whenever T ⊇ D̂(σ)). The right hand side of (4)
is equal to

∑

σ∈Sn

∑

T⊇D̂(σ)

xd̂(σ)+|T−D̂(σ)| =
∑

σ∈Sn

xd̂(σ)

n−1−d̂(σ)
∑

i=0

(

n − 1 − d̂(σ)

i

)

xi

=
∑

σ∈Sn

xd̂(σ)(1 + x)n−1−d̂(σ), (5)

as there are
(

n−1−d̂(σ)
i

)

subsets of [n−1] containing D̂(σ). Continuing with the right hand
side of (5), we get

(1 + x)n

x
·
∑

σ∈Sn

(

x

1 + x

)d̂(σ)+1

=
(1 + x)n

x
· Ân

(

x

1 + x

)

. (6)

Combining equations (4)–(6), we obtain

∑

n≥1





∑

S⊆[n−1]

(

n

co(S)

)

E

x|S|



 · yn

n!
=

1

x
·
∑

n≥1

Ân

(

x

1 + x

)

· yn(1 + x)n

n!
. (7)

Since S 7→ co(S) is a bijection between [n − 1] and the set of compositions of n, the left
hand side of (7) is

∑

n≥1

(

∑

γ

Eγ1
· · ·Eγ`

γ1! · · ·γ`!
· x`−1

)

· yn =
1

x
·
∑

`≥1

x` ·
(

∑

i≥1

Eiy
i

i!

)`

, (8)

where the inside summation in the left hand side is over all compositions γ = (γ1, . . . , γ`)
of n. Applying the well-known formula

∑

j≥0 Ejy
j/j! = tan y + sec y, the right hand side

of (8) becomes

1

x
·
∑

`≥1

x`(tan y + sec y − 1)` =
1

x
·
(

1

1 − x(tan y + sec y − 1)
− 1

)

. (9)

Now set t = x
1+x

and u = y(1+x). Equating the right hand sides of (7) and (9), we obtain

F (t, u) =
∑

n≥1

Ân(t) · un

n!
=

(

1

1 − x(tan y + sec y − 1)
− 1

)

. (10)
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Finally, applying the inverse substitution x = t
1−t

and y = u(1− t) and simplifying yields
an expression for F (t, u):

F (t, u) =
x(tan y + sec y − 1)

1 − x(tan y + sec y − 1)

=
t

1 − t
·
(

tan y + sec y − 1

1 − t
1−t

· (tan y + sec y − 1)

)

=
t ·
(

tan(u(1 − t)) + sec(u(1 − t)) − 1
)

1 − t ·
(

tan(u(1 − t)) + sec(u(1 − t))
) . (11)

Using the property (tan z + sec z)(tan(−z) + sec(−z)) = 1, we can rewrite the above
expression for F (t, u) as follows:

Theorem 4.2. We have

F (t, u) =
t ·
(

1 − tan(u(t − 1)) − sec(u(t − 1))
)

tan(u(t − 1)) + sec(u(t − 1)) − t
.

Thus F (t, u) can be expressed by replacing the exponential function in the formula (3)
for E(t, u) by tangent plus secant. In fact, omitting the Euler numbers and working with
standard multinomial coefficients gives a proof of (3).

A basic result on Eulerian polynomials is the identity

An(t)

(1 − t)n+1
=
∑

m≥1

mntm. (12)

Our next result is a similar identity involving alternating Eulerian polynomials. For a
partition λ of n with ri parts equal to i, define

zλ := 1r1 · r1! · 2r2 · r2! · · · · .

Theorem 4.3. Let

f̂n(m) =
∑

λ

n!

zλ
· Eλ1−1Eλ2−1 · · ·
(λ1 − 1)!(λ2 − 1)! · · · · m

`(λ),

where the sum is over all partitions λ = (λ1, λ2, . . . , λ`(λ)) of n into odd parts. Then

Ân(t)

(1 − t)n+1
=
∑

m≥1

f̂n(m)tm.

Proof. Let us consider the generating function

G(t, u) :=
∑

n≥1

Â(t)

(1 − t)n+1
· un

n!
.
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Then, by (11), we have

G(t, u) =
1

1 − t
· F
(

t,
u

1 − t

)

=
t · (tanu + sec u − 1)

(1 − t)
(

1 − t · (tan u + sec u)
) . (13)

Define

H(m, u) :=
∑

n≥1

f̂n(m) · un

n!
.

This series can be rewritten as follows:

H(m, u) =
∑

n≥1

f̂n(m)

n!
· un = −1 +

∏

i≥0

∑

j≥0

1

j!

(

E2imu2i+1

(2i + 1)!

)j

. (14)

Indeed, for each i, the index j in the summation is the number of parts equal to 2i + 1 in
a partition of n into odd parts, and it is not hard to check that the contribution of j parts
equal to 2i + 1 to the appropriate terms of f̂n(m)/n! is given by the expression inside the
summation on the right. We subtract 1 to cancel out the empty partition of 0 counted
by the product on the right but not by H(m, u). Continuing with the right hand side of
(14), we get

H(m, u) + 1 =
∏

i≥0

exp

(

E2imu2i+1

(2i + 1)!

)

= exp

(

m
∑

i≥0

(

E2iu
2i+1

(2i + 1)!

)

)

. (15)

The sum in the right hand side of (15) is the antiderivative of
∑

i≥0 E2iu
2i/(2i)! = sec u

that vanishes at u = 0; this antiderivative is ln(tanu + sec u). Therefore

H(m, u) + 1 = (tanu + sec u)m.

Hence we have
∑

m≥1

H(m, u) · tm =
(tanu + sec u) · t

1 − (tanu + sec u) · t −
1

1 − t
. (16)

It is straightforward to verify that the right hand sides of (13) and (16) agree, and thus

∑

n≥1

Ân(t)

(1 − t)n+1
· un

n!
= G(t, u) =

∑

m≥1

H(m, u)tm =
∑

m,n≥1

f̂n(m)tm · un

n!
. (17)

Equating the coefficients of un/n! on both sides of (17) completes the proof of the theorem.

In the terminology of [12, Sec. 4.5], Theorem 4.3 states that the polynomials Ân(t) are
the f̂n-Eulerian polynomials.

the electronic journal of combinatorics 15 (2008), #R132 15



5 Eulerian polynomials and symmetric functions

The results of the previous section can be tied to the theory of symmetric functions. Let us
recall some basics. For a composition γ = (γ1, γ2, . . . , γk), the monomial quasisymmetric
function Mγ(x1, x2, . . .) is defined by

Mγ :=
∑

1≤i1<···<ik

xγ1

i1
xγ2

i2
· · ·xγk

ik
.

Let π(γ) denote the partition obtained by rearranging the parts of γ in non-increasing
order. Then for a partition λ, the monomial symmetric function mλ(x1, x2, . . .) is defined
as

mλ :=
∑

γ : π(γ)=λ

Mγ .

Let f(x) be a function given by the formal power series

f(x) = 1 +
∑

n≥1

anxn

n!
.

Define the symmetric function gf,n(x1, x2, . . .) by

gf,n :=
∑

γ|=n

(

n

γ

)

· aγ1
aγ2

· · · · Mγ =
∑

λ`n

(

n

λ

)

· aλ1
aλ2

· · · · mλ,

where by γ |= n and λ ` n we mean that γ and λ are a composition and a partition of
n, respectively. This function can be thought of as the generating function for numbers
like αn(S) or α̂n(S) (the number of permutations σ ∈ Sn with D(σ) ⊆ S or D̂(σ) ⊆ S,
respectively). Our first step is to express gf,n in terms of the power sum symmetric
functions pk(x1, x2, . . .) =

∑

xk
i .

Consider the generating function

Gf(x1, x2, . . . ; u) :=
∑

n≥0

gf,n · un

n!
. (18)

Then we have
Gf =

∑

n≥0

∑

γ|=n

aγ1
aγ2

· · ·
γ1!γ2! · · ·

· Mγu
n =

∏

i≥1

f(xiu). (19)

Now let us write

ln(f(x)) =
∑

n≥1

bnxn

n!
. (20)

Then from (19) we have

ln Gf =
∑

i≥1

ln(f(xiu)) =
∑

n≥1

bnpn(x1, x2, . . .) ·
un

n!
. (21)
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Since the power sum symmetric functions pλ = pλ1
pλ2

· · · , with λ ranging over all parti-
tions of positive integers, form a basis for the ring of symmetric functions, the transforma-
tion pn 7→ bnpnun/(n − 1)!, where u is regarded as a scalar, extends to a homomorphism
of this ring. Applying this homomorphism to the well-known identity

exp
∑

n≥1

1

n
· pn =

∑

λ

z−1
λ pλ,

where λ ranges over all partitions of positive integers, we obtain from (21) that

Gf = exp
∑

n≥1

1

n
·
(

bnpnun

(n − 1)!

)

=
∑

λ

z−1
λ · bλ1

bλ2
· · ·

(λ1 − 1)!(λ2 − 1)! · · · · pλu
|λ|. (22)

Comparing the coefficients of un in (18) and (22), we conclude the following:

Proposition 5.1. For a function f(x) with f(0) = 1 and ln(f(x)) =
∑

n≥1 bnxn/n! we
have

gf,n =
∑

λ`n

n!

zλ
· bλ1

bλ2
· · ·

(λ1 − 1)!(λ2 − 1)! · · · · pλ.

Two special cases related to earlier discussion are f(x) = ex and f(x) = tanx + sec x.
For f(x) = ex, we have b1 = 1, b2 = b3 = · · · = 0, and hence gf,n = pn

1 . In the case of
f(x) = tan x + sec x, we have

bi =

{

Ei−1 if i is odd,
0 if i is even,

thus the coefficient at pλ in the expression of Proposition 5.1 coincides with the coefficient
in the term for λ in the definition of the polynomial f̂n(m) of Theorem 4.3. These obser-
vations lead to the following restatements of the classical identity (12) and Theorem 4.3.

Proposition 5.2. Let g(1m) denote the evaluation of g(x1, x2, . . .) at x1 = x2 = · · · =
xm = 1, xm+1 = xm+2 = · · · = 0. Then

An(t)

(1 − t)n+1
=
∑

m≥1

gexp,n(1m) · tm

and
Ân(t)

(1 − t)n+1
=
∑

m≥1

gtan + sec,n(1m) · tm.

Proof. We have pi(1
m) = m, and hence pλ(1

m) = m`(λ).
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We conclude the section with a pair of problems.

Problem 5.3. Prove Proposition 5.2 without referring to the results of Section 4.

Observe that for γ = (γ1, γ2, . . . , γk) |= n, we have Mγ(1
m) =

(

m
k

)

, the number of
monomials xγ1

i1
xγ2

i2
· · ·xγk

ik
where 1 ≤ i1 < · · · < ik ≤ m, which are the monomials in the

definition of Mγ that evaluate to 1.

It would also be of interest to relate the observations of this section to Schur functions.
One possibility is to consider the following generalization of the complete homogeneous
symmetric function. Let ϕf be the homomorphism of the ring of symmetric functions
defined by pn 7→ bnpn/(n − 1)!, where the bi’s are as in equation (20). Let

hf,n :=
∑

λ`n

z−1
λ ϕf(pλ).

For f(x) = (1− x)−1, the homomorphism ϕ is identity, and hf,n is the standard complete
homogeneous symmetric function hn, defined to be the sum of all monomials in x1, x2,
. . . , of degree n. Then (22) becomes

Gf =
∑

n≥1

hf,nun

(we do not really need u here because of homegeneity). We can define the generalized
Schur function sf,λ, where λ = (λ1, λ2, . . .) ` n, by the Jacobi-Trudi identity

sf,λ := det
[

hf, λi−i+j

]

1≤i,j≤n
,

where hf,0 = 1 and hf,k = 0 for k < 0 (see [13, Sec. 7.16]).

Problem 5.4. What can be said about sf,λ for f(x) = ex and f(x) = tan x + sec x?

6 The alternating Eulerian numbers

In this section we give a recurrence relation that allows to construct a triangle of alter-
nating Eulerian numbers Â(n, k) introduced in Section 4. (Recall that Â(n, k) denotes
the number of permutations in Sn with k− 1 alternating descents.) The first few rows of
this triangle are given in Table 2.1.

The following lemma provides a way to compute alternating Eulerian numbers given
the initial condition Â(n, 1) = En.

Lemma 6.1. For n ≥ k ≥ 0 we have

n
∑

i=0

k
∑

j=0

(

n

i

)

· Â(i, j + 1) · Â(n − i, k − j + 1)

= (n + 1 − k)Â(n, k + 1) + (k + 1)Â(n, k + 2). (23)
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1

1 1

2 2 2

5 7 7 5

16 26 36 26 16

61 117 182 182 117 61

272 594 1056 1196 1056 594 272

Table 1: Triangle of alternating Eulerian numbers

Proof. First, suppose that k is even. The left hand side of the equation counts the number
of ways to split the elements of [n] into two groups of sizes i and n − i, arrange the
elements in the first and the second group so that the resulting permutations have j and
k − j alternating descents, respectively, and writing down the second permutation after
the first to form a permtutation of [n]. This permutation has either k or k +1 alternating
descents, depending on whether an alternating descent is produced at position i. For a
permutation σ ∈ Sn with ı̂(σ) = k, there are exactly n + 1 − k ways to produce σ by
means of the above procedure, one for every choice of i ∈ D̂(σ) ∪ {0, n}. Similarly, for
σ ∈ Sn such that ı̂(σ) = k + 1, there are exactly k + 1 ways to produce σ, one for every
choice of i ∈ D̂(σ). The identity follows.

As for odd k, the same argument is valid, except that the quantity Â(n− i, k − j + 1)
in the left hand side should be interpreted as the number of ways to arrange the elements
of the second group to form a permutation with k − j alternating ascents, which become
alternating descents when the two permutations are concatenated.

Recall the generating function

F (t, u) =
∑

n,k≥1

Â(n, k) · tkun

n!

introduced in Section 4. An alternative way to express F (t, u) and obtain the result of
Theorem 4.2 is by solving a partial differential equation arising from the recurrence of
Lemma 6.1.

Proposition 6.2. The function F (t, u) is the solution of the partial differential equation

F 2 − F = u · ∂F

∂u
+ (1 − t) · ∂F

∂t
(24)

with the initial condition F (0, u) = tanu + sec u.
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Proof. Since Â(n, 0) = 0 for all n, the left hand side of (23) is n! times the coefficient of

tkun in
(

F (t, u)
)2

, which we denote by [tkun]F 2. The right hand side of (23) is

n! ·
(

Â(n, k + 1)

(n − 1)!
+

Â(n, k + 1)

n!
− kÂ(n, k + 1)

n!
+

(k + 1)Â(n, k + 2)

n!

)

= n! ·
(

[tkun]Fu + [tkun]F − [tk−1un]Ft + [tkun]Ft

)

= n! · [tkun] (uFu + F − tFt + Ft) ,

where Ft and Fu denote partial derivatives of F with respect to t and u. Equating the
above with n! · [tkun]F 2 proves (24).

7 The generating function for the alternating descent

set statistic

Besides the generating polynomials for the alternating descent statistic, another natural
generating function to consider is one counting permutations by their alternating descent
set. We begin by stating some well-known facts about the analogous generating function
for the classical descent set statistic.

Fix a positive integer n. For a subset S ⊆ [n − 1], define the monomial uS in two
non-commuting variables a and b by uS = u1u2 · · ·un−1, where

ui =

{

a if i /∈ S,
b if i ∈ S.

Consider the generating function

Ψn(a,b) :=
∑

S⊆[n−1]

βn(S)uS,

where βn(S) is the number of permutations in Sn with descent set S. The polyno-
mial Ψn(a,b) is known as the ab-index of the Boolean algebra Bn. A remarkable property
of Ψn(a,b) (and also of ab-indices of a wide class of posets, including face lattices of poly-
topes) is that it can be expressed in terms of the variables c = a+b and d = ab+ba.
The polynomial Φn(c,d) defined by Ψn(a,b) = Φn(a+b, ab+ba) is called the cd-index
of Bn.

The polynomial Φn(c,d) has positive integer coefficients, for which several combinato-
rial interpretations have been found. Here we give one that will help establish a connection
with the alternating descent set statistic. We proceed with a definition.

Definition 7.1. A permutation is simsun if, for all k ≥ 0, removing k largest elements
from it results in a permutation with no consecutive descents.
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Let SSn be the set of simsun permutations in Sn whose last element is n. (Thus SSn

is essentially the set of simsun permutations of [n− 1] with an n attached at the end.) It
is known that | SSn | = En.

For a permutation σ ∈ SSn, define the (c,d)-monomial cd(σ) as follows: write out
the descent set of σ as a string of pluses and minuses denoting ascents and descents,
respectively, and then replace each occurrence of “ – + ” by d, and each remaining plus
by c. This definition is valid because a simsun permutation has no consecutive descents.
For example, consider the permutation 423516 ∈ SS6. Its descent set in the above notation
is “ – + + – + ”, and thus cd(423516) = d cd.

The simsun permutations provide a combinatorial expression for the cd-index of Bn:

Φn(c,d) =
∑

σ∈SSn

cd(σ) (25)

(see for example [11, Prop. 2.2]).

Now let us define the analog of Ψn(a,b) for the alternating descent set statistic:

Ψ̂n(a,b) :=
∑

S⊆[n−1]

β̂n(S)uS.

Proposition 7.2. There exists a polynomial Φ̂n(c,d) such that

Φ̂n(a+b, ab+ba) = Ψ̂n(a,b),

namely, Φ̂n(c,d) = Φn(c, c2 −d).

Proof. Note that Ψ̂n(a,b) is the polynomial obtained from Ψ(a,b) by switching the let-
ters at even positions in all the (a,b)-monomials. For example, we have Ψ3(a,b) =
a a+2 ab+2ba+bb, so Ψ̂3(a,b) = ab+2 a a+2bb+ba. In terms of the variables c

and d, this operation corresponds to replacing d = ab+ba with a a+bb = c2 −d, and
c = a+b with either a+b or b+ a, which in any case is still equal to c.

The polynomial Φ̂n(c,d) has both positive and negative coefficients, but the polyno-
mial Φ̂n(c, −d) = Φn(c, c2 +d) has only positive coefficients. It would be nice to give
a combinatorial interpretation for these coefficients similar to that of the coefficients of
Φn(c,d), so that the coefficients of Φ̂n(c, −d) enumerate permutations of a certain kind
according to some statistic. In what follows we show that the sum of the coefficients of
Φ̂n(c, −d) is equal to the number of permutations containing no consecutive descents
and not ending with a descent. Let Rn denote the set of such permutations of [n].

In working with the different kinds of permutations that have emerged thus far we use
the approach of min-tree representation of permutations introduced by Hetyei and Reiner
[4]. To a word w whose letters are distinct elements of [n], associate a labeled rooted
planar binary tree according to the following recursive rule. Let m be the smallest letter
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Figure 1: The tree T (423516)

of w, and write w = w1 ◦m◦w2, where ◦ denotes concatenation. Then form the tree T (w)
by labeling the root with m and setting the left and the right subtrees of the root to be
T (w1) and T (w2), respectively. To the empty word we associate the empty tree. Thus
T (w) is an increasing rooted planar binary tree, i.e. the distinction between left and right
children is being made. For example, T (423516) is the tree shown in Figure 1.

To get the word w back from the tree T (w), simply read the labels of the nodes of
T (w) in topological order.

Next, we formulate some of the permutation properties from the above discussion in
terms of the min-tree representation.

Lemma 7.3. A permutation σ has no consecutive descents if and only if the tree T (σ) has
no node whose only child is a left child, except maybe for the rightmost node in topological
order.

Proof. Write σ = s1s2 · · · sn and T = T (σ). For convenience, we refer to the nodes of T
by their labels. We have si > si+1 if and only if si+1 is an ancestor of si in T . Since si

and si+1 are consecutive nodes in the topological reading of T , it follows that si+1 is an
ancestor of si if and only if si has no right child. Thus we have si > si+1 > si+2 if and
only if si+1 has no right child and si is a descendant of si+1, i.e. si+1 has a lone left child.
The proposition follows.

Proposition 7.4. A permutation σ is in Rn if and only if the tree T (σ) has no node
whose only child is a left child.

Proof. We have sn−1 > sn if and only if the rightmost node sn has a (lone) left child. The
proposition now follows from Lemma 7.3.

Proposition 7.5. A permutation σ is in SSn if and only if the rightmost node of T (σ)
is labeled n, no node has a lone left child, and for every node s not on the rightmost path
(the path from the root to the rightmost node) that has both a left child t and a right child
u, the inequality t > u holds.
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Figure 2: The tree F2(T (423516))

Proof. If T (σ) has a node s not on the rightmost path whose left child t is smaller than its
right child u, then removing the elements of σ that are greater than or equal to u results
in a permutation σ′ such that in T (σ′), the node s has a lone left child t and is not the
rightmost node, meaning that σ′ contains a pair of consecutve descents, by Lemma 7.3.
If on the other hand T (σ) has no such node s, the removing k largest elements of σ does
not create any nodes with a lone left child except maybe for the rightmost node.

One can see that for σ = 423516, the tree T (σ) shown in Figure 1 satisfies all conditions
of Proposition 7.5, and hence 423516 ∈ SS6. Next, we consider the sum of coefficients of
Φ̂n(c, −d).

Theorem 7.6. The sum of coefficients of Φ̂n(c, −d) is |Rn|.

Proof. The sum of coefficients of Φ̂n(c, −d) is Φ̂n(1,−1) = Φn(1, 2), which equals
∑

σ∈SSn

2d(σ),

where d(σ) is the number of d’s in cd(σ), or, equivalently, the number of descents of σ.
Since the descents of σ correspond to nodes of T (σ) that have no right child (except for the
rightmost node, which corresponds to the last element of σ), it follows from Proposition
7.4 that the descents of a permutation σ ∈ Rn correspond to the leaves of T (σ) minus
the rightmost node. Thus for σ ∈ Rn we have that 2d(σ) is the number of leaves in T (σ)
minus one, which equals the number of of nodes of T (σ) with two children. (The latter
can be proved easily by induction.)

For a min-tree T and a node s of T with two children, let Fs(T ) be the tree obtained
by switching the left and the right subtrees of T . (This operation is called the Foata-Strehl
action on the permutation encoded by T ; see [4].) For example, if T is the tree T (423516)
shown above, then F2(T ) is the tree shown in Figure 2.

Note that the action of Fs preserves the set of nodes with two children and does
not create any nodes with a lone left child if the original tree contained no such nodes.
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Hence the set T (Rn) is invariant under this action. Observe also that the operators Fs

commute and satisfy F 2
s = 1. Thus these operators, viewed as operators on permutations

corresponding to trees, split the set Rn into orbits of size 2d(σ), where σ is any member
of the orbit. It remains to show that each orbit contains exactly one permutation in SSn.

Given σ ∈ Rn, there is a unique, up to order, sequence of operators Fs, where s is
on the rightmost path, that, when applied to T (σ), makes n the rightmost node of the
resulting tree. An example is shown in Figure 3. (One needs to find the closest ancestor

1

3
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T F1(T ) F2(F1(T ))

Figure 3: The action of F1 and F2 on a min-tree

of n on the rightmost path and then apply the corresponding operator to bring the node n
closer to the rightmost path.) Once n is the rightmost node, apply the operator Fs to all
nodes s with two children for which the condition of Proposition 7.5 is violated. We obtain
a tree corresponding to a permutation in SSn in the orbit of σ. To see that each orbit
contains only one member of SSn, observe that the action of Fs preserves the sequence of
elements on the path from 1 to k for each k, and given the sequence of ancestors for each
k ∈ [n], there is a unique way of arranging the elements of [n] to form a min-tree satisfying
the conditions of Proposition 7.5: first, set the path from 1 to n to be the rightmost path,
and then set all lone children to be right children, and for all nodes with two children, set
the greater element to be the left child.

The proof is now complete.

Table 2 lists the polynomials Φ̂n(c,d) for n ≤ 6.

8 Shapiro-Woan-Getu permutations

In this section we take a closer look at the class of permutations which we denoted
by Rn in Section 7. Recall that Rn is the set of permutations with no consecutive
(double) descents and no descent at the end. They appear in the paper [8] by Shapiro,
Woan, and Getu, hence the section title, who call them reduced permutations. The paper
studies enumeration of permutations by the number of runs or slides, and in [7, Sec. 11.1]
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n Φ̂n(c,d)
1 1

2 c

3 2 c2 −d

4 5 c3 −2(c d+dc)

5 16 c4 −7(c2 d+dc2) − 5 cd c+4d2

6 61 c5 −26(c3 d+dc3) − 21(cd c2 + c2 d c) + 10dcd+12(cd2 +d2 c)

Table 2: The polynomials Φ̂n(c,d)

Postnikov, Reiner, and Williams put these results in the context of structural properties
of permutohedra: for instance, the polynomial encoding the distribution of permutations
in Rn by the number of descents is the γ-polynomial of the classical permutohedron.

In Section 7, we found the number Rn of SWG permutations of size n to be the sum
of absolute values of coefficients of a (c,d)-polynomial that, when expanded in terms of
a and b, gave the generating function for the alternating descent set statistic. Shapiro,
Woan, and Getu provide a generating function for Rn:

R(x) :=
∑

n≥0

Rn · xn

n!
= 1 +

2 tan(x
√

3/2)√
3 − tan(x

√
3/2)

(we put R0 = 1). Observe that R(x)R(−x) = 1, a property that R(x) shares with ex and
tan x + sec x, which are the two fundamental generating functions in the analisys done in
previous sections. There is a further resemblance with the Euler numbers En if one looks
at the logarithm of R(x):

ln(R(x)) = −x + 2
∑

n≥0

R2n · x2n+1

(2n + 1)!
. (26)

Comparing with

ln(tanx + sec x) =
∑

n≥0

E2n · x2n+1

(2n + 1)!
, (27)

we see that taking the logarithm has a similar effect on both R(x) and tan x + sec x of
taking the even part and integrating, except that for R(x) all coefficients excluding that
of x are doubled.

The fact that
∫

sec x dx = ln(tan x + sec x) (28)

(omitting the arbitrary constant of integration) has been used in the proof of Theorem 4.3.
This textbook integral formula can be proved combinatorially using the exponential for-
mula for generating functions (see [13, Sec. 5.1]). Given an up-down permutation σ, divide
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σ into blocks by the following procedure. Put the subword of σ starting at the beginning
of σ and ending at the element equal to 1 in the first block, and remove this block from
σ. In the resulting word, find the maximum element m2 and put the subword consisting
of initial elements of the word up to, and including, m2 in the second block, and remove
the second block. In the remaining word, find the minimum element m3, and repeat until
there is nothing left, alternating between cutting at the minimum and at the maximum
element of the current word. For example, for σ = 593418672, the blocks would be 59341,
8, and 672. Note that given the blocks one can uniquely recover the order in which they
must be concatenated to form the original permutation σ. Indeed, the first block is the
one containing 1, the second block contains the largest element not in the the first block,
the third block contains the smallest element not in the first two blocks, and so on. Thus
to construct an up-down permutation of size n we need to divide the elements of [n] into
blocks of odd size, then determine the order of concatenation using the above principle,
and then arrange the elements of odd numbered blocks in up-down order and those of
even numbered blocks in down-up order. There are Ek−1 ways to arrange the elements in
a block of size k for odd k, and 0 ways for even k since we do not allow blocks of even
size. Thus (27), which is equivalent to (28), follows from the exponential formula. This
argument “combinatorializes” the proof of Theorem 4.3. It would be nice to give a similar
argument for reduced permutations Rn.

Problem 8.1. Find a combinatorial proof of formula (26) for ln(R(x)).

Another problem emerging from the results of Section 7 is the following.

Problem 8.2. Give a combinatorial interpretation of the coefficients of the polynomial
Φ̂n(c, −d) by partitioning the set Rn into classes corresponding to the Fn−1 monomials.

It is worth pointing out here that even though one can split Rn into Fn−1 classes
corresponding to (c,d)-monomials by descent set, like it was done for simsun permutations
in Section 7, the resulting polynomial is different from Φ̂n(c, −d). There are a few hints
on what the correct way to refine permutations in Rn could be. The coefficient of cn−1

in Φ̂n(c, −d) is the Euler number En, and the set Rn includes at least three kinds of
permutations mentioned in this paper that are counted by En: alternating permutations
ending with an ascent, simsun permutations, and permutations σ ∈ Sn such that σ◦(n+1)
has no odd 3-factors. Values of Φ̂n for small n, including those listed in Table 2, present
evidence that the common coefficient of cn−3 d and d cn−3 is Â(n − 1, 2) (the number of
permutations of size n − 1 with exactly one alternating descent).

9 A q-analog of Euler numbers

Let Ân(t, q) denote the bivariate polynomial of Theorem 3.7:

Ân(t, q) :=
∑

σ∈Sn

td̂(σ)q ı̂(σ).
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Then the alternating Eulerian polynomial Ân(t) is just the specialization tÂn(t, 1). We
also noted earlier (Corollary 3.5) that

Ân(1, q) = [n]q!,

the classical q-analog of the factorial defined by [n]q! := [1]q[2]q · · · [n]q, where [i]q :=

1+q+q2 + · · ·+qi−1. One can ask about other specializations of Ân(t, q), such as the ones
with t or q set to 0. Clearly, we have Ân(t, 0) = 1 because the only permutation σ ∈ Sn

for which ı̂(σ) = 0 also satisfies d̂(σ) = 0. The case of t = 0 is more curious and is the
subject of this section.

We have d̂(σ) = 0 if and only if σ is an up-down permutation. Thus Ân(0, 1) = En,
and the specialization Ân(0, q) gives a q-analog of the Euler number En with coefficients
encoding the distribution of the number of alternating inversions among up-down permu-
tations. The following lemma is key in understanding this q-analog.

Lemma 9.1. For a permutation σ ∈ Sn, let ˆcode(σ) = (ĉ1, ĉ2, . . . , ĉn−1). Then σ is
up-down (resp., down-up) if and only if ĉi + ĉi+1 ≤ n− 1− i (resp., ĉi + ĉi+1 ≥ n− i) for
all i.

Proof. This fact is just a special case of Lemma 3.9.

For various reasons it is more convenient to study the distribution of ı̂ on down-
up, rather than up-down, permutations. The q-analog obtained this way from down-up
permutations is essentially equivalent to Ân(0, q), the difference being the reverse order
of coefficients and a power of q factor. It follows from Lemma 9.1 that for a down-up
permutation σ ∈ Sn, we have

ı̂(σ) ≥ (n − 1) + (n − 3) + (n − 5) + · · · =

⌊

n2

4

⌋

. (29)

Therefore let Altn be the set of down-up permutations in Sn, and define

Ên(q) := q−bn2/4c
∑

σ∈Altn

q ı̂(σ).

The values of Ên(q) for small n are given in Table 3. We have the following facts about
Ên(q).

Proposition 9.2. (a) The polynomial Ên(q) is monic and has degree
⌊

(n−1)2

4

⌋

.

(b) Ân(0, q) = qb(n−1)2/4c · Ên(q−1).

(c) Ên(0) = cbn/2c, the bn/2c-th Catalan number.
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n Ên(q)
0, 1, 2 1

3 1 + q

4 2 + 2q + q2

5 2 + 5q + 5q2 + 3q3 + q4

6 5 + 12q + 16q2 + 14q3 + 9q4 + 4q5 + q6

7 5 + 21q + 42q2 + 56q3 + 56q4 + 44q5 + 28q6 + 14q7 + 5q8 + q9

Table 3: The polynomials Ên(q) for n ≤ 7

Proof. (a) By Proposition 3.4, the unique permutation σ ∈ Sn with the maximum possible
number of alternating inversions is the one for which ˆcode(σ) = (n − 1, n − 2, . . . , 1). By
Lemma 9.1, or by simply realizing that σ = n ◦ 1 ◦ (n − 1) ◦ 2 ◦ · · · , one can see that
σ ∈ Altn. We have ı̂(σ) = n(n−1)/2, and thus the degree of Ên(q) is n(n−1)/2−bn2/4c =
b(n − 1)2/4c.

(b) This identity is an algebraic restatement of an earlier observation.

(c) The constant term Ên(0) of Ên(q) is the number of permutations σ ∈ Altn with
exactly bn2/4c alternating inversions. By (29), these are precisely the permutations in
Altn satisfying ĉi + ĉi+1 = n − i for odd i. Let σ ∈ Altn be a permutation with this
property.

For j ≥ 1, we have ĉ2j ≥ n− 2j − ĉ2j+1 = ĉ2j+2 − 1. Thus ĉ2, ĉ4, . . . , ĉ2bn/2c is a strictly
decreasing sequence of non-negative integers satisfying ĉ2j ≤ n − 2j (for convenience, let
ĉn = 0). Reversing the sequence and reducing the k-th term by k − 1 for all k yields a
bijective correspondence with sequences of bn/2c non-negative integers whose k-th term
does not exceed k − 1, and it is well known that there are cbn/2c such sequences. Since
ĉ2j−1 is uniquely determined by ĉ2j, it follows that there are cbn/2c permutations σ ∈ Altn

with bn2/4c alternating inversions.

It is curious to note that the permutations in Altn with bn2/4c alternating inversions
can be characterized in terms of pattern avoidance, so that Proposition 9.2(c) follows from
a result of Mansour [6] stating that the number of 312-avoiding down-up permutations of
size n is cbn/2c.

Proposition 9.3. A permutation σ ∈ Altn has ı̂(σ) = bn2/4c if and only if σ is 312-
avoiding.

The following lemma implies the above proposition and is useful in the later discussion
as well.

Lemma 9.4. For a permutation σ = σ1σ2 · · ·σn ∈ Altn, the number ı̂(σ) is equal to
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bn2/4c plus the number of occurrences of the generalized pattern 31-2 (that is, the number
of pairs of indices i < j such that σi+1 < σj < σi).

Proof. For i ∈ [n − 1], define

Si :=

{

{j | j > i and σi > σj} if i is odd;
{j | j > i and σi < σj} if i is even.

Thus ĉi = |Si|. Let i be odd. Then σi > σi+1, so i + 1 ∈ Si and for every j > i + 1,
either σj < σi or σj > σi+1, or both. Hence {i + 1, i + 2, . . . , n − 1} ⊆ Si ∪ Si+1 and
ĉi + ĉi+1 = n − 1 − i + |Si ∩ Si+1|. But Si ∩ Si+1 is the set of indices j > i + 1 such that
σi+1 < σj < σi, i.e. the number of occurrences of the pattern 31-2 beginning at position i.
Therefore the total number of alternating inversions is

∑

i odd (n − 1 − i) = bn2/4c plus
the total number of occurrences of 31-2.

Proof of Proposition 9.3. Suppose that a permutation σ ∈ Altn has exactly bn2/4c
alternating inversions but is not 312-avoiding. Choose a triple i < k < j such that
σk < σj < σi and the difference k − i is as small as possible. Suppose that k − i ≥ 2.
If σk−1 < σj, then we have σk−1 < σj < σi, contradicting the choice of i, k, and j. If
σk−1 > σj, then we have σk < σj < σk−1, also contradicting the choice of i, k, and j.
Hence k = i + 1, and we obtain a contradiction by Lemma 9.4.

In view of Lemma 9.4, we can write Ên(q) as

Ên(q) =
∑

σ∈Altn

q31-2(σ)

where 31-2(σ) is the number of occurrences of 31-2 in σ. In what follows, we use this
expression to show how a q-analog of a combinatorial identity representing the Euler
number En as a weighted sum of Dyck paths yields a refined identity of Ên(q).

First, we need to introduce Dyck paths, which are perhaps the most famous combi-
natorial objects counted by Catalan numbers. A Dyck path of length 2m is a continuous
path consisting of line segments, or steps, each of which connects an integer point (x, y)
with either (x+1, y−1) or (x+1, y+1), such that the path starts at (0, 0), ends at (2m, 0),
and never goes below the x-axis, that is, contains no point with a negative y-coordinate.
The identity we are about to describe involves associating a certain weight with every step
of a Dyck path, defining the weight of the entire path to be the product of the weights
of the individual steps, and adding the weights of all Dyck paths of length 2m to obtain
E2m or E2m+1, or, in the case of the refined identity, Ê2m(q) or Ê2m+1(q).

For a step in a Dyck path, define the level of that step to be the y-coordinate of the
highest point of the corresponding segment of the path. Given a Dyck path D of length
2m, let `(i) be the level of the i-th step of D. Define

we
D,i(q) := [`(i)]q
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we = 1 we = (1 + q)2

1 11 1 1

1 + q 1 + q

1

Figure 4: Weighted Dyck paths adding up to Ê4(q)

and

wo
D,i(q) :=

{

[`(i)]q, if the i-th step is an up-step;
[`(i) + 1]q, if the i-th step is a down-step

(the letters e and o stand for even and odd, as will become clear shortly). As mentioned
above, we set the weight of the entire path to be the product of step weights:

we
D(q) =

2m
∏

i=1

we
D,i(q);

wo
D(q) =

2m
∏

i=1

wo
D,i(q).

Theorem 9.5. We have
∑

D

we
D(q) = Ê2m(q)

and
∑

D

wo
D(q) = Ê2m+1(q),

where both sums are taken over all Dyck paths of length 2m.

For example, for m = 2 there are two Dyck paths, shown in Figures 4 and 5 with step
weights given by we

D,i(q) and wo
D,i(q). From these weighted paths, we get

1 + (1 + q)2 = 2 + 2q + q2 = Ê4(q)

and
(1 + q)2 + (1 + q)2(1 + q + q2) = 2 + 5q + 5q2 + 3q3 + q4 = Ê5(q).

In the classical case q = 1, the identities of Theorem 9.5 are due to Françon and
Viennot [2], and are discussed in a broader context in the book [3, Sec. 5.2] by Goulden
and Jackson. The proof of our identities is a refinement of the original argument.
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Figure 5: Weighted Dyck paths adding up to Ê5(q)

Proof of Theorem 9.5. Fix a positive integer n > 1, and let m = bn/2c. Recall that in
Section 7 we associated to a permutation σ ∈ Sn an increasing planar binary tree T (σ)
with vertex set [n]. Extending the argument in the proof of Lemma 7.3, we conclude that
σ is in Altn if and only if the tree T (σ) has no vertices with a lone child, except for the
rightmost vertex in the case of even n, which has a lone left child. For σ ∈ Altn, define
the corresponding Dyck path D(σ) of length 2m as follows: set the i-th step of the path
to be an up-step if vertex i of T (σ) has at least one child, and set the i-th step to be a
down-step if vertex i is a leaf of T (σ). We leave it as an exercise for the reader to check
that D(σ) is a valid Dyck path.

Fix a Dyck path D of length 2m. We claim that

∑

σ∈Altn : D(σ)=D

q31-2(σ) =

{

we
D(q), if n is even;

wo
D(q), if n is odd.

(30)

To prove the claim, consider for every i the subtree Ti(σ) obtained from T (σ) by removing
all vertices labeled with numbers greater than i. For the sake of clarity, one should imagine
the “incomplete” tree Ti(σ) together with “loose” edges indicating those edges with parent
vertices in Ti(σ) that appear when Ti(σ) is completed to T (σ). For even n one should also
think of a loose edge directed to the right coming out of the rightmost vertex of every tree
Ti(σ) including Tn(σ) = T (σ) — this way the number of edges coming out of a vertex of
Ti(σ) is always 0 or 2.

Observe that for 1 ≤ i ≤ 2m, the number of loose edges of Ti(σ) is equal to yD(i) + 1,
where yD(i) is the y-coordinate of the point of D whose x-coordinate is i. Indeed, T1(σ)
has two loose edges, and Ti+1(σ) is obtained from Ti(σ) by attaching a non-leaf to a loose
edge, thus increasing the number of loose edges by one, if the i-th step of D is an up-step,
or by attaching a leaf to a loose edge, thus reducing the number of loose edges by one, if
the i-th step is a down-step. Hence we can count the number of permutations σ ∈ Altn

with D(σ) = D by multiplying together the number of possibilities to attach a vertex
labeled i + 1 to Ti(σ) to form Ti+1(σ) for all 1 ≤ i ≤ n − 1. The number of valid places
to attach vertex i + 1 is equal to the number of loose edges in Ti(σ) unless i + 1 is a leaf
of T (σ) and n is even, in which case we have one fewer possibilities, because we are not
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Figure 6: An intermediate tree T6(σ) and its completion T (σ)

allowed to make the rightmost vertex a leaf. Note that the level `(i) of the i-th step of
D is equal to yD(i) if it is an up-step, or yD(i) + 1 if it is a down-step. Comparing with
the choice of step weights, we conclude that the number of possibilities to attach vertex
i + 1 is we

D,i+1(1) if n is even, or wo
D,i+1(1) if n is odd. (For odd n and i = n− 1 the latter

assertion makes no sense as D does not have an n-th step; however, there is just one way
to attach the last vertex, so the counting argument is not affected.)

The above computation proves the q = 1 case of (30). To prove the general claim,
we need to show that if there are p possibilities to attach vertex i + 1 to a loose edge of
Ti(σ), then the number of occurrences of the 31-2 pattern “induced” by the attachment
is 0 for one of the possibilities, 1 for another possibility, 2 for another, and so on, up to
p− 1. Then choosing a place to attach vertex i + 1 would correspond to choosing a term
from 1 + q + q2 + · · · + qp−1 = [p]q, the weight of the i-th step of D, which is a factor in
the total weight of D, and (30) would follow.

It remains to specify which occurrences of 31-2 in σ are induced by which vertex
of T (σ). Suppose there are p possible places to attach vertex i + 1. Order these places
according to the topological order of tree traversal, and suppose we choose to put vertex
i + 1 in the k-th place in this order. Let r1, r2, . . . , rk−1 be the numbers of the vertices
immediately following the first k− 1 places in the topological order, and let aj denote the
label of the rightmost vertex of the eventual subtree of T (σ) rooted at what is currently
the j-th of these k − 1 places. Although aj is not determined at the time vertex i + 1 is
attached, it is certain that rj < i+1 < aj and that aj and rj will be consecutive elements
of σ, with i + 1 located somewhere to the right, resulting in an occurrence of 31-2. Thus
the choice to put vertex i + 1 in the k-th available place induces k − 1 occurrences of
31-2, one for each 1 ≤ j ≤ k − 1. It is not hard to check that each occurrence of 31-2
is induced by some vertex of T (σ), namely, the vertex corresponding to the rightmost
element forming the pattern, in the way described above.

Let us illustrate the argument with an example. The left side of Figure 6 shows the
tree T6(σ) for some σ ∈ Alt10, with the four potential places for vertex 7 marked A, B,
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C, and D. If vertex 7 is put in position A, then it induces no occurrences of 31-2. If it is
put in position B, it induces one occurrence of 31-2 as the triple a5-7 is created, where a
stands for the number of the rightmost vertex in the subtree rooted at A in the eventual
tree. If vertex 7 is put in position C, then in addition to the triple a5-7, one obtains a
second 31-2 triple b1-7. Finally, putting vertex 7 in position D results in a third 31-2
triple c2-7. (Here b and c are defined by analogy with a.) On the right side of Figure 6 we
have a possible completion of the tree on the left, which corresponds to the permutation
σ = 10 5 8 1 4 3 7 2 9 6.

The theorem now follows by taking the sum of (30) over all Dyck paths D of length
2m.
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