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Abstract

A graph G is maximal nontraceable (MNT) if G does not have a hamiltonian path
but, for every e ∈ E

(

G
)

, the graph G + e has a hamiltonian path. A graph G is
1-tough if for every vertex cut S of G the number of components of G−S is at most
|S|. We investigate the structure of MNT graphs that are not 1-tough. Our results
enable us to construct several interesting new classes of MNT graphs.
Keywords: maximal nontraceable, hamiltonian path, traceable, nontraceable,
toughness

1 Introduction

We consider only simple, finite graphs. We denote the vertex set, the edge set, the
order and the size of a graph G by V (G), E(G), v(G) and e(G), respectively. The open
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neighbourhood of a vertex v in G is the set NG(v) = {x ∈ V (G) : vx ∈ E(G)}. If
NG(v) ∪ {v} = V (G), we call v a universal vertex of G. If U is a nonempty subset of
V (G) then 〈U〉 denotes the subgraph of G induced by U .

A graph G is hamiltonian if it has a hamiltonian cycle (a cycle containing all the
vertices of G), and traceable if it has a hamiltonian path (a path containing all the vertices
of G).

If a graph G has a hamiltonian path with endvertices x and y, we say that G is traceable
from x to y. If G is traceable from each of its vertices, we say that G is homogeneously
traceable.

A graph G is maximal nonhamiltonian (MNH) if G is nonhamiltonian, but G + e is
hamiltonian for each e ∈ E(G), where G denotes the complement of G.

A graph G is maximal nontraceable (MNT) if G is not traceable, but G+e is traceable
for each e ∈ E(G).

A noncomplete graph G is t-tough if t ≤ |S|/κ(G−S) for every vertex-cut S ⊂ V (G),
where κ(G − S) denotes the number of components in G − S and t is a nonnegative real
number. The maximum real number t for which G is t-tough is called the toughness of G
and is denoted by t(G).

In 1998 Zelinka [14] presented two constructions, which each yielded an infinite class
of MNT graphs. We call the graphs in these classes Zelinka graphs, and we call MNT
graphs that cannot be constructed by one of Zelinka’s constructions non-Zelinka MNT
graphs. By consulting [10] we can see that all MNT graphs of order less than 8 are Zelinka
graphs. (Zelinka originally conjectured that all MNT graphs can be constructed by his
methods, but he later retracted this conjecture.)

All Zelinka graphs have toughness less than one. The first non-Zelinka MNT graphs
constructed are all 1-tough. (Claw-free, 2-connected ones are presented in [2] and cubic
ones in [7].) However, not all MNT graphs with toughness less than one are Zelinka
graphs, because Dudek, Katona and Wojda [6] recently constructed an infinite class of
non-Zelinka MNT graphs that have cut-vertices and hence have toughness at most 1/2.
We shall call these graphs DKW graphs.

In this paper we investigate the structure of MNT graphs with toughness less than 1.
Our results enable us to construct several new classes of MNT graphs with toughness less
than 1. For example, we construct an infinite family of non-Zelinka MNT graphs having
two cut-vertices and three blocks, with the middle block being hamiltonian. (The DKW
graphs also have three blocks and 2 cut-vertices, but in their case the middle block is
MNH). We also construct an infinite family of non-Zelinka MNT graphs with only two
blocks. Among these is a graph of order 8 and size 15. This turns out to be a non-Zelinka
MNT graph of smallest possible order and size. Finally, we construct infinite families of
2-connected non-Zelinka MNT graphs with toughness less than 1.
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2 The Zelinka Constructions

The constructions given by Zelinka [14] provide two important classes of MNT graphs
with toughness less than one. We describe the constructions briefly.

Zelinka Type I graphs

Suppose p is a non-negative integer and a1, ..., ak, where k = p + 2, are positive integers.
Let U0, U1, ..., Uk be pairwise disjoint sets of vertices such that |U0| = p and |Ui| = ai for
i = 1, ..., k. Let the graph G have V (G) =

⋃k

i=0
Ui and E(G) be such that the induced

subgraphs 〈U0 ∪ Ui〉 for i = 1, ..., k are complete graphs. We call such a graph G a Zelinka
Type I graph.

This construction is represented diagrammatically in Figure 1.

PSfrag replacements
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U2
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Kap+2

Kp+ap+2

Figure 1: Zelinka Type I graph

Zelinka Type II graphs

Suppose p, q, r, a1, ..., ap, b1, ..., bq, c1, ..., cr are positive integers and s a non-negative inte-
ger.
Let U0, U1, ..., Up, V0, V1, ..., Vq, W0, W1, ..., Wr, X be pairwise disjoint sets of vertices such
that |U0| = p, |Ui| = ai for i = 1, ..., p, |V0| = q, |Vi| = bi for i = 1, ..., q, |W0| = r, |Wi| = ci

for i = 1, ..., r and |X| = s.
Let the graph G have V (G) = (

⋃p

i=0
Ui) ∪ (

⋃q

i=0
Vi) ∪ (

⋃r

i=0
Wi) ∪ X and E(G) be such

that the induced subgraphs 〈U0 ∪ Ui〉 for i = 1, ..., p, 〈V0 ∪ Vi〉 for i = 1, ..., q, 〈W0 ∪ Wi〉
for i = 1, ..., r, and 〈U0 ∪ V0 ∪ W0 ∪ X〉 are all complete graphs. We call such a graph G
a Zelinka Type II graph.

This construction is represented diagrammatically in Figure 2.
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Figure 2: Zelinka Type II graph

Remark 2.1 By consulting [10] we see that all MNT graphs with fewer than 8 vertices
are Zelinka graphs.

If G is the graph in Figure 1, then κ(G − U0) = |U0| + 2, while if G is the graph in
Figure 2, then κ(G − U0) = |U0| + 1. Thus all Zelinka graphs have toughness less than
one.

3 Maximal nontraceable graphs with toughness less

than one

Suppose P is a path in a graph G, with endvertices a and z. If we regard P as going from
a to z, we denote it by P [a, z], and if we reverse the direction we denote it by P [z, a]. If
u, v ∈ V (P ), then P [u, v] denotes the subpath of P that starts at u and ends at v, and
P (u, v) = P [u, v] − {u, v}.

If a graph G has two vertex disjoint paths, F 1and F 2, such that V (G) = V (F 1) ∪
V (F 2), then F 1, F 2 is called a 2-path cover of G.

If G is an MNT graph with t(G) < 1, then it is easy to see that G has a vertex-cut
S such that κ(G − S) = |S| + 2 or κ(G − S) = |S| + 1. We now characterize the first of
these two cases.

Theorem 3.1 G is an MNT graph having a subset S such that κ(G−S) = |S|+2 if and
only if G is a Zelinka Type I graph.

Proof. Let G be a Zelinka Type I graph as depicted in Figure 1. Then κ(G−U0) = |U0|+2.
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Conversely, suppose that κ(G − S) = k = |S| + 2 and A1, A2, ..., Ak are the k compo-
nents of G−S. Suppose that for some i the graph 〈S ∪Ai〉 has two nonadjacent vertices,
u and v. Then S is a vertex-cut of G + uv and (G + uv) − S has |S| + 2 components.
But then G + uv is not traceable. This contradiction proves that 〈S ∪Ai〉 is complete for
i = 1, 2, ..., k, and hence G is a Zelinka Type I graph.

If G is a Zelinka Type II graph as depicted in Figure 2, then κ(G − U0) = |U0| + 1
and every component of G − U0 except for one is complete. We suspected at first that
the Zelinka Type II graphs are the only ones with this property. However, the following
theorem enabled us to find non-Zelinka graphs with this property.

3.1 The case where G − S has one noncomplete component

Theorem 3.2 Let G be a connected graph with a minimum vertex-cut S such that |S| = k
and G − S has k + 1 components G1, G2, ..., Gk, H, all of which are complete except for
H. Then G is MNT if and only if the following conditions hold:

(i) 〈S ∪ V (Gi)〉 is complete, for i = 1, 2, ..., k.

(ii) H is traceable from each vertex in V (H) − NH (S) .

(iii) H is not traceable from any vertex in NH (S), but for every pair u, v of nonadjacent
vertices in H, the graph H + uv is traceable from a vertex in NH (S).

(iv) Every vertex in S is adjacent to every vertex in NH(S).

(v) For every a ∈ NH (S) the graph H has a 2-path cover F 1[a, b], F 2[c, d] where d ∈
NH (S) ; b, c ∈ V (H) .

Proof. Suppose G is MNT. We show that G satisfies (i) - (v).

(i) If x, y ∈ S such that xy /∈ E(G), then any path in G + xy containing xy contains
vertices from at most k components of G − S, which implies that G + xy has no
hamiltonian path. This contradiction implies that 〈S〉 is a complete graph. Now
suppose that for some j ∈ {1, . . . , k} there is a vertex x ∈ S and a vertex v ∈ V (Gj)
such that xv /∈ E(G). Let P be a hamiltonian path of G + xv. Since κ (G − S) =
|S|+1, the path P visits each component of Gj exactly once. If P has an endvertex in
Gj, then P has a subpath containing all the vertices of G−V (Gj), ending in x. But
then, since x is adjacent to some vertex in Gj and Gj is complete, G is traceable, a
contradiction. We may therefore assume that k ≥ 2 and P has a subpath xP [v, w]y
such that y ∈ S and P [v, w] is a hamiltonian path of Gj. If NGj

(x)∪NGj
(y) = {w},

then (S − {x, y}) ∪ {w} is a vertex-cut of G, contradicting the minimality of S.
Hence Gj has two distinct vertices, u and z such that xu, zy ∈ E(G). Since Gj is
complete, Gj has a hamiltonian path Q[u, z]. If in P we replace the path P [v, w]
with the path Q[u, z], we obtain a hamiltonian path of G, a contradiction. This
proves that 〈S ∪ V (Gi)〉 is complete, for i = 1, 2, ..., k.
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(ii) Let v ∈ V (H) − NH (S) and x ∈ S. Then G + xv has a hamiltonian path P . Since
P visits H only once, H is traceable from v.

(iii) It follows from (i) that G − V (H) is homogeneously traceable. Hence, H is not
traceable from any vertex in NH (S), otherwise G would be traceable. If u, v ∈
V (H) , then G + uv has a hamiltonian path which visits H only once, and hence
H + uv is traceable from a vertex in NH (S).

(iv) If there exists a vertex u ∈ NH (S) and x ∈ S such that ux /∈ E(G), then G+ux has
a hamiltonian path, which implies that H is traceable from u, contradicting (iii).

(v) Let a ∈ 〈NH (S)〉 and let v ∈ G1. Then G + av has a hamiltonian path P . Since
H is not traceable from a, it follows that P visits H more than once. Hence, since
κ (G − S) = k + 1, it follows that P visits H exactly twice. Thus H has a 2-path
cover F 1[a, b], F 2[c, d] where d ∈ NH (S) ; b, c ∈ V (H) .

To prove the converse, suppose G satisfies (i) - (v). If G is traceable, then our assumption
that |S| = k and κ(G − S) = k + 1 implies that any hamiltonian path of G visits each
component of G−S exactly once and that the endvertices of the path are in two different
components of G−S. Thus H is traceable from a vertex in NH(S). This contradicts (iii).
Hence G is not traceable. However, it follows from (i) that G − V (H) is homogeneously
traceable.

To show that G is MNT we need to show that G + uv is traceable for all u, v ∈ V (G),
where uv /∈ E(G).

Case 1. u, v ∈ V (H) :
It follows from (i) and (iii) that G + uv is traceable.

Case 2. u ∈ V (H), v ∈ S:
By (iv) u ∈ V (H) − NH (S); hence it follows from (i) and (ii) that G + uv is traceable.

Case 3. u ∈ V (H) − NH (S), v ∈ V (Gi), i = 1, ..., k:
According to (i) and (ii) G + uv is traceable.

Case 4. u ∈ NH (S), v ∈ V (Gi), i = 1, ..., k:
It follows from (i) that G − V (H) has a hamiltonian path P [x, v], where x ∈ S. By
(v), H has a 2-path cover F 1[u, b], F 2[c, d], where d ∈ NH (S) ; b, c ∈ V (H). The path
F 1[c, d]P [x, v]F 2[u, b] is a hamiltonian path of G.

Case 5. Consider k ≥ 2. Let u ∈ V (Gi) and v ∈ V (Gj), i 6= j, i, j = 1, ..., k:
It follows from (i) that (G + uv)− V (H) has a hamiltonian path P [x, y], where x, y ∈ S.
By (vi), H has a 2-path cover F 1[a, b], F 2[c, d] where a, d ∈ NH (S) ; b, c ∈ V (H) . Thus
F 2[c, d]P [x, y]F 1[a, b] is a hamiltonian path of G + uv.

The following corollary is useful when attempting to construct MNT graphs having
the structure described in Theorem 3.2.

the electronic journal of combinatorics 15 (2008), #R18 6



Corollary 3.3 Let G be an MNT graph that has the structure as described in Theo-
rem 3.2. Then the noncomplete component H has no universal vertices.

Proof. Suppose b is a universal vertex of H.
If b ∈ NH (S) then, by (v), H has a 2-path cover F 1[a, b], F 2[c, d], where d ∈

NH (S) ; a, c ∈ V (H) . But then, since bc ∈ E (H) , the path F 1[a, b]F 2[c, d] is a hamilto-
nian path of H with endvertex d ∈ NH (S), contradicting (iii).

If b /∈ NH (S), then, by (ii), H has a hamiltonian path Q[b, z], for some z ∈ V (H).
Since zb ∈ E (H), it then follows that H has a hamiltonian cycle. But then H is homo-
geneously traceable, contradicting (iii).

Remark 3.4 Suppose G is an MNT graph that has the structure as described in The-
orem 3.2. Then either every vertex in S is a universal vertex of G and H is MNT,
or no vertex in S is a universal vertex of G and H is traceable (from every vertex in
V (H) − NH (S)). We shall present examples of both cases.

If each cut-vertex of a graph G lies in exactly two blocks of G, we say that G has a
linear block structure. We now show that Theorem 3.2 applies to every MNT graph with
a linear block structure.

Lemma 3.5 Suppose G is a connected MNT graph with a cut-vertex x such that G − x
has exactly two components. Then exactly one of the two components is a complete graph.

Proof. Let A and B be the components of G − x. Then A and B cannot both be
complete, otherwise G would be traceable. Suppose A is not complete and let u, v be two
nonadjacent vertices in A. Then, since G + uv is traceable, B is traceable from x. If B is
also not complete, then A is also traceable from x. But then G is traceable.

Corollary 3.6 Suppose G is an MNT graph with a linear block structure. Then G either
has only two blocks, of which exactly one is complete, or G has exactly two cut-vertices
and three blocks, in which case the two end-blocks are complete and the middle block is
not complete.

Proof. Apply Theorem 3.2(i) to each cut-vertex of G.

Let G be an MNT graph with exactly two blocks. Denote the noncomplete block by
B, the cut-vertex by x and let H = B − x. By Corollary 3.3, H has no universal vertices.
By Remark 3.4, either x is a universal vertex of G and H is MNT, or H is traceable, but
not from NH(x).

Every Zelinka Type II graph, in which p = 1, q ≥ 2, r ≥ 2, is an MNT graph with
exactly two blocks, in which the cut-vertex x is not a universal vertex. The smallest such
graph is depicted in Figure 3.
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PSfrag replacements

x

Figure 3: Smallest Zelinka MNT graph with two blocks

We now present non-Zelinka MNT graphs with this property.

Example 3.7 The tarantula, depicted in Figure 4, is a non-Zelinka graph with exactly
two blocks, in which the cut-vertex x is not a universal vertex. We note that in the
tarantula both 〈x, u1, u2, u3〉 and 〈x, w1, w2, w3〉 are complete graphs.

PSfrag replacements
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e

f
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∼=

Figure 4: Tarantula

We generalize the tarantula as depicted in Figure 5.

PSfrag replacements
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UW
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Figure 5: Generalized tarantula
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A generalized tarantula contains three complete graphs, A (of order at least 2), W
and U (both of order at least 4) which share a single common vertex x, and four mutually
disjoint complete graphs, C, D, E and F which have no vertices in common with V (A)∪
V (W ) ∪ V (U). The subgraph W has three distinguished vertices w1, w2, w3 and U has
three distinguished vertices u1, u2, u3. The graph has the following additional adjacencies:
w1 and w2 are adjacent to all vertices in C, w1 and w3 are adjacent to all vertices in D,
u1 and u2 are adjacent to all vertices in E, u1 and u3 are adjacent to all vertices in F ,
and w1 is adjacent to u1.

It is easy to check that generalized tarantulas satisfy the conditions of Theorem 3.2.
Thus we have an infinite family of non-Zelinka MNT graphs with exactly two blocks, in
which the cut-vertex is not a universal vertex.

Next we present MNT graphs with exactly two blocks, in which the cut-vertex is a
universal vertex.

Example 3.8 The propeller, shown in Figure 6, is an MNT graph with two blocks, in
which the cut-vertex x is a universal vertex. Let B denote the noncomplete block of the
propeller. Then H = B−x is the net, which is the smallest MNT graph without universal
vertices. Since all MNT graphs of order less than 8 are Zelinka graphs, the propellor is
a non-Zelinka MNT graph of smallest order. We do not know of any other non-Zelinka
MNT graph of order 8.

PSfrag replacements

x

x

∼=

Figure 6: The propeller, a non-Zelinka MNT graph of smallest order

The noncomplete block B of the propeller can also be described as the graph obtained
from a K4 by subdividing the three edges incident with a fixed vertex x and then adding
the relevant edges to make x a universal vertex. This description allows us to generalize
the propellor to obtain an MNT graph of order n ≥ 8, as depicted in Figure 7. We let A
be a complete graph of arbitrary order, and for B we replace the three triangles incident
with x with complete graphs of arbitrary order.
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Figure 7: A generalized propeller

The construction given above can be further generalized by starting with any Kn,
with n ≥ 5, instead of K4, and replacing any three edges incident with x ∈ V (Kn) with
complete graphs.

It follows directly from Theorem 3.2 that the generalized propellers are MNT.

Now suppose G is an MNT graph with exactly three blocks, B1, B and B2 and
two cut-vertices, x and y, with B being the middle block and x ∈ V (B1) ∩ V (B) and
y ∈ V (B2) ∩ V (B). Then, obviously, xy ∈ E (G) and, by Corollary 3.6 B1 and B2 are
complete graphs, while B is not complete. Moreover, it is obvious that B does not have
a hamiltonian path with endvertices x and y, but, for any e ∈ E

(

G
)

the graph G + e has
such a hamiltonian path. This implies that either the middle block B is MNH, or B is
hamiltonian but no hamiltonian cycle contains the edge xy.

Every Zelinka Type II graph with p = q = 1, r ≥ 2 is an MNT graph with two
cut-vertices and three blocks, in which the middle block is MNH. The smallest such graph
is depicted in Figure 8.

PSfrag replacements

x

y

Figure 8: Smallest Zelinka MNT graph with three blocks

As shown in the next example, the middle block B may be chosen from various MNH
graphs to produce non-Zelinka MNT graphs with three blocks and two cut-vertices.

Example 3.9 (Dudek, Katona and Wojda [6]):
Consider a cubic MNH graph B with the properties that

the electronic journal of combinatorics 15 (2008), #R18 10



D(1): there is an edge xy of B, such that N(x) ∩ N(y) = ∅, and

D(2): B + e has a hamiltonian cycle containing xy for every e ∈ E(B).

Take two graphs B1 and B2, with B1
∼= K1 and B2

∼= K1 or B2
∼= K2 and join each

vertex of B1 to x and each vertex of B2 to y. The resulting graph, which we call a
DKW-graph, is an MNT graph with three blocks and two cut-vertices.

In [4], [5] and [8] constructions of cubic MNH graphs with properties D(1) and D(2)
are given. It transpires that such graphs of order n exist for each even n ≥ 52 and
n ∈ I = {10, 20, 28, 36, 38, 40, 44, 46, 48}. This yields DKW-graphs of order n for every
n ≥ 54 and each n = i + 2 or n = i + 3, where i ∈ I. It is shown in [8] that every MNT
graph of order n ≥ 10 has size at least d 3n−2

2
e. The DKW graphs realise this lower bound.

By consulting [10] we see that the Petersen graph is the smallest cubic MNH graph
satisfying D(1) and D(2).

Figure 9 depicts a DKW-graph constructed from the Petersen graph.

PSfrag replacements
x y

Figure 9: An MNT graph with the Petersen graph as the middle block

DKW-graphs can be generalized by replacing each of B1 and B2 with an arbitrarily
large complete graph. Each such graph is an MNT graph with exactly three blocks and
two cut-vertices, in which the middle block is MNH.

Next we present MNT graphs with 3 blocks and 2 cut-vertices in which the middle
block is hamiltonian.

Example 3.10 The sputnik, depicted in Figure 10(a), is a smallest MNT graph that has
exactly three blocks and two cut-vertices in which the middle block is hamiltonian. (It is
proved in [11] that no such graph has order less than 10 and that every MNT graph of
order 10 has at least 15 edges.)

By replacing each triangle as well as each end block of the sputnik by a complete graph
of arbitrary order, in the manner shown in Figure 10(b), we obtain, for every n ≥ 10, an
MNT graph of order n that has three blocks and two cut-vertices in which the middle
block is hamiltonian. We call such a graph a generalized sputnik.
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Figure 10: The sputnik and a generalized sputnik

3.2 The case where G−S has more than one noncomplete com-

ponent

There also exist MNT graphs having a subset S such that |S| = k and κ (G − S) = k + 1
such that more than one component of G − S is noncomplete. By Theorem 3.2(i), such
graphs have no cut-vertices, i.e. they are 2-connected. We consider here only those that
have connectivity equal to 2. We first prove the following.

Lemma 3.11 Suppose G is a graph with a minimal vertex-cut S such that |S| = 2 and
G − S has three components G1, G2, G3. If G is MNT then either exactly two of the
components are complete or none of the components is complete.

Proof. Let S = {x1, x2}. If all three components are complete then G is traceable.
Assume that exactly one of the components, say G3, is complete. Then, as in the

proof of the first part of (i) in Theorem 3.2, the graph 〈S ∪ V (G3)〉 is complete. Now not
both 〈V (G1) ∪ {xi}〉 and 〈V (G2) ∪ {xj}〉, {i, j} = {1, 2} are traceable, respectively, from
xi and xj, otherwise G is traceable.

Suppose u, v ∈ V (G1) and uv /∈ E(G). Then, since G + uv is traceable,

(i) 〈V (G1) ∪ {x1}〉 + uv is traceable from x1 and 〈V (G2) ∪ {x2}〉 is traceable from x2;
or

(ii) 〈V (G1) ∪ {x2}〉 + uv is traceable from x2 and 〈V (G2) ∪ {x1}〉 is traceable from x1.

Without loss of generality we assume the first case is true. Now suppose z, w ∈ V (G2)
and zw /∈ E(G). Then 〈V (G2) ∪ {x1}〉 + zw is traceable from x1 and 〈V (G1) ∪ {x2}〉 is
traceable from x2. (If 〈V (G1)∪{x1}〉 was traceable from x1, then G would be traceable.)
So 〈V (Gi) ∪ {x2}〉, i = 1, 2 is traceable from x2. Also, Gi is not traceable from any
vertex in Ni(x1) = NG(x1) ∩ V (Gi) for i = 1, 2. Consider G + uv, where u ∈ N1(x1) and
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v ∈ N2(x1). Since G1 and G2 are not traceable, respectively, from u and v, a hamiltonian
path in G + uv visits each of G1 and G2 at least twice and G3 at least once and this is
impossible.

Zelinka Type II graphs with p = 2, q ≥ 2 and r ≥ 2 are MNT graphs satisfying the
conditions of Lemma 3.11 with exactly two of the components of G − S being complete.
(Take S = U0, for example).

We now investigate the case where G is an MNT graph satisfying the conditions of
Lemma 3.11 in which all three components of G − S are noncomplete. We first consider
the case where x and y have disjoint neighbourhoods, and then we consider a case where
x and y have the same open neighbourhood. At present we know of no examples in which
NGi

(x) and NGi
(y) are neither disjoint nor equal for some i.

Theorem 3.12 Let G be a graph with a minimal vertex-cut S = {x, y} such that G − S
consists of three noncomplete components G1, G2, G3 and NGi

(x) ∩ NGi
(y) = ∅, for i =

1, 2, 3. Let Xi = 〈V (Gi) ∪ {x, y}〉.
Then G is maximal nontraceable if and only if the following hold.

(i) xy ∈ E(G).

(ii) For each i = 1, 2, 3 there is no hamiltonian cycle in Xi containing the edge xy, but
Xi + e has a hamiltonian cycle containing xy for each e ∈ E(Xi).

Proof. Suppose G is MNT.

(i) If xy /∈ E(G), then a longest path in G + xy contains vertices from at most two
components of G − S, and hence G + xy is nontraceable.

(ii) Suppose, without loss of generality, that X2 has a hamiltonian cycle containing xy.
Let e ∈ E(G2). Since G + e is traceable there is a hamiltonian path in X1 − y
with endvertex x and a hamiltonian path in X3 − x with endvertex y. Since X2

has a hamiltonian path with endvertices x and y, it follows that G is traceable, a
contradiction. Thus no Xi has a hamiltonian cycle containing xy. Now consider
G + e, where e ∈ E(Xi). Then a hamiltonian path in G + e contains a hamiltonian
path in Xi + e with endvertices x and y, and thus a hamiltonian cycle containing
xy.

To prove the converse, suppose G satisfies conditions (i) and (ii). If G were traceable,
then some Xi would contain a hamiltonian path with endvertices x and y and hence Xi

would contain a hamiltonian cycle containing the edge xy, a contradiction. Thus G is
nontraceable.

Since S is a minimal vertex-cut of G it follows that x and y each have at least one
neighbour in each Gi, i = 1, 2, 3. Hence, since NGi

(x) ∩ NGi
(y) = ∅, there is at least one

vertex in Gi not adjacent to x and at least one vertex in Gi not adjacent to y. Suppose
v ∈ V (Gi) is not adjacent to x. Then, by (ii), Xi + vx has a hamiltonian cycle containing
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vxy, so Gi has a hamiltonian path with v and w as endvertices, where w is adjacent to y.
Similarly, if u ∈ V (Gi) is not adjacent to y, then Gi has a hamiltonian path with u and
z as endvertices, where z is adjacent to x. Thus each Gi has two hamiltonian paths, one
with endvertex adjacent to x and the other with endvertex adjacent to y.

We now prove that G + uv is traceable for u, v ∈ V (G) and uv /∈ E(G).

Case 1. u, v ∈ V (Xi), say i = 2.
Then G + uv has a hamiltonian path obtained from a hamiltonian path in G1 with one
endvertex adjacent to x, followed by a hamiltonian path in X2 + uv with endvertices x
and y, followed by a hamiltonian path in G3 with endvertex adjacent to y.

Case 2. u ∈ V (Gi), v ∈ V (Gj), i 6= j, say i = 1 and j = 2.
Suppose, without loss of generality, that v is not adjacent to x. Since u is nonadjacent to
x or y, it follows from condition (ii) that G1 has a hamiltonian path ending at u. Also,
G2 has a hamiltonian path P with one endvertex v and the other endvertex adjacent to
y. Then G + uv has a hamiltonian path obtained from a hamiltonian path in G1 with
endvertex u, followed by P , then y, x, followed by a hamiltonian path in G3 with endvertex
adjacent to x.

It follows from condition (ii) of the above theorem that each graph Xi, i = 1, 2, 3 is
either hamiltonian (but no hamiltonian cycle contains the edge xy) or MNH. We present
two examples of graphs that satisfy the conditions of Theorem 3.12, the first in which
all the graphs Xi are MNH (see Figure 11) and the second in which all the graphs Xi

are hamiltonian (see Figure 12). Note that in Figure 11 each Xi = 〈V (Gi) ∪ {x, y}〉
is isomorphic to the Petersen graph and in Figure 12 each Xi = 〈V (Gi) ∪ {x, y}〉 is
isomorphic to the middle block of the sputnik.

PSfrag replacements

x y

G1 G2

G3

Figure 11: First example of graph satisfying the conditions of Theorem 3.12
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PSfrag replacements

x y

G1 G2

G3

Figure 12: Second example of graph satisfying the conditions of Theorem 3.12

A graph G is hamiltonian-connected (Hc) if for every two distinct vertices x, y ∈ V (G)
there is a hamiltonian path in G from x to y. If G is not Hc, but G + e is Hc for every
e ∈ E(G), then G is said to be maximal nonhamiltonian-connected (MnHc).

If X is a nonhamiltonian MnHc graph and xy is any edge in X, then X + e has a
hamiltonian cycle containing xy for each e ∈ E(X). Thus we can replace each Xi in the
graphs depicted in Figures 11 and 12, with any nonhamiltonian MnHc graph, to obtain
an MNT graph satifying the conditions of Theorem 3.12.

Z. Skupień brought to our attention that the Petersen graph, the Coxeter graph and
the Isaacs’ snarks Jk for odd k ≥ 7 are examples of nonhamiltonian MnHc graphs (see
[9], [12] and [13]), so that the graphs Xi can be chosen from these graphs, with x and y
corresponding to two adjacent vertices in each Xi. Any Xi may also be replaced by the
middle block of a generalized sputnik, with x and y chosen as in Figure 10. Although the
middle block of a generalized sputnik is not MnHc, it does satisfy the condition required
by the Gi with respect to the chosen x and y.

Next, we consider the case where x and y have the same neighbourhood.

Theorem 3.13 Let G be a graph with a minimum vertex-cut S = {x, y} such that G−S
consists of three noncomplete components G1, G2, G3 and NGi

(x) = NGi
(y) = Ni 6= V (Gi),

for i = 1, 2, 3.
Then G is maximal nontraceable if and only if the following hold:

(i) xy ∈ E(G).

(ii) Xi = 〈V (Gi) ∪ {x}〉 is MNH for i = 1, 2, 3.

(iii) At most one of the graphs 〈Ni〉 has a universal vertex.

(iv) All three graphs Gi are traceable and at least two of them are homogeneously trace-
able.
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(v) If u is a universal vertex of 〈Ni〉 for some i ∈ {1, 2, 3}, then Gi is traceable from u.

Proof. Suppose G is MNT.

(i) As in the proof of Theorem 3.12 it follows that xy ∈ E(G).

(ii) Let u, v ∈ V (X2); uv /∈ E (G). Then G + uv has a hamiltonian path, P . If X2

is hamiltonian, then G2 has a hamiltonian path Q with both endvertices in N2.
But then, replacing the subpath of P in G2 with Q, we obtain a hamiltonian path
of G. This contradiction proves that X2 is nonhamiltonian and that G2 has no
hamiltonian path with both endvertices in N2. Similarly, for i = 1, 3 the graph Xi

is non-hamiltonian and Gi does not have a hamiltonian path with both endvertices
in Ni. This implies that P has one endvertex in G1 and the other in G3, and hence
P has a subpath which is a hamiltonian path of G2 + uv, with both endvertices in
N2. Thus X2 + uv is hamiltonian. Hence X2 and, similarly, X1 and X3, are MNH.
It also follows similarly that Yi = 〈V (Gi) ∪ {y}〉 is MNH for i = 1, 2, 3.

(iii) Consider G+v1v2; v1 ∈ N1, v2 ∈ N2. Since Gi does not have a hamiltonian path with
both endvertices in Ni; i = 1, 2, 3, it follows that a hamiltonian path P in G + v1v2

has the structure shown in Figure 13, in which G1 and G2 can be interchanged.
PSfrag replacements

v1

v2

u w
z s

x y

G1 G2 G3

N1

Figure 13: Sketch for Theorem 3.13

In the case shown, G2 has a 2-path cover, F 1[v2, u], F 2[w, z], with v2, u, w, z ∈ N2.

Suppose vi is a universal vertex of 〈Ni〉, for i = 1, 2. Then v2 is adjacent to w. If
in P we replace the subpath P [v1, z] with the path v1xF 1[u, v2]F

2[w, z], then we
obtain a hamiltonian path in G, which is a contradiction. This proves that, for any
choice of i and j, i 6= j, i, j ∈ {1, 2, 3}, at least one of 〈Ni〉 and 〈Nj〉 has no universal
vertices. Hence at most one of the graphs 〈Nk〉; k = 1, 2, 3, has a universal vertex.

(iv) If v ∈ V (Gi) − Ni; i ∈ {1, 2, 3}, then Gi + vx has a hamiltonian path; hence Gi is
traceable from v. Suppose one of the Gi, say G2, is not homogeneously traceable.
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Then there is a vertex v2 ∈ N2 such that G2 is not traceable from v2. Now let
v1 ∈ N1. Then G + v1v2 has a hamiltonian path with the structure shown in
Figure 13 and so G1 has a hamiltonian path with v1 as endvertex. Hence G1 is
homogeneously traceable. Similarly, G3 is homogeneously traceable.

(v) Suppose one of the induced subgraphs 〈Ni〉, say 〈N2〉, has a universal vertex v2,
but G2 is not traceable from v2. Then, as before, it follows that G + v1v2, where
v1 ∈ N1, has a hamiltonian path with the structure shown in Figure 13. As in the
proof of (iii) it follows that G has a hamiltonian path, a contradiction. Thus G2 is
traceable from v2.

Conversely, suppose G satisfies conditions (i)-(v). It follows from (ii) that Gi has no
hamiltonian path with both endvertices in Ni; i = 1, 2, 3, and hence G is not traceable.

If v ∈ V (Gi)−Ni; i ∈ {1, 2, 3} then (ii) implies that Xi +vx is hamiltonian, and hence
has a hamiltonian path with v and x as endvertices. Thus each graph Xi is traceable
from each vertex in G − Ni to x. Similarly, each graph Yi is traceable from every vertex
in G − Ni to y.

Now let u, v ∈ V (G) and uv /∈ E(G). We show that G + uv is traceable.

Case 1. u, v ∈ V (Gi) ∪ {x, y}, say i = 2.
From (ii) and our assumption that NGi

(x) = NGi
(y) it follows that 〈V (Gi) ∪ {x, y}〉 has a

hamiltonian cycle containing the edge xy and hence has a hamiltonian path Q[x, y]. Since
G1 is traceable to x and G3 is traceable from y, it follows that G + uv is traceable.

Case 2. u ∈ V (Gi) − Ni, v ∈ V (Gj) − Nj, i 6= j, say i = 1 and j = 2.
G1 is traceable from u, and X2 is traceable from v to x, and G3 is traceable from y; hence
G + uv is traceable.

Case 3. u ∈ Ni, v ∈ Nj, i 6= j, say i = 1 and j = 2.
At least one of G1 and G2, say G1, is homogeneously traceable. Hence G1 has a hamilto-
nian path P 1[a, u] for some a ∈ V (G1). If v is not a universal vertex of G2, let w ∈ N2

such that vw /∈ E (G). Then, by (ii), X2 + vw is hamiltonian and hence X2 has a hamil-
tonian path P 2[v, w]. But G3 has a hamiltonian path P 3[y, z] for some z ∈ V (G3). The
path P 1[a, u]P 2[v, w]P 3[y, z] is a hamiltonian path of G + uv.

Now suppose v is a universal vertex of N2. In this case it follows from (v) that G2 has a
hamiltonian path Q2[b, u] for some b ∈ V (G2) and by (iii) u is not a universal vertex of G1,
so G1 has a hamiltonian path P 1[u, t] for some t ∈ N1. The path Q2[b, v]Q1[u, t]xP 3[y, z]
is a hamiltonian path of G + uv.

Case 4. u ∈ Ni, v ∈ V (Gj) − Nj, i 6= j, say i = 1 and j = 2.
If u is a universal vertex of 〈N1〉, then G1 is traceable from u. If u is not a universal
vertex of 〈N1〉, then, as shown in Case 3, X1 is traceable from u. In either case G + uv
has a hamiltonian path, Y2 is traceable from v to y and G3 is traceable from a vertex in
N3.

An example of a graph that satisfies the conditions of Theorem 3.13 is depicted in
Figure 14. In this graph, G1

∼= G2
∼= G3 is homogeneously traceable and 〈V (Gi) ∪ {x}〉
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is isomorphic to the Petersen graph, which is MNH.

PSfrag replacements

x y

G1
G2 G3

Figure 14: Graph that satisfies the conditions of Theorem 3.13

A graph G is hypohamiltonian if G is nonhamiltonian, but G − v is hamiltonian for
all v ∈ V (G). A graph that is MNH as well as hypohamiltonian is called maximal hy-
pohamiltonian (MHH ). We can replace any of the graphs 〈V (Gi) ∪ {x}〉 in the graph
depicted in Figure 14 by an MHH graph. (Then Gi is hamiltonian, and hence homoge-
neously traceable.) Examples of MHH graphs are the Petersen graph, the Coxeter graph,
Chisala’s G3-snark, and the Isaacs’ snarks Jk for odd k ≥ 5 (see e.g. [1], [3], [4] and [11]
for definitions).
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