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Abstract

Fix integers t ≥ r ≥ 2 and an r-uniform hypergraph F . We prove that the
maximum number of edges in a t-partite r-uniform hypergraph on n vertices that
contains no copy of F is ct,F

(n
r

)

+ o(nr), where ct,F can be determined by a finite
computation.

We explicitly define a sequence F1, F2, . . . of r-uniform hypergraphs, and prove
that the maximum number of edges in a t-chromatic r-uniform hypergraph on n

vertices containing no copy of Fi is αt,r,i

(

n
r

)

+ o(nr), where αt,r,i can be determined
by a finite computation for each i ≥ 1. In several cases, αt,r,i is irrational. The
main tool used in the proofs is the Lagrangian of a hypergraph.

1 Introduction

An r-uniform hypergraph or r-graph is a pair G = (V, E) of vertices, V , and edges E ⊆
(

V
r

)

,
in particular a 2-graph is a graph. We denote an edge {v1, v2, . . . , vr} by v1v2 · · ·vr. Given
r-graphs F and G we say that G is F -free if G does not contain a copy of F . The
maximum number of edges in an F -free r-graph of order n is ex(n, F ). For r = 2 and
F = Ks (s ≥ 3) this number was determined by Turán [T41] (earlier Mantel [M07] found
ex(n, K3)). However in general (even for r = 2) the problem of determining the exact
value of ex(n, F ) is beyond current methods. The corresponding asymptotic problem is to

determine the Turán density of F , defined by π(F ) = limn→∞

ex(n,F )

(n

r)
(this always exists

by a simple averaging argument due to Katona et al. [KNS64]). For 2-graphs the Turán
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density is determined by the chromatic number of the forbidden subgraph F . The explicit
relationship is given by the following fundamental result.

Theorem 1 (Erdős–Stone–Simonovits [ES46], [ES66]). If F is a 2-graph then
π(F ) = 1 − 1

χ(F )−1
.

When r ≥ 3, determining the Turán density is difficult, and there are only a few exact
results. Here we consider some closely related hypergraph extremal problems. Call a
hypergraph H t-partite if its vertex set can be partitioned into t classes, such that every
edge has at most one vertex in each class. Call H t-colorable, if its vertex set can be
partitioned into t classes so that no edge is entirely contained within a class.

Definition 2. Fix t, r ≥ 2 and an r-graph F . Let ex∗t (n, F ) (ext(n, F )) denote the max-
imum number of edges in a t-partite (t-colorable) r-graph on n vertices that contains no
copy of F . The t-partite Turán density of F is π∗

t (F ) = limn→∞ex∗t (n, F )/
(

n
r

)

and the
t-chromatic Turán density of F is πt(F ) = limn→∞ext(n, F )/

(

n
r

)

.

Note that it is easy to show that these limits exist. In this paper, we determine π∗

t (F )
for all r-graphs F and determine πt(F ) for an infinite family of r-graphs (previously no
nontrivial value of πt(F ) was known). In many cases our examples yield irrational values
of πt(F ). For the usual Turán density, π(F ) has not been proved to be irrational for any
F , although there are several conjectures stating irrational values.

In order to describe our results, we need the concept of G-colorings which we introduce
now. If F and G are hypergraphs (not necessarily uniform) then F is G-colorable if there
exists c : V (F ) → V (G) such that c(e) ∈ E(G) whenever e ∈ E(F ). In other words, F is
G-colorable if there is a homomorphism from F to G.

Let K
(r)
t denote the complete r-graph of order t. Then an r-graph F is t-partite if F is

K
(r)
t -colorable, and F is t-colorable if it is H

(r)
t -colorable where H

(r)
t is the (in general non-

uniform) hypergraph consisting of all subsets A ⊆ {1, 2, . . . , t} satisfying 2 ≤ |A| ≤ r).
The chromatic number of F is χ(F ) = min{t ≥ 1 : F is t-colorable}. Note that while a

2-graph is t-colorable iff it is t-partite this is no longer true for r ≥ 3, for example K
(3)
4 is

2-colorable but not 2-partite or 3-partite.
Let G(r)

t denote the collection of all t-vertex r-graphs with vertex {1, 2, . . . , t}. A tool
which has proved very useful in extremal graph theory and which we will use later is the
Lagrangian of an r-graph. Let

St = {~x ∈ R
t :

t
∑

i=1

xi = 1, xi ≥ 0 for 1 ≤ i ≤ t}.

If G ∈ G(r)
t and ~x ∈ St then we define

λ(G,~x) =
∑

v1v2···vr∈E(G)

xv1xv2 · · ·xvt
.

The Lagrangian of G is max~x∈St
λ(G,~x). The first application of the Lagrangian to ex-

tremal graph theory was due to Motzkin and Strauss who gave a new proof of Turán’s
theorem. We are now ready to state our main result.
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Theorem 3. If F is an r-graph and t ≥ r ≥ 2 then

π∗

t (F ) = max{r!λ(G) : G ∈ G(r)
t and F is not G-colorable}.

As an example of Theorem 3, suppose that t = 4, r = 3, and F = K
(3)
4 . Let H denote

the unique 3-graph with four vertices and three edges. Now F is F -colorable, but it is
not H-colorable, and the Lagrangian λ(H) of H is 4/81, achieved by assigning the degree
three vertex a weight of 1/3 and the other three vertices a weight of 2/9. Consequently,
Theorem 3 says that the maximum number of edges in an n-vertex 4-partite 3-graph
containing no copy of K

(3)
4 is (8/27)

(

n
3

)

+ o(n3). This is clearly achievable, by the 4-
partite 3-graph with part sizes n/3, 2n/9, 2n/9, 2n/9, with all possible triples between
three parts that include the largest (of size n/3), and no triples between the three small
parts.

Chromatic Turán densities were previously considered in [T07] where they were used
to give an improved upper bound on π(H), where H is defined in the previous paragraph.
However no non-trivial chromatic Turán densities have previously been determined. For
each r ≥ t ≥ 2 we are able to give an infinite sequence of r-graphs whose t-chromatic
Turán densities are determined exactly.

For l ≥ t ≥ 2 and r ≥ 2 define

βr,t,l := max{λ(G) : G is a t-colorable r-graph on l vertices}.

It seems obvious that βr,t,l is achieved by the t-chromatic r-graph of order l with all color
classes of size bl/tc or dl/te and all edges present except those within the classes. Note
that if t|l then this would give

βr,t,l =

((

l

r

)

− t

(

l/t

r

))

1

lr
.

However, we are only able to prove this for r = 2, 3. If the above statement is true,
then βr,t,l can be computed by calculating the maximum of an explicit polynomial in one
variable over the unit interval. In any case it can be obtained by a finite computation
(for fixed r, t, l). Let αr,t,l = r!βr,t,l.

Theorem 4. Fix l ≥ r ≥ 2. Let L
(r)
l+1 be the r-graph obtained from the complete graph

Kl+1 by enlarging each edge with a set of r − 2 new vertices. If t ≥ 2 then

πt(L
(r)
l+1) = αr,t,l

where αr,t,l is defined above.

The remainder of the paper is arranged as follows. In the next section we prove The-
orem 3 and in the last section we prove Theorem 4 and the statements about computing
βr,t,l, for r = 2, 3.
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2 Proof of Theorem 3

If G ∈ G(r)
t and ~x = (x1, . . . , xt) ∈ Z

t
+ then the ~x-blow-up of G is the r-graph G(~x)

constructed from G by replacing each vertex v by a class of vertices of size xv and taking
all edges between any r classes corresponding to an edge of G. More precisely we have
V (G(~x)) = X1∪̇ · · · ∪̇Xt, |Xi| = xi and

E(G(~x)) = {{vi1vi2 · · · vir} : vij ∈ Xij , {i1i2 · · · ir} ∈ E(G)}.

If ~x = (s, s, . . . , s) and G = K
(r)
t then G(~x) is the complete t-partite r-graph with class

size s, denoted by K
(r)
t (s). Note that if F and G are both r-graphs then F is G-colorable

iff there exists ~x ∈ Z
t
+ such that F ⊆ G(~x).

An r-graph G is said to be covering if each pair of vertices in V (G) is contained in a
common edge. If W ⊂ V and G is an r-graph with vertex V then G[W ] is the induced
subgraph of G formed by deleting all vertices not in W and removing all edges containing
these vertices.

Lemma 5 (Frankl and Rödl [FR84]). If G is an r-graph of order n then there exists
~y ∈ Sn with λ(G) = λ(G, ~y), such that if P = {v ∈ V (G) : yv > 0} then G[P ] is covering.

Supersaturation for ordinary Turán densities was shown by Erdős [E71]. The proof
for G-chromatic Turán densities is essentially identical but for completeness we give it.
We require the following classical result.

Theorem 6 (Erdős [E64]). If r ≥ 2 and t ≥ 1 then ex(n, K
(r)
r (t)) = O(nr−λr,t), with

λr,t > 0.

Lemma 7 (Supersaturation). Fix t ≥ r ≥ 2. If G is an r-graph, H is a finite family
of r-graphs, s ≥ 1 and ~s = (s, s, . . . , s) then π∗

t (H(~s)) = π∗

t (H) (where H(~s) = {H(~s) :
H ∈ H}).

Proof: Let p = max{|V (H)| : H ∈ H}. By adding isolated vertices if necessary we
may suppose that every H ∈ H has exactly p vertices.

First we claim that if F is an n-vertex r-graph with density at least α + 2ε, where
α, ε > 0, and r ≤ m ≤ n then at least ε

(

n
m

)

of the m-vertex induced subgraphs of F have
density at least α + ε. To see this note that if it fails to hold then

(

n − r

m − r

)

(α + 2ε)

(

n

r

)

≤
∑

W∈(V (F )
m )

e(F [W ]) < ε

(

n

m

)(

m

r

)

+ (1 − ε)

(

n

m

)

(α + ε)

(

m

r

)

,

which is impossible.
Let ε > 0 and suppose that F is a t-partite n-vertex r-graph with density at least

π∗

t (H) + 2ε. We need to show that if n is sufficiently large then F contains a copy of
H(~s). Let m ≥ m(ε) be sufficiently large that any t-partite m-vertex r-graph with density
at least π∗

t (H) + ε contains a copy of some H ∈ H. We say that W ∈
(

V (F )
m

)

is good if
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F [W ] contains a copy of some H ∈ H. By the claim at least ε
(

n
m

)

m-sets are good, so if
δ = ε/|H| then at least δ

(

n
m

)

m-sets contain a fixed H∗ ∈ H.
Thus the number of p-sets U ⊂ V (F ) such that F [U ] ' H∗ is at least

δ
(

n
m

)

(

n−p
m−p

) =
δ
(

n
p

)

(

m
p

) . (1)

Let J be the p-graph with vertex set V (F ) and edge set consisting of those p-sets U ⊂
V (F ) such that F [U ] ' H∗. Now, by Theorem 6, ex∗

t (n, K
(p)
p (l)) ≤ ex(n, K

(p)
p (l)) =

O(np−λp,l), where λp,l > 0. Hence (1) implies that for any l ≥ p if n is sufficiently large

then K
(p)
p (l) ⊂ J .

Finally consider a coloring of the edges of K
(p)
p (l) with p! different colors, where the

color of the edge is given by the order in which the vertices of H∗ are embedded in it. By
Ramsey’s theorem if l is sufficiently large then there is a copy of K

(p)
p (s) with all edges

the same color. This yields a copy of H∗(~s) in F as required.

Proof of Theorem 3. Let αr,t = max{r!λ(G) : G ∈ G(r)
t and F is not G-colorable}.

(This is well-defined since |G(r)
t | ≤ 2(t

r) is finite.)

If G ∈ G(r)
t and F is not G-colorable then for any ~x ∈ Z

t
+ we have F 6⊆ G(~x). Let

~y ∈ St satisfy λ(G, ~y) = λ(G). For n ≥ 1 let ~xn = (by1nc, . . . , bytnc) ∈ Z
t
+. If Gn = G(~xn)

then

lim
n→∞

e(Gn)
(

n
r

) = r!λ(G).

Moreover since each Gn is F -free, t-partite and of order at most n we have π∗

t (F ) ≥ r!λ(G).
Hence π∗

t (F ) ≥ αr,t.

Let H(F ) = {H ∈ G(r)
t : F is H-colorable}.

It is sufficient to show that
π∗

t (H(F )) ≤ αr,t. (2)

Indeed, if we assume that (2) holds, then let s ≥ 1 be minimal such that every H ∈ H(F )
satisfies F ⊆ H(~s), where ~s = (s, s, . . . , s). (Note that s exists since F is H-colorable
for every H ∈ H(F )). Now by supersaturation (Lemma 7) if ε > 0, then any t-partite
r-graph Gn with n ≥ n0(s, ε) vertices and density at least αr,t + ε will contain a copy of
H(~s) for some H ∈ H(F ). In particular Gn contains F and so π∗

t (F ) ≤ αr,t.
Let π∗

t (H(F )) = γ and ε > 0. If n is sufficiently large there exists an H(F )-free,
t-partite r-graph Gn of order n satisfying

r!e(Gn)

nr
≥ γ − ε.

Taking ~y = (1/n, 1/n, . . . , 1/n) ∈ Sn we have

r!λ(Gn) ≥ r!λ(Gn, ~y) =
r!e(Gn)

nr
≥ γ − ε.
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Now Lemma 5 implies that there exists ~z ∈ Sn satisfying
• λ(Gn) = λ(Gn, ~z) and
• Gn[P ] is covering where P = {v ∈ V (G) : zv > 0}.
Since Gn is t-partite, we conclude that Gn[P ] has at most t vertices. Moreover, Gn is

H(F )-free and so Gn[P ] 6∈ H(F ). Thus F is not Gn[P ]-colorable, and we have γ − ε ≤
r!λ(Gn[P ]) ≤ αr,t. Thus π∗

t (H(F )) ≤ αr,t + ε for all ε > 0. Hence (2) holds and the proof
is complete.

3 Infinitely many chromatic Turán densities

For l, r ≥ 2 let K(r)
l be the family of r-graphs with at most

(

l
2

)

edges that contain a set
S, called the core, of l vertices, with each pair of vertices from S contained in an edge.
Note that L

(r)
l+1 ∈ K(r)

l+1. We need the following Lemma that was proved in [M06]. For
completeness, we repeat the proof below.

Lemma 8. If K ∈ K(r)
l+1, s =

(

l+1
2

)

+ 1 and ~s = (s, s, . . . , s) then L
(r)
l+1 ⊆ K(~s).

Proof. We first show that L
(r)
l+1 ⊂ L(

(

l+1
2

)

+ 1) for every L ∈ K(r)
l+1. Pick L ∈ K(r)

l+1,

and let L′ = L(
(

l+1
2

)

+ 1). For each vertex v ∈ V (L), suppose that the clones of v are

v = v1, v2, . . . , v(l+1
2 )+1. In particular, identify the first clone of v with v.

Let S = {w1, . . . , wl+1} ⊂ V (L) be the core of L. For every 1 ≤ i < j ≤ l + 1,
let Eij ∈ L with Eij ⊃ {wi, wj}. Replace each vertex z of Eij − {wi, wj} by zq where
q > 1, to obtain an edge E ′

ij ∈ L′. Continue this procedure for every i, j, making sure
that whenever we encounter a new edge it intersects the previously encountered edges
only in L. Since the number of clones is

(

l+1
2

)

+ 1, this procedure can be carried out

successfully and results in a copy of L
(r)
l+1 with core S. Therefore L

(r)
l+1 ⊂ L′ = L(

(

l+1
2

)

+1).

Consequently, Lemma 7 implies that π(L
(r)
l+1) ≤ π(K(r)

l+1).

Proof of Theorem 4. Let l ≥ r ≥ 2 and t ≥ 2. We will prove that

πt(K(r)
l+1) = αr,t,l. (3)

The theorem will then follow immediately from Lemmas 7 and 8. Let

Br,t,l = {G : G is a t-colorable K(r)
l+1-free r-graph}.

Claim. max{λ(G) : G ∈ Br,t,l} = βr,t,l = αr,t,l/r!.
Proof of Claim. If G ∈ Br,t,l has order n then Lemma 5 implies that there is ~y ∈ Sn

such that λ(G) = λ(G, ~y) with G[P ] covering, where P = {v ∈ V (G) : yv > 0}. Since G is

K(r)
l+1-free, we conclude that |P | = p ≤ l. Hence there is H ∈ Br,t,l such that λ(H) = λ(G)

and H has order at most l. Consequently, max{λ(G) : G ∈ Br,t,l} ≤ βr,t,l. For the other

inequality, we just observe that an l-vertex r-graph must be K(r)
l+1-free.
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Now we can quickly complete the proof of the theorem by proving (3). For the upper
bound, observe that if G ∈ Br,t,l has order n then by the Claim

e(G)

nr
≤ λ(G) ≤ αr,t,l

r!

and so πt(K(r)
l+1) ≤ αr,t,l. For the lower bound, suppose that G ∈ Br,t,l has order p and

satisfies λ(G) = βr,t,l. Then there exists ~y ∈ Sp such that λ(G, ~y) = λ(G) = βr,t,l.
For n ≥ p define ~yn = (by1nc, . . . , bypnc). Now {G(~yn)}∞n=p is a sequence of t-colorable

K(r)
l+1-free r-graphs and hence

πt(K(r)
l+1) ≥ lim

n→∞

e(Gn)
(

n
r

) = r!λ(G) = αr,t,l.

Now we prove that βr,t,l can be computed by only considering maximum t-colorable
r-graphs with almost equal part sizes when r = 2, 3. The case r = 2 follows trivially from
Lemma 5 so we consider the case r = 3.

Theorem 9. Fix l ≥ t ≥ 2. Then β3,t,l is achieved by the t-chromatic 3-graph of order
l with all color classes of size bl/tc or dl/te and all edges present except those within the
classes.

Remark: Note that if t|l then this implies that β3,t,l = (
(

l
3

)

− t
(

l/t
3

)

) 1
l3
.

Proof. Let G be a t-chromatic 3-graph of order l satisfying λ(G) = β3,t,l. We may suppose
(by adding edges as required) that V (G) = V1∪V2∪· · ·∪Vt and that all edges not contained
in any Vi are present. We may also suppose that |V1| ≥ |V2| ≥ · · · ≥ |Vt|. Let ~x ∈ Sp

satisfy λ(G,~x) = λ(G).
If v, w ∈ Vi and xv > xw then setting δ = (xv−xw)/2 > 0 and defining a new weighting

~x′ by x′

v = xv − δ, x′

w = xw + δ and x′

u = xu for u ∈ V \{v, w} it is easy to check that
λ(G,~x′) > λ(G,~x), contradicting the assumption that λ(G,~x) = λ(G). Hence we may
suppose that there are x1, . . . , xt ≥ 0 such that all vertices in Vi receive weight xi.

In fact we can assume that all the xi are non-zero. Since ~x ∈ Sp there exists k such
that xk > 0. Suppose that xj = 0 for some j ∈ {1, 2, . . . , t}. Let ak = |Vk|, aj = |Vj|
and ε = xkajak/(aj + ak). Define a new weighting ~x′′ by x′′

v = xv for v ∈ V \(Vk ∪ Vj),
x′′

v = ε/aj for v ∈ Vj and x′′

v = xk − ε/ak for v ∈ Vk. It is straightforward to check that
~x′′ ∈ Sp and λ(G,~x′′) > λ(G,~x), contradicting the maximality of λ(G,~x). Hence we may
suppose that all the xi are non-zero.

Let l = bt+c, 0 ≤ c < t. To complete the proof we need to show that all of the Vi have
order b or b + 1. Suppose, for a contradiction, that there exist Vi and Vj with ai = |Vi|,
aj = |Vj| and ai ≥ aj + 2. We will construct a new t-colorable l-vertex 3-graph G̃ with
λ(G̃) > λ(G).

We construct G̃ from G by moving a vertex v from Vi to Vj and inserting all new
allowable edges (i.e. those which contain v and 2 vertices from Vi\{v}) while deleting any
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edges which now lie in Vj. By our assumption that β3,t,l = λ(G) = λ(G,~x) we must have
λ(G̃, ~x) ≤ λ(G,~x). Comparing terms in λ(G,~x) and λ(G̃, ~x) this implies that

(

aj

2

)

xix
2
j ≥

(

ai − 1

2

)

x3
i . (4)

In particular, since xi, xj > 0, we have xi < xj.
We give a new weighting ~y for G̃ by setting

yv =







aixi/(ai − 1), v ∈ Vi,
ajxj/(aj + 1), v ∈ Vj,
xk, v ∈ Vk and k 6= i, j.

It is easy to check that ~y ∈ Sl is a legal weighting for G̃. We will derive a contradiction
by showing that λ(G̃) ≥ λ(G̃, ~y) > λ(G,~x) = λ(G).

If w = aixi + ajxj = (ai − 1)yi + (aj + 1)yj then

λ(G̃, ~y) − λ(G,~x) = (1 − w)

((

ai − 1

2

)

y2
i +

(

aj + 1

2

)

y2
j + (ai − 1)(aj + 1)yiyj

−
(

ai

2

)

x2
i −

(

aj

2

)

x2
j − aiajxixj

)

+

(

ai − 1

2

)

(aj + 1)y2
i yj +

(

aj + 1

2

)

(ai − 1)yiy
2
j −

(

ai

2

)

ajx
2
i xj −

(

aj

2

)

aixix
2
j

=
(1 − w)

2

(

ajx
2
j

aj + 1
− aix

2
i

ai − 1

)

+
aiajxixj

2

(

xj

aj + 1
− xi

ai − 1

)

.

Using (4) it is easy to check that this is strictly positive.

Corollary 10. The t-chromatic Turán density can take irrational values.

Proof. We consider β3,2,2k for k ≥ 3. In fact, we focus on β3,2,6, the maximum density of

a 2-chromatic 3-graph that contains no copy of K(3)
6 . By the previous Theorem, this is 6

times the Lagrangian of the 3-graph with vertex set {a, a′, a′′, b, b′} and all edges present
except {a, a′, a′′}. Assigning weight x to the a’s and weight y to the b’s, we must maximize
6(6x2y+3xy2) subject to 3x+2y = 1 and 0 ≤ x ≤ 1/3. A short calculation shows that the
choice of x that maximizes this expression is (

√
13−2)/9, and this results in an irrational

value for the Lagrangian. Similar computations hold for larger k as well.

the electronic journal of combinatorics 15 (2008), #R26 8



References
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