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Abstract

It is shown that, under mild conditions, a complex reflection group G(r, p, n) may
be decomposed into a set-wise direct product of cyclic subgroups. This property is
then used to extend the notion of major index and a corresponding Hilbert series
identity to these and other closely related groups.

1 Introduction

1.1 The Major Index

Let Sn be the symmetric group on n letters. Sn is a Coxeter group with respect to the
Coxeter generating set S = {si | 1 ≤ i < n}, where si := (i, i + 1) (1 ≤ i < n) are the
adjacent transpositions. Let `(π) be the length of π ∈ Sn with respect to S, let

Des(π) := {1 ≤ i < n | `(πsi) < `(π)}
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be the descent set of π (where permutations are multiplied from right to left), and let

maj(π) :=
∑

i∈Des(π)

i

be the major index of π. It is well known that

`(π) = #{i < j | π(i) > π(j)},

the number of inversions in π, and that

Des(π) = {1 ≤ i ≤ n− 1 | π(i) > π(i + 1)}.

The major index is involved in many classical identities on the symmetric group; see,
for example, [15, 11, 12, 8]. The search for an extended major index and corresponding
identities on other groups, initiated by Foata in the early nineties, turned out to be
successful for the classical Weyl groups and some wreath products. In particular, the
Hilbert series of the coinvariant algebra of the symmetric group Sn and of the wreath
products Zr o Sn may be expressed as generating functions for the flag major index on
these groups [3, 5, 1]. A generalization of this result to complex reflection groups, involving
the notion of basis for a group, is suggested in this paper. This generalization extends
previous results of [3].

1.2 Bases

The concept of basis for a group [18, 16] extends the classical Fundamental Theorem for
Finitely Generated Abelian Groups to the non-abelian case.

Definition 1.1. Let G be a finite group. A sequence a = (a1, . . . , an) of elements of G is
called a basis (or a starred ordered generating system, OGS*) for G if there exist positive
integers m1, . . . , mn such that every element g ∈ G has a unique presentation in the form

g = ak11 a
k2
2 · · ·akn

n ,

with 0 ≤ ki < mi for every 1 ≤ i ≤ n.
If mi = o(ai) (the order of the element ai) for every 1 ≤ i ≤ n then a is a perfect

basis (or an ordered generating system, OGS) for G.

A finite group G has a perfect basis if and only if G has a decomposition into a set-wise
direct product of cyclic subgroups. Namely, a group G has a perfect basis if and only if
there exist subgroups C1, . . . , Cn of G such that

(i) Ci is cyclic (∀i),

(ii) G = C1 · · ·Cn, and

(iii) Ci ∩
(

C1 · · · Ĉi · · ·Cn

)

= {1} (∀i).

the electronic journal of combinatorics 15 (2008), #R61 2



Examples:

1. pq-groups (p, q distinct primes) have a perfect basis [18].

2. The group of quaternions Q8 has a basis, but not a perfect basis [18].

The major index of a permutation has an algebraic interpretation in terms of a perfect
basis. The following observation is a reformulation of [3, Claim 2.1].

Observation 1.2. Let si := (i, i+ 1) ∈ Sn (1 ≤ i < n) and

ti := sisi−1 · · · s1 (1 ≤ i < n).

Then (tn−1, tn−2, . . . , t1) is a perfect basis for Sn; namely, every permutation π ∈ Sn has
a unique presentation

π = tn−1
kn−1 · · · t1

k1,

where 0 ≤ ki < o(ti) = i + 1 (1 ≤ i < n). In this notation,

maj(π) =

n−1∑

i=1

ki.

This observation was applied in [3] to solve a problem of Foata regarding the hyper-
octahedral group. In this paper, this approach is extended to complex reflection groups.

2 Concepts and Results

2.1 Background: Wreath Products

The colored permutation group G(r, n) is the wreath product of the cyclic group Zr by
the symmetric group Sn. Namely,

G(r, n) = Zr o Sn := {((c1, . . . , cn); π) | ci ∈ Zr, π ∈ Sn}

with group operation

((c1, . . . , cn); π) · ((c′1, . . . , c
′
n); π

′) := ((c1 + c′π−1(1), . . . , cn + c′π−1(n)); ππ
′).

Proposition 2.1. Let τi := ((1, 0, . . . , 0); ti) (0 ≤ i < n), where ti := si · · · s1 ∈ Sn
(1 ≤ i < n), as in Observation 1.2 above, and t0 = Id ∈ Sn, the identity permutation.
Then (τn−1, . . . , τ0) is a perfect basis for G(r, n), i.e., every element π ∈ G(r, n) has a
unique presentation

π = τn−1
kn−1 · · · τ1

k1τk00 , (1)

where 0 ≤ ki < o(τi) = r(i + 1) (0 ≤ i < n).
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Proposition 2.1 generalizes the first part of Observation 1.2, which concerns the special
case G(1, n) = Sn. It is a slightly modified version of a result described in [3], where the
basis elements are τ−1

0 τiτ0 instead of our τi.
Given the unique presentation (1), define the flag major index of a colored permutation

π ∈ G(r, n) by

fmajG(r,n)(π) :=

n−1∑

i=0

ki,

the sum of exponents in (1).

2.2 General Concepts

Given a (perfect) basis a = (a1, . . . , an) for a group G, define the (G, a) flag major index
as follows. For every g ∈ G let

fmaj(G,a)(g) :=

n∑

i=1

ki, (2)

where ki (1 ≤ i ≤ n) are the exponents in the unique presentation

g = ak11 · · ·akn

n (0 ≤ ki < mi).

Let
Fmaj(G,a)(q) :=

∑

g∈G

qfmaj(G,a)(g)

be the corresponding generating function.
By definition,

Fmaj(G,a)(q) =

n∏

i=1

[mi]q, (3)

where

[mi]q :=
qmi − 1

q − 1
.

Given a group G with a set of generators S, let `(G,S)(·) denote the length function on
G with respect to S, that is,

`(G,S)(g) := min{` : g = s1s2 · · · s` for some si ∈ S};

and let the Poincaré series of G (with respect to S) be the corresponding generating
function

Poin(G,S)(q) :=
∑

g∈G

q`(G,S)(g).

The case where (G, S) is a Coxeter system has been extensively studied (see, e.g., [14]).
If G is a Coxeter group we will always assume that S is the Coxeter generating set.

Motivated by Observation 1.2 we define a (perfect) Mahonian basis for G as follows.

the electronic journal of combinatorics 15 (2008), #R61 4



Definition 2.2. Let a be a (perfect) basis for a group G and let S be a generating set of
G. Then a is a (perfect) Mahonian basis for G with respect to S if

Fmaj(G,a)(q) = Poin(G,S)(q);

namely, if the (G, a) flag major index is equidistributed with length (with respect to S).

Let V be an n-dimensional vector space over a field F of characteristic zero, and let G
be a subgroup of the general linear group GL(V ). Then G acts naturally on the symmetric
algebra S(V ∗), which may be identified with the polynomial ring Pn = F [x1, . . . , xn]. Let
ΛG be the subalgebra of G-invariant polynomials, IGn the ideal (of Pn) generated by the G-
invariant polynomials without constant term, and RG := Pn/I

G
n the associated coinvariant

algebra. The coinvariant algebra is a direct sum of its homogeneous components, graded
by degree: RG = ⊕kR

G
k . Let

HilbG(q) :=
∑

k≥0

dimRG
k q

k

be the corresponding Hilbert series.

Definition 2.3. Let a be a (perfect) basis for a group G ⊂ GL(V ). Then a is a (perfect)
Hilbertian basis for G if

Fmaj(G,a)(q) = HilbG(q).

2.3 Main Result

Let r be a positive integer and let p be a divisor of r. The complex reflection group
G(r, p, n) is defined in [19] as the following subgroup of index p of the wreath product
G(r, n) = Zr o Sn:

G(r, p, n) := {g = ((c1, . . . , cn); π) ∈ G(r, n) |

n∑

i=1

ci ≡ 0 (mod p)}.

For more information on these groups the reader is referred to [13]. For the coinvariant
algebra and flag major index on these groups see [4].

The main result of this paper states:

Theorem 2.4. Every complex reflection group G(r, p, n) with parameters satisfying
gcd(n, p, r/p) = 1 has a perfect Hilbertian basis.

See Theorem 3.3 and Corollary 4.1 below. The special case p = 1 (wreath product)
was established in [21, 2, 3].

It follows that all classical Weyl groups have perfect Hilbertian-Mahonian bases (Corol-
laries 4.2 and 4.3 below) and that the alternating subgroup of a Weyl group of type B
has a Mahonian basis (Proposition 4.5 below). On the other hand, if gcd(n, p, r/p) > 1
then G(r, p, n) does not necessarily have a Hilbertian basis; see Section 5 below.
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3 A Perfect Basis for Complex Reflection Groups

Let u = (un−1, . . . , u0) be the following sequence of n elements in G(r, p, n):

ui := (c̄i; ti) (0 ≤ i ≤ n− 1),

where t0 ∈ Sn is the identity permutation,

ti := sisi−1 · · · s1 = (i + 1, i, . . . , 1) ∈ Sn (1 ≤ i ≤ n− 1),

c̄i := (1, 0, . . . , 0, αp− 1) ∈ Zn
r (0 ≤ i ≤ n− 2),

and
c̄n−1 := (1, 0, . . . , 0, p− 1).

The integer 0 ≤ α < r/p will be chosen later.

Remark 3.1. All the results below still hold if we define, more generally,

c̄n−1 := (1, 0, . . . , 0, βp− 1),

where β is any integer satisfying gcd(β, r/p) = 1.

Remark 3.2. If r = p then one can also take c̄n−1 := (0, . . . , 0).

The main result of this section is the following.

Theorem 3.3. If gcd(n, p, r/p) = 1 then there exists 0 ≤ α < r/p such that u above is a
perfect basis for G(r, p, n).

The rest of this section is devoted to proving this result, using the Chinese Remainder
Theorem and the Principle of Inclusion-Exclusion. For a discussion of the extent to which
the condition gcd(n, p, r/p) = 1 can be relaxed, see Section 5 below.

Lemma 3.4. Let H be the subgroup of G(r, p, n) generated by the elements {ui | 0 ≤ i ≤
n− 2}. Then H is isomorphic to G(r, n− 1).

Proof of Lemma 3.4. Define a map φ : H → G(r, n − 1) by erasing, from each
π = (c̄; t) ∈ H, the last coordinate of c̄. Let ψ(π) be that coordinate, so that ψ : H → Zr.
Since every π ∈ H satisfies |π(n)| = n, it follows that φ and ψ are group homomorphisms.
Moreover, for each π = ((c1, . . . , cn−1, cn); t) ∈ H:

cn = (αp− 1)
n−1∑

i=1

ci,

since this property holds for the generators, and is invariant under the group operation
in H. It follows that

c1 = . . . = cn−1 = 0 =⇒ cn = 0,
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namely: φ is injective. It is also surjective, since

{((1, 0, . . . , 0); ti) : 0 ≤ i ≤ n− 2}

is a perfect basis for G(r, n−1), by Proposition 2.1 above. Thus φ is a group isomorphism.

Consider now the sequence u = (un−1, . . . , u0) defined above. Clearly

o(ui) = (i+ 1)r (0 ≤ i ≤ n− 2)

and
o(un−1) = nr/p.

(The latter equality holds also if we use the definitions in Remark 3.1 or 3.2.)
The product of all these orders is n!rn/p = |G(r, p, n)|. If we show that all the products

u
kn−1

n−1 · · ·uk00 (0 ≤ ki < o(ui))

are distinct, then it will follow that u is a perfect basis for G(r, p, n).
Assume that

u
k′n−1

n−1 · · ·u
k′0
0 = u

k′′n−1

n−1 · · ·u
k′′0
0 (0 ≤ k′i, k

′′
i < o(ui)).

We want to show that k′i = k′′i (∀i). It suffices to show that k′n−1 = k′′n−1, since then

u
k′n−2

n−2 · · ·u
k′0
0 = u

k′′n−2

n−2 · · ·u
k′′0
0

and, by (the proof of) Lemma 3.4 and Proposition 2.1, this implies k′i = k′′i (0 ≤ i ≤ n−2).
Indeed, by assumption

u
k′n−1−k

′′

n−1

n−1 = [u
k′′n−2

n−2 · · ·u
k′′0
0 ][u

k′n−2

n−2 · · ·u
k′0
0 ]−1 ∈ H.

Let k := k′n−1 − k′′n−1; working modulo o(un−1), we can assume that 0 ≤ k < nr/p.
ukn−1 ∈ H implies that |ukn−1(n)| = n and therefore, by considering the Sn-component of

un−1, n|k. Denote k̃ := k/n. Then

ukn−1 = unk̃n−1 = ((k̃p, . . . , k̃p); Id),

where Id ∈ Sn is the identity permutation and 0 ≤ k̃ < r/p. (If we use the definition in
Remark 3.1 then k̃p should be replaced here by k̃βp. If we use the definition in Remark 3.2
then o(un−1) = n, and the proof ends here.)

On the other hand, we can present ukn−1 ∈ H in the form

ukn−1 = u
kn−2

n−2 · · ·uk00 (0 ≤ ki < o(ui)).

The natural projection T : H → Sn−1, defined by T ((c̄; t)) := t, is a group homomorphism
mapping the perfect basis (un−2, . . . , u0) of H onto the perfect basis (tn−2, . . . , t0) of
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Sn−1. Since T (ukn−1) = Id, it follows that o(ti) = i + 1 divides ki; let k̃i := ki/(i + 1)
(0 ≤ i ≤ n− 2). Now

ui+1
i = (vi; Id) (0 ≤ i ≤ n− 2)

where
vi := (1, . . . , 1

︸ ︷︷ ︸

i+1

, 0, . . . , 0, (αp− 1)(i+ 1)) ∈ Zn
r . (4)

Thus

ukn−1 = u
(n−1)k̃n−2

n−2 · · ·u2k̃1
1 uk̃00 = (

n−2∑

i=0

k̃ivi; Id).

So far we have

n−2∑

i=0

k̃ivi = (k̃p, . . . , k̃p) ∈ Zn
r (0 ≤ k̃i <

o(ui)

i + 1
= r, 0 ≤ i ≤ n− 2).

Since v0, . . . , vn−2 ∈ Zn
r are linearly independent, we conclude that

k̃n−2 = k̃p

while
k̃i = 0 (0 ≤ i ≤ n− 3).

Thus
k̃pvn−2 = (k̃p, . . . , k̃p).

Comparing the last coordinate on each side, we get by (4):

k̃p(αp− 1)(n− 1) = k̃p (in Zr).

(Multiply both sides by β for Remark 3.1.) Rewriting (αp−1)(n−1)−1 = (n−1)αp−n,
this is equivalent to

k̃[(n− 1)αp− n] = 0 (in Zr/p), (5)

where 0 ≤ k̃ < r/p and 0 ≤ α < r/p. (Same equation for Remark 3.1, since gcd(β, r/p) =
1.)

We want to show that there exists 0 ≤ α < r/p such that (5) necessarily implies k̃ = 0.
Equivalently, we must find α such that

gcd(r/p, (n− 1)αp− n) = 1.

If r/p = 1, every α will do. In general, we want to show that the following “False
Assumption” leads to a contradiction.

False Assumption: For every 0 ≤ α < r/p,

gcd(r/p, (n− 1)αp− n) > 1.
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Lemma 3.5. If q > 1 is a common divisor of r/p, (n − 1)αp − n and (n − 1)α′p − n,
where α 6= α′ and gcd(α′ − α, q) = 1, then q divides gcd(n, p, r/p).

Proof of Lemma 3.5. By assumption, q divides ((n − 1)α′p − n) − ((n − 1)αp −
n) = (n − 1)(α′ − α)p. Since gcd(α′ − α, q) = 1, q divides (n − 1)p. Thus q divides
α(n − 1)p − ((n − 1)αp − n) = n, so that gcd(q, n − 1) = 1. Hence q divides p as well,
completing the proof of the lemma.

By the “False Assumption” above there exists, for each 0 ≤ α < r/p, a common
(prime) divisor of r/p and (n− 1)αp− n.

Lemma 3.6. Assume that gcd(n, p, r/p) = 1, and denote

Q := {q prime | q divides r/p and (n− 1)αp− n for some 0 ≤ α < r/p}.

Then, for any number of distinct primes q1, . . . , qt ∈ Q, the number of integers 0 ≤ α <
r/p such that (n− 1)αp− n is divisible by all of q1, . . . , qt is r/(pq1 · · · qt).

Proof of Lemma 3.6. Let q ∈ Q, and assume that it divides (n− 1)αp− n. If α′ − α is
divisible by q, then clearly q divides also (n−1)α′p−n. Conversely, if α′−α is not divisible
by the prime q then gcd(α′ − α, q) = 1. By Lemma 3.5, and since gcd(n, p, r/p) = 1 by
assumption, q does not divide (n− 1)α′p− n. It follows that the number of 0 ≤ α < r/p
divisible by any q ∈ Q is exactly r/(pq).

We now consider any number of distinct primes q1, . . . , qt ∈ Q. Suppose that qi divides
(n − 1)αip − n (1 ≤ i ≤ t). By the above argument, an integer α has the property that
(n−1)αp−n is divisible by all of the qi if and only if α solves the t simultaneous modular
equations

α ≡ αi (mod qi) (1 ≤ i ≤ t).

A solution exists, and is unique (mod q1 · · · qt), by the Chinese Remainder Theorem. It
follows that the number of 0 ≤ α < r/p divisible by all of q1, . . . , qt is exactly r/(pq1 · · · qt).

We shall now wrap up, by counting the integers 0 ≤ α < r/p according to which
primes q ∈ Q divide (n− 1)αp− n. According to the “False Assumption”, each α has at
least one such q. By Lemma 3.6 and the Principle of Inclusion-Exclusion, counting gives

r

p
=

∑

q∈Q

r

pq
−

∑

q1<q2

r

pq1q2
+

∑

q1<q2<q3

r

pq1q2q3
− . . . .

Rearrangement gives
r

p
·
∏

q∈Q

(

1 −
1

q

)

= 0,

which is clearly a contradiction, since Q is a finite set of integers greater than 1. This
completes the proof of Theorem 3.3.
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4 Identities

4.1 A Flag Major Index for G(r, p, n)

G(r, p, n) is a subgroup of G(r, n) = Zr oSn, and thus acts naturally on the polynomial ring
Pn = C[x1, . . . , xn]; here Sn acts by permuting the variables x1, . . . , xn, while each copy
of Zr acts by multiplying a suitable xi by a complex r-th root of unity. Denote the ring
of G(r, p, n)-invariant polynomials in Pn by Λr,p,n. Let Ir,p,n be the ideal of Pn generated
by the elements of Λr,p,n without constant term. The quotient Rr,p,n := Pn/Ir,p,n is the
coinvariant algebra ofG(r, p, n). Each complex reflection groupG(r, p, n) acts naturally on

its coinvariant algebra. Let R
(k)
r,p,n be the k-th homogeneous component of the coinvariant

algebra, Rr,p,n = ⊕kR
(k)
r,p,n, and let

Hilbr,p,n(q) :=
∑

k≥0

dimR(k)
r,p,nq

k

be the corresponding Hilbert series. Hilbr,p,n(q) was expressed in [4] as a generating func-
tion for fmajG(r,n) on a certain subset of the wreath product G(r, n). Using Theorem 3.3
it will be shown that Hilbr,p,n(q) may be expressed as a generating function for a natural
flag major index on the group G(r, p, n) itself. This generalizes results for G(r, 1, n) which
were proved in [21, 2, 3].

Let G := G(r, p, n) with gcd(n, p, r/p) = 1. Recall the perfect basis u for G from
Theorem 3.3 and the flag major index fmaj(G,u) from Definition (2).

Corollary 4.1. If gcd(n, p, r/p) = 1 then u is a perfect Hilbertian basis for G(r, p, n);
namely,

Hilbr,p,n(q) = Fmaj(G(r,p,n),u)(q),

where Fmaj(G(r,p,n),u)(q) :=
∑

π∈Sn

qfmaj(G(r,p,n),u)(π).

Proof. By Theorem 3.3 and identity (3),

∑

π∈Sn

qfmajG(r,p,n)(π) = [r]q[2r]q · · · [(n− 1)r]q[nr/p]q

where [m]q := qm−1
q−1

. On the other hand, it is known (see, e.g., [4]) that

Hilbr,p,n(q) = [r]q[2r]q · · · [(n− 1)r]q[nr/p]q, (6)

completing the proof.

4.2 Classical Weyl Groups

Recall the three infinite series of classical Weyl group: the symmetric groups Sn (Weyl
groups of type A), the signed permutation groups (sometimes called hyperoctahedral
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groups) Bn (Weyl groups of type B), and the even signed permutation groups Dn (Weyl
groups of type D). We shall use here square brackets for the one-line notation of permu-
tations, namely write

π = [π(1), . . . , π(n)]

for π in Sn, Bn or Dn; round parentheses will be used for the cycle notation.

Corollary 4.2.

1. Let

αi := (i, i− 1, . . . , 1) = [i, 1, 2, . . . , i− 1, i+ 1, i+ 2, . . . , n] (2 ≤ i ≤ n)

be permutations in Sn. Then a = (αn, αn−1, . . . , α2) is a perfect Hilbertian basis for
the symmetric group Sn.

2. Let
βi := [−i, 1, 2, . . . , i− 1, i+ 1, i+ 2, . . . , n] (1 ≤ i ≤ n)

be signed permutations in Bn. Then b = (βn, βn−1, . . . , β1) is a perfect Hilbertian
basis for the hyperoctahedral group Bn.

3. Let
δi := [−i, 1, 2, . . . , i− 1, i+ 1, i+ 2, . . . ,−n] (1 ≤ i ≤ n− 1)

and
δn := [n, 1, 2, . . . , n− 1]

be signed permutations in Dn. Then d = (δn, δn−1, . . . , δ1) is a perfect Hilbertian
basis for the group of even signed permutations Dn.

Proof. By Theorem 3.3 and Remark 3.2, a, b and d are perfect bases for Sn = G(1, 1, n),
Bn = G(2, 1, n) and Dn = G(2, 2, n), respectively (using α = 1 for Bn and Dn, with
Remark 3.2 for Dn). By Corollary 4.1, these bases are Hilbertian.

Corollary 4.3. 1. The sequence b is a perfect Mahonian basis for Bn (with respect to
the Coxeter generating set S). Namely, the resulting flag major index fmaj(Bn,b) is
equidistributed with the length function `(Bn,S) over Dn.

2. The sequence d is a perfect Mahonian basis for Dn (with respect to the Coxeter gen-
erating set S ′). Namely, the resulting flag major index fmaj(Dn,d) is equidistributed
with the length function `(Dn,S′) over Dn.

Proof. It is well known that for every Weyl group W , the Hilbert series of the coinvariant
algebra of W is equal to the Poincaré series of W , namely to the generating function for
length with respect to the Coxeter generators; see, e.g., [14, §3.15]. Combining this with
Corollary 4.1 gives the desired result.

While the statements on types A and B are not new, see [3], the statements on type
D (Corollary 4.2(3) and Corollary 4.3(2)) are new. In particular, note that fmaj(Dn,u) is
equidistributed with, but different from, the flag major index for Dn which was introduced
by Biagioli and Caselli [5].
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4.3 The Alternating Subgroup of Bn

Let B+
n be the alternating subgroup of the Coxeter group of type B; namely, the subgroup

consisting all elements in Bn of even length.
Let r1 := [2,−1, 3, . . . , n] and ri := [−1, 2, . . . , i+1, i, i+2, i+3, . . . , n] (2 ≤ i ≤ n−1).

R := {ri | 1 ≤ i ≤ n − 1} is a set of generators for B+
n with Coxeter-like relations [9,

Chapter IV Section 1 Exercise 9]. The defining relations are:

r4
1 = 1

r2
i = 1 (1 < i < n)

(riri+1)
3 = 1 (1 ≤ i < n).

(rirj)
2 = 1 (|i− j| > 1)

Let `(B+
n ,R∪R−1)(π) be the length of π ∈ B+

n with respect to R ∪ R−1. Let

vn := ((0, . . . , 0, 1); Id) = [1, 2, . . . ,−n] ∈ Bn,

and define a map ψ : Dn 7→ B+
n by

ψ(w) :=

{

w if w ∈ B+
n ;

wvn if w 6∈ B+
n .

Namely, ψ switches the sign of the last letter of w if w 6∈ B+
n .

Fact 4.4. ψ is a bijection.

Recall the basis d = (δn, . . . , δ1) for Dn from Corollary 4.2(3) and let

γi := ψ(δi) (1 ≤ i ≤ n).

Proposition 4.5. (1). The sequence c = (γ1, . . . , γn) is a Mahonian basis for B+
n .

Namely

(i) Every element π ∈ B+
n has a unique presentation

π = γkn

n γ
kn−1

n−1 · · ·γk11 0 ≤ ki ≤ 2i for 1 ≤ i < n and 0 ≤ kn < n. (7)

(ii)
∑

π∈B+
n

q
fmaj

(B+
n ,c)

(π)
=

∑

π∈B+
n

q
`
(B+

n ,R∪R−1)
(π)
. (8)

(2). The flag major index is invariant under ψ. Namely, for every w ∈ Dn

fmaj(Dn,d)(w) = fmaj(B+
n ,c)

(ψ(w)). (9)

(3). For every w ∈ Dn, fmaj(Dn,d)(w) ≡ 0 (mod 2) if and only if w ∈ Dn∩B
+
n . Similarly,

for every w ∈ B+
n , fmaj(B+

n ,c)
(w) ≡ 0 (mod 2) if and only if w ∈ Dn ∩ B

+
n .
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Proof. Let w be an element in Dn. By Corollary 4.2(3), there exist unique 0 ≤ ki < 2i
(0 ≤ i < n) and 0 ≤ kn < n such that w = δkn

n · · · δk11 . Noticing that vn commutes with δi
for i < n we obtain

γkn

n · · ·γk11 = (δnvn)
kn · · · (δ1vn)

k1 = δkn

n · · · δk11 v
P

i ki

n

= wv
fmaj(Dn,d)(w)
n = wv

fmaj(Dn,d)(w) mod 2
n .

But γkn
n · · ·γk11 ∈ B+

n while vn 6∈ B+
n .

It follows that w ∈ B+
n if and only if fmaj(Dn,d)(w) mod 2 = 0. Hence

γkn

n · · ·γk11 = wv
fmaj(Dn,d)(w) mod 2
n = ψ(w).

Since ψ is a bijection this proves (i), (2) and (3).

To prove (ii) recall from [10] the bijection θ : B+
n 7→ Dn

θ(w) :=

{

w if w ∈ B+
n ;

ws0 if w 6∈ B+
n ,

which switches the sign of the first letter of w if w 6∈ Dn. By [10, Corollary 5.2(i)], the
length is invariant under θ. Namely, for every w ∈ B+

n

`(B+
n ,R∪R−1)(w) = `(Dn,S′)(θ(w)). (10)

Combining (9), (10) with Corollary 4.3(2) and the fact that ψ and θ are bijections we
obtain ∑

π∈B+
n

q
fmaj

(B+
n ,c)

(π)
=

∑

π∈B+
n

qfmaj(Dn,d)(ψ
−1(π)) =

∑

w∈Dn

qfmaj(Dn,d)(w) =

=
∑

w∈Dn

q`(Dn,S′)(w) =
∑

w∈Dn

q
`
(B+

n ,R∪R−1)
(θ−1(w))

=
∑

π∈B+
n

q
`
(B+

n ,R∪R−1)
(π)
.

This completes the proof of (ii).

Remarks. 1. (γn, . . . , γ1) is a perfect Mahonian basis for B+
n if and only if n is odd. If n

is even then the order of γn is 2n while kn is bounded by n in (7), so B+
n is not decomposed

into a set-wise direct product of the cyclic subgroups generated by γn, . . . , γ1; in this case
(γn, . . . , γ1) is a Mahonian basis for B+

n which is not perfect.

2. A major index and a Mahonian identity on the alternating subgroup of Sn may be
found in [17]. It should be noted that, while the length function is defined there with
respect to a generating set analogous to the above R∪R−1, there is apparently no simple
interpretation, involving bases, of the major index in this case.
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5 Complex Reflection Groups with No Hilbertian

Basis

Proposition 5.1. For any prime p, the group G(p2, p, p) has no perfect Hilbertian basis.

Proof. Assume that p is a prime number for which G(p2, p, p) has a perfect Hilbertian
basis. A Hilbert function of the form (6) has a unique decomposition into factors of
the form [mi]q, where mi are positive integers. It follows that, up to reordering, the p
elements t0, t1, . . . , tp−1 in a perfect Hilbertian basis for G(p2, p, p) have orders o(t0) = p2,
o(t1) = 2p2, . . . , o(tp−2) = (p− 1)p2 and o(tp−1) = p2. Let ti = (vi; πi), where vi ∈ (Zp2)

p

with sum of entries ≡ 0 (mod p) and πi ∈ Sp (0 ≤ i ≤ p− 1).
Both t0 and tp−1 are of order p2, and therefore neither π0 nor πp−1 contains a cycle of

any size 1 < i < p. Each of them is, therefore, either a p-cycle or the identity permutation.
If π0 is a p-cycle then tp0 = (w0; Id) where w0 = (α, . . . , α), α ≡ 0 (mod p) but α 6≡ 0
(mod p2). If π0 = Id then tp0 = (w0; Id) where all the entries of w0 are 0 (mod p) but not
all are 0 (mod p2), and their sum is 0 (mod p2). In both cases, w0 ∈ (pZp2)

p is a nonzero
vector whose sum of entries is 0 (mod p2). The same conclusion holds for wp−1, where
tpp−1 = (wp−1; Id)

Now let 1 < i < p. Then o(ti−1) = ip2, and therefore o(πi−1) | ip
2. If πi−1 is a p-cycle

then tp
3

i−1 = Id; and since gcd(i, p) = 1 this implies tp
2

i−1 = Id, contradicting 1 < i < p.

Thus πi−1 is not a p-cycle, and therefore o(πi−1) | i. Denoting tipi−1 = (wi−1; Id) (1 < i < p),
it follows that wi−1 ∈ (pZp2)

p is a nonzero vector whose sum of entries is 0 (mod p2).
We conclude that all the vectors w0, w1, . . . , wp−2, wp−1 belong to

V := {w = (α1, . . . , αp) ∈ (pZp2)
p |α1 + . . .+ αp = 0},

which is a (p − 1)-dimensional vector space over the field Zp. The unique presentation
property of the basis t0, . . . , tp−1 implies that these p vectors are linearly independent over
Zp. This is a contradiction which completes the proof of the proposition.
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[20] E. Steingŕımsson, Permutation statistics of indexed permutations, Europ. J. Com-
bin. 15 (1994), 187–205.

[21] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath
products, Pacific J. Math. 140 (1989), 353–396.

the electronic journal of combinatorics 15 (2008), #R61 15


