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Abstract

Assume that G = (V,E) is an undirected graph, and C ⊆ V . For every v ∈ V ,
we denote Ir(G; v) = {u ∈ C : d(u, v) ≤ r}, where d(u, v) denotes the number of
edges on any shortest path from u to v. If all the sets Ir(G; v) for v ∈ V are pairwise
different, and none of them is the empty set, the code C is called r-identifying. If
C is r-identifying in all graphs G′ that can be obtained from G by deleting at most
t edges, we say that C is robust against t known edge deletions. Codes that are
robust against t unknown edge deletions form a related class. We study these two
classes of codes in the king grid with the vertex set ZZ

2 where two different vertices
are adjacent if their Euclidean distance is at most

√
2.

Keywords: Identifying code, edge deletion, king grid, optimal code.

1 Introduction

Assume that G = (V, E) is a simple, connected undirected graph with vertex set V and
edge set E.

The distance between two vertices u and v of G is defined to be the number of edges
on any shortest path from u to v, and is denoted by d(u, v) (or by dG(u, v) if we wish to
emphasize which graph we are referring to). We denote

Br(v) = Br(G; v) = {u ∈ V | d(u, v) ≤ r}.
∗Research supported by the Academy of Finland under grant 210280.
†Research supported by the Academy of Finland under grant 111940.
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A nonempty subset of vertices, C ⊆ V , is called a code and its elements are codewords.
If C is a code and v ∈ V , we denote

Ir(v) = Ir(G; v) = C ∩ Br(v).

A code is called r-identifying (in G) if the sets Ir(v) are nonempty and pairwise
different for all v ∈ V. In a closely related problem of r-locating-dominating sets, the sets
Ir(v) must also be nonempty and different, but now only for v /∈ C. The two problems
have been widely studied, see [1, 2, 3, 5, 6, 7, 8, 9, 10, 24, 25, 28, 29, 30] and for more
the web-site [23]. Among the most studied underlying graphs are the square grid, the
triangular grid, the king grid, trees, cycles and hypercubes. The original motivation for
identifying codes is locating faulty processors in a multiprocessor system [18]. They can
also be applied to sensor networks [26]. In both applications, the goal is to find as small
an identifying code as possible.

It is natural (see, e.g., [27]) to study codes that remain identifying, for instance, when
some edges are deleted in the underlying graph. In this paper we consider the following
two classes of robust identifying codes from [16]. For other types of robust identifying
codes, see also [14], [11], [12], [13], [17], [19], [20], [21], [22], [26].

Definition 1 An r-identifying code C ⊆ V is called robust against t known edge

deletions, if C is r-identifying in every graph G′ that can be obtained from G by deleting
at most t edges.

Definition 2 An r-identifying code C ⊆ V in G is called robust against t unknown

edge deletions, if it has the following property:

if u and v are any two different vertices of V and G1 and G2 are any two
(possibly the same) graphs each obtained from G by deleting at most t edges,
then Ir(G1; u) 6= Ir(G2; v) and Ir(G1; u) 6= ∅.

Here the idea is that we know that at most t edges have been deleted from G, but
do not know which ones, but although we do not know what the resulting graph G′ is,
Ir(G

′; u) gives enough information to uniquely determine u.
In this paper we study the king grid K, whose vertex set is ZZ

2 and in which two
different vertices are adjacent if their Euclidean distance is at most

√
2. The king grid is

a mathematically attractive model, because a ball of radius r has a particularly simple
form, being a (2r + 1) × (2r + 1) square of vertices.

Denote by Qn the set of vertices (x, y) ∈ V with |x| ≤ n and |y| ≤ n. Then the density
of a code C is defined as

D(C) = lim sup
n→∞

|C ∩ Qn|
|Qn|

.

We try to determine how small the densities of codes that are robust against known or
unknown edge deletions can be.

From now on, we always assume that t ≥ 1 and r ≥ 1.
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2 Unknown edge deletions

We begin by looking at identifying codes that are robust against unknown edge deletions
for different values of radius and number of deletions.

2.1 Codes with t = 1

The case t = r = 1 has been discussed in [16], so we focus on r > 1.
The following result from [15] turns out to be useful in what follows when we bound

from below the density of a code.

Theorem 3 Assume that C ⊆ ZZ
2 is a code in the king grid. Let S = {s1, s2, . . . , sk} be

a subset containing k different vertices. For each i = 1, 2, . . . , k we choose a real number
wi, which we call the weight of si and denote it by w(si). For all subsets A of S we denote

w(A) =
∑

a∈A

w(a).

If for all v ∈ ZZ
2 we have

w((v + C) ∩ S) ≥ m,

and w1 + w2 + . . . + wk > 0, then the density D of C satisfies

D ≥ m

w1 + w2 + . . . + wk

.

In the sequel we also need the following observation of the king grid.

Lemma 4 Let (i, j) ∈ ZZ
2 be arbitrary and r ≥ 2. Then i) there are three edge-disjoint

paths of length r from (i, j) to each of the points (i − r + 2, j + r), (i − r + 3, j + r),
. . . , (i + r − 2, j + r), and ii) there are two edge-disjoint paths of length r to the points
(i− r + 1, j + r) and (i + r− 1, j + r). Moreover, iii) there exists three edge-disjoint paths
of length at most r from (i, j) to the points (i− r + 1, j + r− 1), (i− r + 2, j + r − 1),. . . ,
(i + r − 1, j + r − 1).

Proof. Consider first i). The path needs to go further up in each step, and the only
possible moves that can be used on such a path are L, a move to the left and up, U a
move up, and R, a move to the right and up. The sequence Rk+1U r−k−2L (i.e., we first
use the move R k + 1 times, then U r − k − 2 times and finally L once) takes us from
(i, j) to (i + k, j + r) for all k with 0 ≤ k ≤ r − 2, and so do the sequences URkU r−k−1

and LU r−k−2Rk+1. It is easy to check that these three paths are edge-disjoint. The other
cases in i) are symmetric. To see ii) for the point (i + r − 1, j + r), we simply use the
sequences Rr−1U and URr−1. The other case is again symmetric. Let us now look at the
case iii). The claim is trivial for r = 2, so assume r ≥ 3. By i) (replace r by r − 1), it
suffices to consider the symmetric points (i − r + 1, j + r − 1) and (i + r − 1, j + r − 1)
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and the symmetric points (i − r + 2, j + r − 1) and (i + r − 2, j + r − 1). The point
(i + r− 1, j + r− 1) has the following three edge-disjoint paths of length at most r; Rr−1,
URr−2S, where S is denotes the step to the right, and the reflection of the latter one with
respect to Rr−1. The point (i + r − 2, j + r − 1) already has, by ii) (replace r by r − 1
again), two edge-disjoint paths to p. The third one is LRr−2S. 2

The following theorem gives the smallest possible density for the case t = 1 and r > 1.

Theorem 5 Assume that r > 1. In the king grid the smallest possible density of an
r-identifying code that is robust against one unknown edge deletion is 1

4r
.

Proof. We know from [4] that the density of an r-identifying code in K must be at least
1
4r

for all r > 1. In this case, there is also a simple proof that follows from the previous
theorem: see the proof of Theorem 10.

It therefore suffices to prove that the code

C = {(x, y) | y − x ≡ 0 (mod 2r), x ≡ 0 (mod 2)}

is an r-identifying code that is robust against one unknown edge deletion. Notice that we
can change the condition x ≡ 0 (mod 2) to y ≡ 0 (mod 2) without changing the code
C.

Assume that p = (xp, yp) and q = (xq, yq) are two different vertices. We show that
Ir(K

′; p) 6= Ir(K
′′; q) whenever K ′ and K ′′ are two (not necessarily different) graphs each

obtained by deleting at most one edge from K.
The code is clearly symmetric with respect to the line y = −x; so we can without loss

of generality assume that yp > yq.
Assume first that yp = yq +1. Either yp +r or yq−r is even: without loss of generality,

yp + r is even. Then every (2r)-th point on the line y = yp + r is a codeword. Hence i)
one of the 2r − 1 points p + (−r + 1, r), p + (−r + 2, r), . . . , p + (r − 1, r) is in C or ii)
both p + (−r, r) and p + (r, r) are in C.

If i) holds, then that codeword belongs to Ir(K
′; p), because (by the previous lemma)

there are at least two edge-disjoint paths to this codeword from p (and at most one edge is
deleted in order to obtain K ′ from K). Clearly, this codeword does not belong to Ir(K; q)
and therefore not to Ir(K

′′; q) either.
If ii) holds, then there are edge-disjoint paths from p to p + (−r, r) and p + (r, r), and

therefore at least one of the points p + (−r, r) and p + (r, r) belongs to Ir(K
′; p). Again,

this codeword does not belong to Ir(K
′′; q), and we are done.

Assume therefore that yp ≥ yq + 2. Then either the line y = yp + r or y = yp + r − 1
contains codewords, and a similar argument works (use the part iii of Lemma 4 in case of
the line y = yp + r − 1).

Finally, we need to check that for all p = (xp, yp) ∈ ZZ
2 we have Ir(K

′; p) 6= ∅ in all
graphs K ′ obtained from K by deleting at most one edge. Again, either the line y = yp+r
or y = yp + r − 1 contains codewords, and the same argument as above proves the claim.

2
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Figure 1: If the open circle is not in C, then all the solid circles are.

2.2 Codes with t = 2 and r = 1

Assume that C is a 1-identifying code in the infinite king grid and that it is robust against
two unknown edge deletions. Obviously |B1((i, j))4B1((i+1, j))| = 6, and by definition,
all three elements in B1((i, j))\B1((i+1, j)) or all three elements in B1((i+1, j))\B1((i, j))
are in C. Because this holds for all pairs (i, j), we conclude that if u /∈ C, then all the
points u + (−3, 2), u + (−3, 1), u + (−3, 0), u + (−3,−1) and u + (−3,−2) are in C, and
so are the points u + (3, 2), u + (3, 1), u + (3, 0), u + (3,−1), u + (3,−2). We can also
reverse the roles of the x- and y-coordinates in the argument, and see that if the open
circle in Figure 1 is not in C, then all the 20 solid circles must be in the code.

We denote
F (i, j) = {(i, j), (i, j + 3), (i + 3, j + 3), (i + 3, j)},

and call it the frame at (i, j). Each frame contains at least two codewords, and if there
are only two codewords, then the codewords are diagonally opposite. Denote

Fk = {F (i, j) | |F (i, j) ∩ C| = k}

for k = 2, 3, 4. We would like to show that in average, each frame contains at least three
codewords. For that purpose, we devise a counting scheme which shows how the frames
with only two codewords can be averaged out.

We ask the frames in F4 to give votes to the frames in F2 according to the following
rule:

Assume that F (i, j) ∈ F4. If the list

F (i + 1, j), F (i + 2, j), F (i, j + 1), F (i, j − 1), F (i + 1, j + 1),

F (i + 1, j − 1), F (i + 2, j + 1), F (i + 2, j − 1)

contains a frame that belongs to F2, then F (i, j) gives one vote to the first
frame in F2 on the list. Otherwise, we take the first of the two sets {F (i, j +
2), F (i, j − 2)} and {F (i + 1, j + 2), F (i + 1, j − 2)} that contains at least one
element of F2, and F (i, j) gives half a vote to each element of F2 in that set.
If neither of the two sets contains an element of F2, then no votes are given.
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Clearly, each frame F (i, j) ∈ F4 gives at most one vote in all.
Each frame has been labelled by its lower-left corner. Using this labelling we can

illustrate the voting rule above by the figure

6 7
3 4 5
0 1 2
3 4 5
6 7

where 0 is the frame itself. Using Figure 1 one immediately checks that the two frames
labelled by 3 (resp. 4, 5) cannot both simultaneously belong to F2. During the voting
the frame 0 first looks at the numbers 1, 2, 3, 4 and 5, and if there is a frame from F2,
the one with the smallest label in this array gets one vote. If none of these eight frames
belongs to F2, then we look at the two 6’s. If at least one of them belongs to F2, then
each of them that belongs to F2 gets half a vote. Otherwise, we look at the two 7’s and
do the same thing. In particular, we see that the voting rule is symmetric with respect
to the middle horizontal line in the array.

Lemma 6 Each frame in F2 gets at least one vote in all.

Proof. Without loss of generality, we can assume that F (i, j) ∈ F2, and that the two
non-codewords in F (i, j) are in the lower-left and upper-right corners (in the other case,
we just go up instead of going down in what follows: as explained above, the voting rule
is symmetric in this sense). Then using Figure 1 we have Constellation 1 in Figure 2
where the open circles denote the two non-codewords in F (i, j) and solid circles denote
codewords. The point (i, j) is the non-codeword in the middle.

If F (i− 1, j) is in F4, i.e., (i− 1, j) is in C, then F (i− 1, j) gives F (i, j) one vote, and
we are done. Assume therefore that (i− 1, j) is not in C. Then by Figure 1, (i+2, j − 2),
(i + 2, j − 1), (i + 2, j + 1) and (i + 2, j + 2) are all in C.

If F (i− 2, j) is in F4, i.e., (i− 2, j) is in C, then (because F (i− 1, j) /∈ F2) F (i− 2, j)
gives F (i, j) one vote, and we are done. Assume therefore that (i−2, j) is not in C. Then
all the points (i + 1, j − 2), (i + 1, j − 1), (i + 1, j + 1) and (i + 1, j + 2) are in C, and we
have Constellation 2 in Figure 2.

If F (i, j − 1) ∈ F4, i.e., (i, j − 1) is in C, then it F (i, j − 1) gives F (i, j) one vote,
because it does not give any votes to F (i + 1, j − 1) or F (i + 2, j − 1). Assume therefore
that (i, j − 1) is not in C. Then (i − 2, j + 2), (i − 1, j + 2), (i − 2, j − 4), (i − 1, j − 4),
(i, j − 4), (i + 1, j − 4), (i + 2, j − 4) and (i + 3, j − 3) are all in C.

If (i − 1, j − 1) is in C, then F (i − 1, j − 1) gives F (i, j) one vote; so assume that
(i − 1, j − 1) is not in C.

If (i − 2, j − 1) is in C, then F (i − 2, j − 1) gives F (i, j) one vote; so assume that
(i − 2, j − 1) is not in C. Now we have Constellation 3 in Figure 3. From the definition,
it immediately follows that |I1((i − 1, j))| ≥ 3 and |I1((i − 1, j − 1))| ≥ 3, and therefore
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Constellation 2

Figure 2: Two constellations.

the five points (i− 2, j − 2), (i − 1, j − 2), (i, j − 2), (i − 2, j + 1), (i− 1, j + 1) are all in
C. Now both F (i, j − 2) and F (i− 1, j − 2) gives F (i, j) half a vote, and we are done. 2

Theorem 7 The smallest possible density of a 1-identifying code in the king grid that is
robust against two unknown edge deletions is 3/4.

Proof. It is easy to check that the code in Constellation 4 in Figure 3 is a 1-identifying
code that is robust against two unknown edge deletions and has density 3/4.

Assume that C is any 1-identifying code that is robust against two unknown edge
deletions. Recall that Qn = {(x, y) ∈ ZZ

2 | |x| ≤ n, |y| ≤ n}. First, every point in Qn is
contained in exactly four frames F (i, j). Second, by the previous lemma,

# of frames F (i, j) ∈ F2 with (i, j) ∈ Qn−3

≤ # of votes received by F (i, j) with (i, j) ∈ Qn−3

≤ # of votes given by F (i, j) with (i, j) ∈ Qn−1

≤ # of frames F (i, j) ∈ F4 with (i, j) ∈ Qn−1.

Using these two observations we get

4|C ∩ Qn| ≥
∑

(i,j)∈Qn−3

|F (i, j) ∩ C|

= 3|Qn−3| + |{(i, j) ∈ Qn−3 | F (i, j) ∈ F4}|
−|{(i, j) ∈ Qn−3 | F (i, j) ∈ F2}|

≥ 3|Qn−3| + |{(i, j) ∈ Qn−3 | F (i, j) ∈ F4}|
−|{(i, j) ∈ Qn−1 | F (i, j) ∈ F4}|

≥ 3|Qn−3| − |Qn−1 \ Qn−3|
≥ 3|Qn| − (16n − 24),

and therefore
|C ∩ Qn|
|Qn|

≥ 3

4
− 4n − 6

(2n + 1)2
,

and the claim follows. 2
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Constellation 4

Figure 3: Two more constellations.

2.3 Codes with t = 2 and r > 1

Now let us consider r > 1.

Theorem 8 Assume that r > 1. There is an r-identifying code that is robust against two
unknown edge deletions in K and has density 1

4r−4
. The density of an r-identifying code

in K that is robust against two unknown edge deletions is at least 1
4r−2

.

Proof. The lower bound follows from Theorem 11.
The code

C = {(x, y) | y − x ≡ 0 (mod 2r − 2), x ≡ 0 (mod 2)}

is as required, as can be seen using an argument similar to the one in the proof of Theorem
5 (recall that whenever Lemma 4 guarantees three disjoint paths to a codeword not all of
them can be cut by two edge removals). 2

2.4 The case t ≥ 3

There are no codes in K that are r-identifying and robust against three or more unknown
edge deletions. Take any code C, and let p = (0, 0) and q = (1, 0), K ′ be the graph
obtained from K by deleting the three edges from (0, 0) to (−1,−1), (−1, 0) and (−1, 1),
and K ′′ the graph obtained from K by deleting the three edges from (1, 0) to (2,−1),
(2, 0) and (2, 1). Then

Br(K
′; p) = Br(K; p) \ {p + (−r,−r), p + (−r,−r + 1), . . . , p + (−r, r)},

and likewise

Br(K
′′; q) = Br(K; q) \ {q + (r,−r), q + (r,−r + 1), . . . , q + (r, r)},

and we see that Ir(K
′; p) = Ir(K

′′; q).
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3 Known edge deletions

In this section we concentrate on the other class of robust identifying codes, namely, on
the ones that are robust against known edge deletions.

3.1 The case t ≥ 6

There are no codes in K that are r-identifying and robust against six or more known edge
deletions. Take any code C, and let p = (0, 0) and q = (1, 0), and let K ′ be the graph
obtained from K by deleting the three edges from (0, 0) to (−1,−1), (−1, 0) and (−1, 1),
and the three edges from (1, 0) to (2,−1), (2, 0) and (2, 1). Then Ir(K

′; p) = Ir(K
′; q).

3.2 Codes with r = 1, 1 ≤ t ≤ 5

The following theorem immediately follows from [21].

Theorem 9 The smallest possible density of a 1-identifying code in K that is robust
against t known edge deletions is t+1

6
for t = 1, 2, 3, 4, 5.

Proof. If C is a 1-identifying code that is robust against t known edge deletions, then
clearly the symmetric difference B1((x, y))4 B1((x + 1, y)) (which consists of six points)
must contain at least t + 1 codewords, and the lower bound on the density follows. It is
shown in [21, Theorem 2] that a code with density t+1

6
exists in K that is 1-identifying in

all graphs obtained by deleting and/or adding at most t edges to K. 2

3.3 Codes with t = 1, r > 1

Theorem 10 Assume that r > 1. The smallest possible density of an r-identifying code
in K that is robust against one known edge deletion is 1

4r
.

Proof. In K the symmetric difference S := Br((x, y))4Br((x+1, y)) consists of 2(2r+1)
vertices. We use Theorem 3 and assign the weight 1/2 to the points (x − r, y − r),
(x − r, y + r), (x + 1 + r, y + r) and (x + 1 + r, y − r) (to which there is only one path of
length r from (x, y) or (x + 1, y)) and the weight 1 to the other 4r − 2 points. If there
are no codewords among the 4r− 2 points, then there must be two codewords among the
four points with weight 1/2. Thus m = 1 in Theorem 3.

The upper bound immediately follows from Theorem 5. 2
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3.4 Codes with t = 2, r > 1

Theorem 11 Assume that r > 1. There is an r-identifying code in K that is robust
against two known edge deletions and has density 1

4r−4
. If C is any r-identifying code in

K that is robust against two known edge deletions, then its density is at least 1
4r−2

. 2

Proof. The lower bound follows from Theorem 3 as follows. Take p = (x, y), q =
(x + 1, y), and S := Br((x, y))4Br((x + 1, y)) in K, and assign the points p + (−r,−r),
p+(−r,−r+1), p+(−r, r−1), p+(−r, r) as well as the points q+(r,−r), q+(r,−r+1),
q + (r, r − 1), q + (r, r) with weight 1/2 and all the other points with weight 1. The
reasoning for m = 1 goes analogously to the proof of the previous theorem.

The existence of such a code with density 1/(4r − 4) follows from Theorem 8. 2

3.5 Codes with t = 3, r > 1

Theorem 12 Assume that r > 1. There is an r-identifying code in K that is robust
against three known edge deletions and has density 1

2r
. If C is any r-identifying code in

K that is robust against three known edge deletions, then its density is at least 1
2r+1

.

Proof. Take C = {(x, y) ∈ ZZ
2 | y − x ≡ 0 (mod 2r)}. Assume that p = (xp, yp) and

q = (xq, yq) are two different points in ZZ
2. By symmetry, assume that yp > yq. If at most

three edges have been deleted from K to obtain K ′, we know that in K ′ at most one edge
has been deleted from the half-plane y ≥ yp or from the half-plane y ≤ yq. Without loss
of generality, assume the former. If any of the 2r−1 points p+(−r+1, r), p+(−r+2, r),
. . . , p + (r − 1, r) is in C, then by Lemma 4 this codeword is in Ir(K

′; p), but not in
Ir(K

′; q); if not, then both p + (−r, r) and p + (r, r) are in C, and at least one of them
belongs to Ir(K

′; p) but not Ir(K
′; q).

To see that Ir(K
′; (x0, y0)) 6= ∅ for all (x0, y0) ∈ ZZ

2 and all relevant graphs K ′, it
suffices to notice that at most one edge with an end point in the half-plane y > y0 has
been deleted or at most one edge with an end point in the half-plane y < y0 has been
deleted, and use the same argument as above.

For the lower bound, let (x, y) ∈ ZZ
2 be arbitrary. Consider the graph K ′ obtained by

deleting the edges from (x, y − 1) to (x − 1, y − 2), (x, y − 2) and (x + 1, y − 2). Then
B1((x, y))4B1((x, y − 1)) in K ′ consists of 2r + 1 points, of which at least one has to be
a codeword. The claim now follows from a standard density argument (i.e., in Theorem
3 we choose all the weights to be equal to one). 2

3.6 Codes with t = 4, r > 1

Theorem 13 Assume that r > 1. There is an r-identifying code in K that is robust
against four known edge deletions and has density 1

2r−1
. If C is any r-identifying code in

K that is robust against four known edge deletions, then its density is at least 1
2r

.
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Proof. The existence of such a code with density 1/(2r − 1) follows from Theorem 14.
For the lower bound, let (i, j) ∈ ZZ

2 be arbitrary. Consider the graph K ′ obtained by
deleting the edge from (i, j) to (i− 1, j +1), and the edges from (i, j − 1) to (i− 1, j − 2),
(i, j − 2) and (i + 1, j − 2). Then B1((i, j)) 4 B1((i, j − 1)) in K ′ consists of 2r points,
of which at least one has to be a codeword. The claim now follows as in the previous
proof. 2

3.7 Codes with t = 5 and r > 1

In this case it is possible to find again the exact value of the optimal density.

Theorem 14 Assume that r > 1. The smallest possible density of an r-identifying code
in K that is robust against five known edge deletions is 1

2r−1
.

Proof. To obtain the lower bound, take p = (x, y) and q = (x + 1, y), and let K ′ be
the graph obtained by deleting the three edges from p to p + (−1,−1), p + (−1, 0) and
p+(−1, 1) and the two edges from q to q+(1,−1) and q+(1, 1). Then Ir(K

′; p) ⊆ Ir(K
′; q)

and Ir(K
′; q) \ Ir(K

′; p) = {q + (r,−r + 1), q + (r,−r + 2), . . . , q + (r, r − 1)}. Hence this
(2r − 1)-element subset must contain at least one codeword and the lower bound on the
density follows.

Take then
C = {(x, y) | y − x ≡ 0 (mod 2r − 1)}.

Clearly, the density of C equals 1
2r−1

.
Assume that p = (xp, yp) and q = (xq, yq) are two different vertices; without loss of

generality, yp > yq (because the code is symmetric with respect to the line y = −x).
Assume that K ′ is obtained from K by deleting at most five edges. There are at most two
edges missing from the half-plane y ≥ yp or at most two edges missing from the half-plane
y ≤ yq; say the former is true.

By Lemma 4, there are three edge-disjoint paths of length r in K from p to each of
the points p+(−r+2, r), p+(−r+3, r), . . . , p+(r−2, r), so no matter which edges have
been deleted, these 2r − 3 points belong to Br(p) \ Br(q). There are two edge-disjoint
paths of length r from p to p + (r − 1, r).

If p + (r − 1, r) does not belong to Br(p) in K ′, then one edge from each of these two
paths has been deleted, and these are then the two deleted edges in the half-plane y ≥ yp.
But then p + (−r,−r) and p + (−r + 1, r) belong to Br(p) also in K ′, and we have found
a subset {p + (−r, r), p + (−r + 1, r), . . . , p + (r − 2, r)} consisting of 2r − 1 horizontally
consecutive points, of which one is a codeword by the construction, and hence belongs to
Ir(K

′; p) \ Ir(K
′; q).

So assume that p+(r−1, r) does belong to Br(p) in K ′. If also p+(−r+1, r) belongs
to Br(p) in K ′ we have again found a set of 2r − 1 horizontally consecutive points that
belong to Br(p) \ Br(q), and are done. Assume therefore that p + (−r + 1, r) does not
belong to Br(p) in K ′ There are two edge-disjoint paths from p to p + (−r + 1, r), and
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one edge from each must have been deleted. But then p + (r, r) belongs to Br(p), and we
are again done.

In addition, Ir(K
′; (x0, y0)) 6= ∅ for all (x0, y0) ∈ ZZ

2 and all relevant graphs K ′. Indeed,
notice that at most two edges with an end point in the half-plane y > y0 has been deleted
or at most two edges with an end point in the half-plane y < y0 has been deleted, and
use the same argument as above. 2
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