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Abstract

We define a multivariate polynomial that generalizes in a unified way the two-

variable interlace polynomial defined by Arratia, Bollobás and Sorkin on the one

hand, and a one-variable variant of it defined by Aigner and van der Holst on the

other.

We determine a recursive definition for our polynomial that is based on local

complementation and pivoting like the recursive definitions of Tutte’s polynomial

and of its multivariate generalizations are based on edge deletions and contractions.

We also show that bounded portions of our polynomial can be evaluated in polyno-

mial time for graphs of bounded clique-width. Our proof uses an expression of the

interlace polynomial in monadic second-order logic, and works actually for every

polynomial expressed in monadic second-order logic in a similar way.

1 Introduction

There exist a large variety of polynomials associated with graphs, matroids and combi-
natorial maps. They provide information about configurations in these objects. We take
here the word “configuration” in a wide sense. Typical examples are colorings, matchings,
stable subsets, subgraphs. In many cases, a value is associated with the considered config-
urations : number of colors, cardinality, number of connected components or rank of the
adjacency matrix of an associated subgraph. The information captured by a polynomial
can be recovered in three ways: either by evaluating the polynomial for specific values of
the indeterminates, or from its zeros, or by interpreting the coefficients of its monomials.
We will consider the latter way in this article.
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A multivariate polynomial is a polynomial with indeterminates depending on the ver-
tices or the edges of the considered graph. Such indeterminates are sometimes called colors
or weights because they make it possible to evaluate the polynomial with distinct values
associated with distinct vertices or edges. Several multivariate versions of the dichromatic
and Tutte polynomials of a graph have been defined and studied by Traldi in [30], by Za-
slavsky in [ 31], by Bollobás and Riordan in [6] and by Ellis-Monaghan and Traldi who
generalize and unify in [16] the previous definitions. Motivated by problems of statistical
physics, Sokal studies in [29] a polynomial that will illustrate this informal presentation.
The multivariate Tutte polynomial of a graph G = (V,E) is defined there as:

Z(G) =
∑

A⊆E
uk(G[A])

∏

e∈A
ve

where G[A] is the subgraph of G with vertex set V and edge set A, and k(G[A]) is the
number of its connected components. This polynomial belongs to Z[u, ve; e ∈ E]. An
indeterminate ve is associated with each edge e. The indeterminates commute, the order of
enumeration over each set A is irrelevant. We call such an expression an explicit definition
of Z(G), to be contrasted with its recursive definition, formulated as follows ([29], Formula
(4.16)) in terms of edge deletions and contractions:

Z(G) = u|V | if G has no edge,

Z(G) = Z(G[E − {e}]) + ve · Z(G/e) if e is any edge,

where G/e is obtained from G by contracting edge e. From the fact that Z(G) satisfies
these equalities, it follows that they form a recursive definition which is well-defined in
the sense that it yields the same result for every choice of an edge e in the second clause,
i.e., for every tree of recursive calls.

There is no general method for constructing a recursive definition from an explicit
one or proving that such a definition does not exist. The verification that a recursive
definition is well-defined is not easy. This question is considered in depth in [6] and in [16]
for multivariate Tutte polynomials. It is not easy either to determine an explicit definition
(also called a closed-form expression) from a well-defined recursive one. Relating these
different types of definitions by means of general tools is an open research direction.

Let us go back to the polynomial Z(G). For two graphs G and G′ with sets of edges in
bijection, we have Z(G) = Z(G′) (where the variables indexed by edges of G and G′ that
are related by the bijection are considered as identical) if and only if | V (G) |=| V (G′) |
and their cycle matroids are isomorphic (via the same bijection between edges). This
observation explains what information about the considered graph is contained in the
polynomial Z(G). This polynomial is more general than Tutte’s two-variable polynomial
T (G, x, y) because (see [29] for details) we have:

T (G, x, y) = ((x− 1)k(G)(y − 1)|V |)−1α(Z(G))

where α is the substitution:

[u := (x− 1)(y − 1); ve := y − 1 for all e ∈ E].
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Conversely, one can express the polynomial Z ′(G) defined as β(Z(G)) where β
replaces every indeterminate ve by the same indeterminate v in terms of T (G, x, y) in a
similar way. Hence, Z ′(G) and T (G) are equivalent algebraically and in expressive power
and also for the complexity of their computations.

In this article, we define a multivariate polynomial, that generalizes in a unified way
the two-variable interlace polynomial defined in [3] and denoted by q(G; x, y), its one-
variable variant defined in [1] and denoted by Q(G, x), and also, the independence poly-
nomial surveyed in [23]. These polynomials have an older history. They are related with
a polynomial defined by Martin in his 1977 dissertation for particular graphs, and later
generalized to arbitrary graphs by Las Vergnas in [22], under the name of Martin poly-
nomial. This polynomial is the generating function of the numbers of partitions of the
edge set of a graph in k Eulerian subgraphs. It is defined for directed as well as for
undirected graphs. (See Theorem 24 of [2] for the relationships between q and the Martin
polynomial). Under the name of Tutte-Martin polynomial, Bouchet has extended it to
isotropic systems and established relations between it and the polynomials q and Q in [8].
Relationships between interlace and Tutte polynomials are discussed in [1], [8] and [15].

Our multivariate polynomial is given by an explicit definition from which its special-
izations to the other known polynomials are immediate. We determine for it a recursive
definition, somewhat more complicated than the usual ones for Tutte polynomials based
on contracting and deleting edges. The known recursive definitions of the polynomials
studied in [1,2,3] are derived via the corresponding specializations, with sometimes the
necessity of proving auxiliary nontrivial properties.

Two other themes of this article are the evaluation and the computation of the mul-
tivariate interlace polynomial. These problems are known to be difficult. Bläser and
Hoffmann show in [5] that the two-variable interlace polynomial is #P-hard to evaluate
at every algebraic point of R

2 except at those on some exceptional lines for which the
complexity is either polynomial or open. On the other hand the multivariate interlace
polynomial like other multivariate polynomials is of exponential size, hence cannot be
computed in polynomial time. However we obtain efficient algorithms for evaluations and
for computations of bounded portions of the interlace polynomials for graphs in classes
of bounded tree-width and more generally of bounded clique-width. The proof uses de-
scriptions of interlace polynomials by formulas of monadic second-order logic, and works
actually for all polynomials expressible in a similar way.

Let us explain this logical aspect informally. Consider an explicit definition of a graph
polynomial:

P (G) =
∑

C∈Γ(G)
n(C) · vCu

f(C)

where C ranges over all configurations of a multiset Γ(G), n(C) is the number of occur-
rences of C in Γ(G), vC is a monomial (like

∏

e∈A ve in the above polynomial Z(G)) that
describes a configuration C, and f(C) is the value of C. Polynomials of this form have
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necessarily positive coefficients. Their monomials have evident combinatorial interpreta-
tions arising from definitions. We are especially interested in cases where Γ(G) and f can
be expressed by monadic second-order formulas, i.e., formulas with quantifications on sets
of objects, say sets of vertices or edges in the case of graphs, because there exist powerful
methods for constructing algorithms for problems specified in this logical language and
for graphs of bounded tree-width and clique-width. These basic facts, explained in detail
in [11, 24, 25] will be reviewed in Section 5.

2 Definitions and basic facts

Graphs are finite, simple, undirected, possibly with loops, with at most one loop for each
vertex. A graph is defined as a pair G = (VG,MG) of a set of vertices VG and a symmetric
adjacency matrix MG over GF(2). We omit the subscripts whenever possible without
ambiguity. The rank rk(G) of G = (V,M) is defined as the rank rk(M) of the matrix M
over GF(2); its corank (or nullity) is n(G) := n(M) :=| V | −rk(M). The empty graph
∅, defined as the graph without vertices (and edges) has rank and corank 0.

The set of looped vertices of G , i.e., of vertices i such that M(i, i) = 1 is denoted by
Loops(G). For a in V , we let N(G, a) be the set of neighours b of a, i.e., of vertices b
adjacent to a with b 6= a. A looped vertex is not a neighbour of itself. For X a set of
vertices of G, we denote by G∇X the graph obtained by “toggling” the loops in X, i.e.,
VG∇X := VG and:

MG∇X(i, j) := 1 −MG(i, j) if i = j ∈ X,
MG∇X(i, j) := MG(i, j) otherwise.

If X is a set of vertices, we let G −X denote G[V −X], the induced subgraph of G
with set of vertices V −X. We write G = H⊕K if G is the union of disjoint subgraphs H
and K. For two graphs G and H we write H = h(G) and we say that they are isomorphic
by h if h is a bijection of VG onto VH and MH(h(i), h(j)) = MG(i, j) for all i and j.

Pivoting and local complementation

We first define the operation of pivoting on distinct vertices a and b of G. It yields the
graph H = Gab defined as follows:

VH := VG and
MH(i, j) := 1 −MG(i, j) if {i, j} ∩ {a, b} = ∅ and:

either i ∈ N(G, a) −N(G, b) and j ∈ N(G, b),
or j ∈ N(G, a) −N(G, b) and i ∈ N(G, b),
or i ∈ N(G, b) −N(G, a) and j ∈ N(G, a),
or j ∈ N(G, b) −N(G, a) and i ∈ N(G, a);

in all other cases, we let MH(i, j) := MG(i, j).
This transformation does not depend on whether a and b are loops or are adjacent. It

does not modify any loop. It only toggles edges between neighbours of a and b as specified
above. It does not modifies the sets N(G, a) and N(G, b).
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Next we define the local complementation at a vertex a of G. It yields the graph
H = Ga defined as follows:

VH := VG and:
MH(i, j) := 1 −MG(i, j) if i, j ∈ N(G, a), including the case i = j.
MH(i, j) := MG(i, j) otherwise.

Remarks
(1) We do not have Gab = (Ga)b; however, Lemma 1 (4,5,6) establishes relations

between these operations.
(2) There is an inconsistency in [3]: the operation of local complementation is defined

in Definition 4 in terms of a notion of neighbourhood, denoted by Γ(a), such that a loop
is a neighbour of itself, and Ga is like G except that the edges and loops in G[Γ(a)] are
toggled. With this definition, if a is looped it becomes isolated in Ga, and we do not
have (Ga)a = G. This definition does not coincide with the description given in terms of
matrices two lines below, which corresponds to our definition. In proofs, the definition in
terms of matrices is used. Actually, all statements in this article concern Ga − a and not
Ga alone, and Ga− a is the same with the two possible interpretations of the definition
of Ga.

Other notions of local complementation and pivoting exist in the literature. We will
also use the following notion of local complementation:

G ∗ a := (G∇N(G, a))a = Ga∇N(G, a).
This operation “toggles” the edges of G[N(G, a)] that are not loops. It is used for

graphs without loops in the characterization of circle graphs and in the definition of
vertex-minors ([7, 13, 28]). Pivoting refers in these articles to the operation transforming
G into ((G ∗ a) ∗ b) ∗ a, which is equal to ((G ∗ b) ∗ a) ∗ b when a and b are adjacent. We
will not need this notion of pivoting.

We will write a ∼ b to express that a and b are adjacent, both without loops. We write
a` ∼ b to express the same with a looped and b not looped, and a` ∼ b` if a and b are
adjacent and both looped. The operations of local complementation and pivoting satisfy
some properties listed in the following lemma:

Lemma 1: For every graph G = (V,M), for distinct vertices a, b and all sets of
vertices X, Y we have:

(1) (Ga)a = G; Gab = Gba; (Gab)ab = G;
(2) (G∇X)ab = Gab∇X; (G∇X)a = Ga∇X; (G∇X)[Y ] = G[Y ]∇(X ∩ Y ).
(3) G[X]ab = Gab[X]; G[X]a = Ga[X] if a and b are not in X;
(4) if a ∼ b or a` ∼ b` then Gab = h(((Ga)b)a∇a) and (Gab)b = h((Ga)b∇a)
where h is the permutation of V that exchanges a and b;
(5) if a` ∼ b or a ∼ b` then Gab = h(((Ga)b)a∇b) and (Gab)b = h((Ga)b∇b)
where h is the permutation of V that exchanges a and b;
(6) in cases (4) and (5) we have:
Gab − a− b = ((Ga)b)a − a− b and (Gab)b − a− b = (Ga)b − a− b.
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Proof : (1)-(3) are clear from the definitions.
(4) We let A = N(G, a) − N(G, b), B = N(G, b) − N(G, a), C = N(G, a) ∩ N(G, b)

and D = VG − (N(G, a) ∪N(G, b)).
In G we have N(G, a) = A ∪ C ∪ {b} and N(G, b) = B ∪ C ∪ {a}. The first local

complementation at a toggles edges and loops in A,C, {b} and edges between A and C,
b and C, b and A. It follows that N(Ga, a) = N(G, a) and N(Ga, b) = A ∪B ∪ {a}.

The local complementation at b toggles edges and loops in A,B, {a} and edges
between A and B, a and A, a and B. It follows that N((Ga)b, a) = B ∪ C ∪ {b} and
N((Ga)b, b) = N(Ga, b).

The second local complementation at a toggles edges and loops in B,C, {b} and
edges between B and C, b and B, b and C. It follows that N(((Ga)b)a, a) = N((Ga)b, a) =
B ∪ C ∪ {b} and N(((Ga)b)a, b) = A ∪ C ∪ {a}.

These three transformations toggle the edges between A and B, A and C and B and
C, exactly as do the pivoting Gab. They toggle twice the edges and loops in A,B,C,
which yields no change. They toggle b twice, hence its loop status does not change. The
loop status of a changes, and the operation ∇a reestablished the initial loop status of a.

Observe now that N(((Ga)b)a, b)−{a} = N(G, a)−{b} = A∪C and N(((Ga)b)a, a)−
{b} = N(G, b)−{a} = B ∪C and that a and b are both looped or both not looped in Gab

and in ((Ga)b)a∇a. It follows then from the definition of Gab that Gab = h(((Ga)b)a∇a)
where h is the permutation of V that exchanges a and b.

This proves the first assertion of (4). For the second one we have:

(Gab)b =
(

h(((Ga)b)a∇a)
)b

= h(((Ga)b)a∇a)a) = h
(

(((Ga)b)a)a∇a
)

= h((Ga)b∇a).
(5) The edges and loops are toggled in the same way as in case (4). The only difference

concerns the loops at a or b. If a` ∼ b in G, then a ∼ b in ((Ga)b)a and we have a ∼ b`

in ((Ga)b)a∇b and thus h(a) ∼ h(b)` i.e. a` ∼ b in h(((Ga)b)a∇b) as well as in Gab.
Hence Gab = h(((Ga)b)a∇b).

The proof is similar if a ∼ b` in G. The second assertion follows from the first one as
in (4).

(6) Clear from (4) and (5) since h is the identity outside of {a, b}. �

Here is a lemma gathering facts about ranks in graphs.

Lemma 2: For every graph G, for distinct vertices a, b we have:
(1) rk(G) = 1 + rk(Ga − a) if a ∈ Loops(G);
(2) rk(G) = 2 + rk(Gab − a− b) if a ∼ b;
(3) rk(G− a) = rk(Gab − a) if a ∼ b or if a` ∼ b.
(4) rk(G) = 2 + rk((Ga)b − a− b) if a` ∼ b.

Proof : (1) is proved in Lemma 5 of [3]. The proof is not affected by the inaccuracy
observed above.

(2) and (3) are proved in Lemma 2 of [3].
(4) We note that (Ga)b − a − b = (Ga − a)b − b and that (Ga − a) has a loop on b.

Hence by using (1) twice:
rk((Ga)b − a− b) = rk((Ga − a)b − b) = rk(Ga − a) − 1 = rk(G) − 2. �
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3 The multivariate interlace polynomial

We will give definitions for graph polynomials. They can be easily adapted to other
objects like matroids. A multivariate polynomial is a polynomial with indeterminates xa,
ya, za,. . . associated with the vertices or edges a of the considered graph G. We will
denote by XG the set of such indeterminates for X = {x, y, z, . . . }. They are the G-
indexed indeterminates. We denote by U a set u, v, w, . . . of “ordinary” indeterminates
not associated with elements of graphs.

By a polynomial P (G), we mean a mapping P that associates with a graph G a
polynomial in Z[U ∪ XG] such that if h is an isomorphism of G onto H, then P (H) is
obtained from P (G) by the substitution that replaces xa by xh(a) for every xa in XG.

A specializing substitution is a substitution that replaces an indeterminate from a finite
set U = {u, v, w, . . .} by a polynomial in Z[U ], and a G-indexed indeterminate xa in XG,
by a polynomial in Z[U ∪ {ya | y ∈ X}], the same for each a. For an example, such a
substitution can replace xa by ya(x−1)2−3zau+1 for every vertex a. If σ is a specializing
substitution, then σ ◦ P , defined by σ ◦ P (G) = σ(P (G)) for every G is a polynomial
in the above sense.

For a set A of vertices we let xA abbreviate the product (in any order) of the commu-
tative indeterminates xa, for a in A. If A = ∅, then xA = 1. If B is a set of subsets of
G, then the polynomial

∑

A∈B xA describes exactly B. A multiset of sets B is described
by the polynomial

∑

A∈B n(A) · xA where n(A) is the number of occurrences of A in B.

Definition 3: The multivariate interlace polynomial.

For a graph G we define

C(G) =
∑

A,B⊆V,A∩B=∅

xAyBu
rk((G∇B)[A∪B])vn((G∇B)[A∪B]).

Hence C(G) ∈ Z[{u, v} ∪ XG ] where X = {x, y}. Let us compare it with the ex-
isting interlace polynomials. The one-variable interlace polynomial of [2] is only defined
recursively. We will denote it by qN (G, y), as in [3]. It is called the vertex-nullity interlace
polynomial, and a closed-form expression is determined in [1]:

qN (G, y) =
∑

A⊆V
(y − 1)n(G[A]).

It follows that this polynomial is obtained from C(G) by a substitution. We have
qN(G, y) = σ′(C(G)) where σ′ is the substitution:

[u := 1; v := y − 1; xa := 1, ya := 0 for all a ∈ V ].

The interlace polynomial q of [3] is defined by:

q(G; x, y) =
∑

A⊆V
(x− 1)rk(G[A])(y − 1)n(G[A]).
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It is equal to σ(C(G)) where σ is the substitution:

[u := x− 1; v := y − 1; xa := 1, ya := 0 for all a ∈ V ].

Another polynomial denoted by Q is defined recursively in [1] for graphs without loops,
and the following explicit expression is obtained:

Q(G, x) =
∑

A,B⊆V,A∩B=∅

(x− 2)n((G∇B)[A∪B])

Hence, Q(G, x) = τ(B(G)) where τ is the substitution:

[u := 1; v := x− 2; xa := ya := 1 for all a ∈ V ].

Note that although Q(G, x) is intended to be defined for graphs without loops, its
definition is based on the co-ranks of graphs obtained from G by choosing two disjoint
subsets of vertices, A and B, by adding loops at the vertices of B and taking the graph
of G induced on A ∪ B. It corresponds to the global Tutte-Martin polynomial of the
isotropic system presented by G, whereas qN corresponds to the restricted Tutte-Martin
polynomial of this isotropic system. These correspondences are established in [1] and [8].

Our motivation for introducing sets B of toggled loops in the definition of C(G) is
to obtain a common generalization of q(G; x, y) and Q(G, x) and to handle loops in a
homogenous way without making a particular case of graphs without loops.

Let C1(G) be the polynomial obtained from C(G) by replacing v by 1.

Lemma 4: For every graph G and every set T of vertices:
(1) C(G) = θ(C1(G)) where θ := [u := uv−1; xa := vxa; ya := vya for all a ∈ V ],
(2) C(G∇T ) = µ(C(G)) where µ := [xa := ya, ya := xa for all a ∈ T ].

Note that we slightly extend the notion of substitution by allowing the substitution
of uv−1 for u.

Proof : (1) Clear.
(2) We observe that ((G∇T )∇B)[A∪B] = (G∇(A′∪B′))[A∪B] where A′ = A∩T,B′ =

B − B ∩ T . The result follows. �

We will write: C = θ ◦ C1. The polynomial C(G) can thus be “recovered” from
C1(G). Since every graph G is G1∇T for some T with G1 without loops, we have C(G) =
µ(C(G1)) where µ is as in Lemma 4. Hence, it is enough to know C(G) for graphs G
without loops. However, the recursive definitions to be considered below will introduce
graphs with loops in the recursive calls.

Properties of polynomials

The polynomial q defined above satisfies for all graphs G the equality

q(G− a) − q(G− a− b) = q(Gab − a) − q(Gab − a− b) if a ∼ b (1)
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and the polynomial Q satisfies for all graphs G without loops:

Q(G ∗ a) = Q(G) (2)

Q(Gab) = Q(G) if a ∼ b. (3)

Do these equalities hold for C(G)? The answer is no for (2) and (3) as a consequence
of the next proposition, and also for (1): see below Counter-example 14.

Proposition 5: A graph G and its polynomial C(G) can be reconstructed from
ρ(C(G)) where ρ := [v := 1; ya := 0 for all a ∈ V ].

Proof: For every set of vertices A, the rank of G[A] is the unique integer n such that
xAu

n is a monomial of ρ(C(G)). Now a vertex a has a loop if rk(G[a]) = 1, and no loop
if rk(G[a]) = 0. Hence, we obtain Loops(G) from ρ(C(G)). Using this information, we
can reconstruct edges as follows.

If a and b are not looped, they are adjacent if and only if rk(G[{a, b}]) = 2, otherwise
rk(G[{a, b}]) = 0. If one of a, b is looped, they are adjacent if and only if rk(G[{a, b}] =
2, otherwise rk(G[{a, b}]) = 1. If both are looped, they are adjacent if and only if
rk(G[{a, b}]) = 1, otherwise rk(G[{a, b}]) = 2. �

It follows that identities (2) and (3) cannot hold for C and even for ρ ◦ C.

Remark: This proposition shows that G and thus C(G) can be reconstructed algo-
rithmically from ρ(C(G)). But C(G) is not definable algebraically from ρ(C(G)), that is
by a substitution.

3.1 Recursive definition

We now determine a recursive definition of C(G) (also called a set of reduction formulas),
from which we can obtain again the recursive definitions given in [3] and in [1].We let a
denote the graph with one non-looped vertex a, and a` denote the similar graph with one
looped vertex a.

Lemma 6: For every graph G, for every graph H disjoint from G we have:
(1) C(∅) = 1
(2) C(G⊕H) = C(G) · C(H)
(3) C(a) = 1 + xav + yau
(4) C(a`) = 1 + xau+ yav.

Proof : Easy verification from the definitions. �

The more complicated task consists in expressing C(G) in the case where a and b are
adjacent (this is necessary if no rule of Lemma 6 is applicable). We will distinguish three
cases: a ∼ b, a` ∼ b, and a` ∼ b`.
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For a graph G and disjoint sets of vertices A and B, we let m(G,A,B) denote the
monomial xAyBu

rk((G∇B)[A∪B])vn((G∇B)[A∪B]) so that C(G) is nothing but the sum of these
monomials over all pairs A,B (the condition A ∩ B = ∅ will be assumed for each use of
the notation m(G,A,B)).

For distinct vertices a, b, two disjoint sets A,B can contain a, b or not according to 9
cases. We let i ∈ {0, 1, 2} mean that a vertex is in V − (A∪B), in A or in B respectively.
Let Cij be the sum of monomials m(G,A,B) such that i tells where is a, and j tells where
is b. For an example: C02 is the sum of monomials m(G,A,B) such that a ∈ V −(A∪B),
b ∈ B.

Claim 7 : Let G be such that a ∼ b.
(1) C00 = C(G− a− b)
(2) C11 = xaxbu

2 · C(Gab − a− b).
(3) C20 = yau · C(Ga − a− b); C02 = ybu · C(Gb − a− b) ;
(4) C12 = xaybu

2 · C((Gb)a − a− b); C21 = xbyau
2 · C((Ga)b − a− b).

Proof: (1) Clear from the definitions.
(2) A monomial of C11 is of the form:

m(G,A,B) = xAyBu
rk((G∇B)[A∪B])vn((G∇B)[A∪B]) (4)

with a, b ∈ A (because of subscript 11). By Lemma 2 (2) we have:

rk((G∇B)[A ∪B]) = 2 + rk((G∇B)[A ∪B]ab − a− b).

But (G∇B)[A ∪B]ab − a− b = ((Gab − a− b)∇B)[A′ ∪B] where A′ = A− a− b (we use
here Lemma 1 (2,3)). Hence:

m(G,A,B) = xaxbu
2 ·m(Gab − a− b, A′, B).

It follows that:
C11 = xaxbu

2 · C(Gab − a− b)

because the set of pairs A′, B ⊆ V − a− b such that A′ and B are disjoint coincides with
the set of pairs (A− a− b), B such that A,B ⊆ V , A and B are disjoint and a, b ∈ A.

(3) The proof is similar. A monomial of C20 is of the form m(G,A,B) described by
Equality (4) with a ∈ B, b /∈ A ∪ B (because of the subscript 20). By Lemma 2 (1) we
have:

rk((G∇B)[A ∪B]) = 1 + rk((G∇B)[A ∪B]a − a)

because a is looped in (G∇B)[A ∪ B]. But:

(G∇B)[A ∪ B]a − a = (((G∇a)a − a− b)∇B′)[A ∪ B′]

because b /∈ A∪B, and with B ′ = B−a. (By Lemma 1 (2,3)). Clearly, (G∇a)a−a− b =
Ga − a− b. Hence m(G,A,B) = yau ·m(Ga − a− b, A,B′). It follows that:

C20 = yau · C(Ga − a− b)
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because the set of pairs A,B ′ ⊆ V − a − b such that A and B ′ are disjoint coincides
with the set of pairs A, (B − a) such that A,B ⊆ V , A and B are disjoint, a ∈ B and
b /∈ A ∪B. The case of C02 is obtained by exchanging a and b.

(4) A monomial of C12 is of the form (4) above with a ∈ A, b ∈ B. By Lemma 2 (4)
we have:

rk((G∇B)[A ∪ B]) = 2 + rk(((G∇B)[A ∪ B]b)a − a− b)

because b` ∼ a in G∇B[A ∪B]. We have:

((G∇B)[A ∪ B]b)a − a− b = (((Gb)a − a− b) ∇B′)[A′ ∪B′]

where A′ = A− a, B′ = B − b. Hence:

m(G,A,B) = xaybu
2 ·m((Gb)a − a− b, A′, B′).

It follows that:
C12 = xaybu

2 · C((Gb)a − a− b)

because the set of pairs A′, B′ ⊆ V − a− b such that A′ and B′ are disjoint coincides with
the set of pairs (A − a), (B − b) such that A,B ⊆ V , A and B are disjoint, a ∈ A and
b ∈ B. The case of C21 is obtained similarily by exchanging a and b. �

The next claim establishes linear relations between some polynomials Cij.

Claim 8: Let G be such that a ∼ b.
(1) C(G− a) = C00 + C01 + C02

(2) C(G− b) = C00 + C10 + C20

(3) yau · C(Ga − a) = C20 + C21 + C22

(4) ybu · C(Gb − b) = C02 + C12 + C22

Proof : (1), (2) Clear from the definitions.
(3) From the definitions, C20 + C21 +C22 is the sum of monomials m(G,A,B) such

that a ∈ B. We have:

rk((G∇B)[A ∪B]) = 1 + rk((G∇B)[A ∪B]a − a)

by Lemma 2(1). But:
(G∇B)[A ∪B]a − a = (((G∇a)a − a)∇B′)[A ∪ B′] (where B′ = B − a)
= ((Ga − a)∇B′)[A ∪ B′].
This gives the result with the usual argument.
(4) Similar to (3) by exchanging a and b. �

If we collect the equalities of Claims 7 and 8 we have 10 definitions or linear equalities
for 9 “unknowns”. This is enough for obtaining C(G). We get thus:

C(G) = (C00 + C10 + C20) + {C01 + C11 + C21} + (C02 + C12 + C22)
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= C(G− b) + {C01 + xaxbu
2 · C(Gab − a− b) + xbyau

2 · C((Ga)b − a− b)}
+ybu · C(Gb − b).

Then C01 = C(G− a) − C00 − C02 = C(G− a) − C(G− a− b) − ybu · C(Gb − a− b).

We obtain by reorganizing and factorizing the expression:

Lemma 9 : Let G be such that a ∼ b. We have:
C(G) = xbu

2{xa · C(Gab − a− b) + ya · C((Ga)b − a− b)}
+ybu{C(Gb−b)−C(Gb−a−b)}+C(G−a)+C(G−b)−C(G−a−b).

Considering C22 for which we have two expressions, we get:

Corollary 10: Let G be such that a ∼ b.
yb{C(Gb − b) − C(Gb − a− b) − xau · C((Ga)b − a− b)}
= ya{C(Ga − a) − C(Ga − a− b)) − xbu · C((Gb)a − a− b)}.

Next we consider the cases where a` ∼ b and a` ∼ b`. Actually, Lemma 4 (2) will
shorten the computations.

Lemma 11: (1) Let G be such that a ∼ b`.
C(G) = ybu

2{xa · C(Gab − a− b) + ya · C((Ga)b − a− b)}
+xbu{C(Gb−b)−C(Gb−a−b)}+C(G−a)+C(G−b)−C(G−a−b).

(2) Let G be such that a` ∼ b`.
C(G) = ybu

2{ya · C(Gab − a− b) + xa · C((Ga)b − a− b)}
+xbu{C(Gb−b)−C(Gb−a−b)}+C(G−a)+C(G−b)−C(G−a−b).

Proof: (1) We have G = G1∇b, G1 = G∇b, where in G1 we have a ∼ b so that
Lemma 9 is applicable. We get then, letting β be the substitution that exchanges xb and
yb:

C(G) = β(C(G1))
= ybu

2{xa · C((G∇b)ab − a− b) + ya · C(((G∇b)a)b − a− b)}
+xbu{C((G∇b)b − b) − C((G∇b)b − a− b)}
+β(C(G∇b− a)) + C(G∇b− b) − C(G∇b− a− b)

= ybu
2{xa · C(Gab − a− b) + ya · C((Ga)b − a− b)}

+xbu{C(Gb − b) − C(Gb − a− b)}
+C(G− a) + C(G− b) − C(G− a− b),

For this equality, we use the facts that (G∇b)ab − a − b = Gab − a − b and that
C((G∇b)ab−a− b) has no occurrence of an indeterminate indexed by b, that ((G∇b)a)b−
a− b = (Ga)b− a− b and that C((G∇ba)b− a− b) has no occurrence of an indeterminate
indexed by b. We also use similar remarks concerning (G∇b)b−b, (G∇b)b−a−b, G∇b−b,
and G∇b−a−b. Finally, we have β(C(G∇b−a)) = C(G−a) by Lemma 1 (2) and Lemma
4.

(2) Very similar argument. �
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We can now sum up the results of Lemmas 6, 9, 11 into the following proposition, where
the three cases are collected into a single one with help of the little trick of introducing
“meta-indeterminates” zc, wc for each c ∈ V :

zc = xc and wc = yc if c is not a loop,
zc = yc and wc = xc if c is a loop.

Proposition 12: For every graph G, for every graph H disjoint from G, every vertex
a, we have:

(1) C(∅) = 1
(2) C(G⊕H) = C(G) · C(H)
(3) C(a) = 1 + xav + yau
(4) C(a`) = 1 + xau+ yav
(5) C(G) = zbu

2{za · C(Gab − a− b) + wa · C((Ga)b − a− b)}
+wbu{C(Gb − b) − C(Gb − a− b)}
+C(G− a) + C(G− b) − C(G− a− b).

if b ∈ N(G, a).

Proof: Immediate consequence of Lemmas 6,9,11. �

We have an even shorter expression:

Corollary 13: For every graph G and every vertex a, we have:
(1) C(∅) = 1
(2) C(G) = (1 + zav + wau)C(G− a) if N(G, a) = ∅,
(3) C(G) = zbu

2{za · C(Gab − a− b) + wa · C((Ga)b − a− b)}
+wbu{C(Gb − b) − C(Gb − a− b)}
+C(G− a) + C(G− b) − C(G− a− b).

if b ∈ N(G, a).

Counter-example 14:
Proposition 8 of [3] states that if a ∼ b in G then:

q(G− a) − q(G− a− b) = q(Gab − a) − q(Gab − a− b).

This is not true for C in place of q. To see this let G be the graph with four vertices
a, b, c, d and three edges such that c ∼ a ∼ b ∼ d. Note that Gab is G augmented with an
edge between c and d. Assume we would have:

C(G− a) − C(G− a− b) = C(Gab − a) − C(Gab − a− b). (5)

In the left handside, we have a single monomial of the form ybycxdu
n for some n, and it

must be from C(G− a) because b is not in G− a− b. This monomial is ybycxdu
3 because

rk(c` ⊕ (d ∼ b`)) = 3. In the right handside we have the monomial ybycxdu
2 because

rk(c` ∼ d ∼ b`) = 2. Hence we cannot have Equality (5). �
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In such a case, we can ask what is the less specialized substitution σ such that the
corresponding equality is true for σ ◦ C ? Some answers will be given below. We prove
actually a more complicated identity.

Proposition 15: If a ∼ b in G then:

C(G−a)−C(G−a−b)−C(Gab−a)+C(Gab−a−b) = ybu{C(Gb−a−b)−C((Ga)b−a−b)}.

Proof: We use the notation and some facts from Claims 7 and 8:

C(G− a) − C(G− a− b) = C01 + C02 = C01 + ybu · C(Gb − a− b).

We let Cab
01 and Cab

02 denote the polynomials C01 and C02 relative to (Gab, a, b) instead
of to (G, a, b). Then we have :

C(Gab − a) − C(Gab − a− b) = Cab
01 + Cab

02 = Cab
01 + ybu · C((Gab)b − a− b).

We have by Lemma 1: (Gab)b − a− b = (Ga)b − a− b.
On the other hand, Cab

01 is the sum of monomials:

m(Gab, A, B) = xAyBu
rk((Gab∇B)[A∪B])vn((Gab∇B)[A∪B])

for disjoint sets A,B such that a /∈ A ∪ B, b ∈ A. But for such A,B:

(Gab∇B)[A ∪B] = (G∇B)[A ∪ B ∪ a]ab − a.

Hence, using Lemma 1 and Lemma 2 (3):

rk((Gab∇B)[A ∪ B]) = rk((G∇B)[A ∪ B ∪ a]ab − a)
= rk((G∇B)[A ∪ B ∪ a] − a)
= rk((G∇B)[A ∪ B]).

We have also n((Gab∇B)[A∪B]) = n((G∇B)[A∪B]). Hence, m(Gab, A, B) = m(G,A,
B) and Cab

01 = C01. Collecting these remarks we get:

C(G− a) − C(G− a− b) − C(Gab − a) + C(Gab − a− b)
= C02 − Cab

02

= ybu · C(Gb − a− b) − ybu · C((Ga)b − a− b). �

We note for later use that Identity (5) holds if either u = 0 or yb = 0 for all b.

A polynomial P in Z[X] is said to be positive if the coefficients of its monomials are
positive. A mapping P from graphs to polynomials is positive if P (G) is positive for
every G. It is clear from Definition 3 that C is positive. This not immediate from the
recursive definition of Corollary 13 because of two substractions in the right handside of
the third clause. However, one can derive from Corollary 13 a stronger statement that is
not immediate from Definition 3.
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Proposition 16: For every graph G and every vertex a, the polynomials C(G) and
C(G) − C(G− a) are positive.

Proof : By induction on the number of vertices of G, one proves simultaneously these
two assertions by using Corollary 13.

In case (2) we have:
C(G) − C(G− a) = (1 + zav + wau)C(G− a)
and in case (3) we have
C(G) − C(G− a) = zbu

2{za · C(Gab − a− b) + wa · C((Ga)b − a− b)}
+wbu{C(Gb − b) − C(Gb − b− a)}
+C(G− b) − C(G− b− a),

which gives with the induction hypothesis that C(G) − C(G − a) is positive. So is
C(G) since, again by induction, C(G− a) is positive. �

It would remain to give a combinatorial explanation of this fact.

4 Specializations to known polynomials

We have already observed that the polynomials q of [3] and Q of [1] can be obtained by
specializing substitutions from C(G). For more clarity with the substitutions of indeter-
minates we will use u′ and v′ instead of x and y in these polynomials. So we will study:
q(G; u′, v′) = σ(C(G)) where σ is the substitution:

[u := u′ − 1; v := v′ − 1; xa := 1, ya := 0 for all a ∈ V ],

and the polynomial Q, defined for graphs without loops by Q(G, v ′) = τ(C(G)) where τ
is the substitution

[u := 1; v := v′ − 2; xa := ya := 1 for all a ∈ V ].

Both are actually specializations of the following two polynomials. We let:
Cy=0(G) := σ0(C(G)) where σ0 is the substitution [ya := 0 for all a ∈ V ],

and
Cx=y(G) := σ=(C(G)) where σ= is the substitution [ya := xa for all a ∈ V ].

The polynomials C,Cx=y, Cy=0 are by definition positive. The polynomial Q is also
positive: this follows from the recursive definition established in [1] that we will reprove
in a different way, but this is not obvious from the above definition, because of the term
v′ − 2.

4.1 Fixed loops

The polynomial Cy=0(G) can be written, for a graph that can have loops:

Cy=0(G) =
∑

A⊆V

xAu
rk(G[A])vn(G[A]).
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Configurations are reduced to sets A of vertices, and there is no second component B
for toggling loops. Hence loops are “fixed” in the configurations defining the polynomial
as they are in G. Clearly q(G; u′, v′) = σ′(Cy=0(G)) where σ′ is the substitution:

[u := u′ − 1; v := v′ − 1; xa := 1 for all a ∈ V ].

The polynomial q is not positive: if G is reduced to an edge, we have q(G) = u′2 −
2u′ + 2v′.

Proposition 17: For every graph G and every vertex a, we have:
(1) Cy=0(∅) = 1,
(2) Cy=0(G) = (1 + xav)Cy=0(G− a) if N(G, a) = ∅ and a is not a loop,
(3) Cy=0(G) = xau · Cy=0(G

a − a) + Cy=0(G− a) if a is a loop, isolated or not,
(4) Cy=0(G) = xbxau

2 · Cy=0(G
ab − a− b)+

+Cy=0(G− a) + Cy=0(G− b) − Cy=0(G− a− b) if a ∼ b.

Proof: (1), (2), (4): Immediate from Corollary 13.
(3) If a is isolated, this follows from Corollary 13 (2). Otherwise, using the notation

of the proof of Claim 7 we observe that Cy=0(G) is the sum of monomials m(G,A,∅);
those such that a /∈ A yield C(G− a), the others yield xau · Cy=0(G

a − a) since:

rk(G[A]) = rk(G[A]a − a) + 1 = rk((Ga − a)[A− a]) + 1

by Lemma 2(1). This gives the result, however, it is interesting to see what Lemma 11
gives. The two cases where a` ∼ b and a` ∼ b` yield the same equality.

Cy=0(G) = xau{Cy=0(G
a − a) − Cy=0(G

a − a− b)}
+Cy=0(G− a) + Cy=0(G− b) − Cy=0(G− a− b).

Hence we have to check that:

xau · Cy=0(G
a − a− b) = Cy=0(G− b) − Cy=0(G− a− b).

This is nothing but Assertion (3) applied to H = G− b. Hence (3) can be established
by induction on the size of G, with help of Lemma 11, and without repeating the analysis
of the monomials m(G,A,∅). �

This proposition yields, with easy transformations, the following recursive definition
of q:

(q1) q(G) = v′n if G consists of n isolated non-looped vertices,
(q2) q(G) = (u′ − 1)q(Ga − a) + q(G− a) if a is a loop, isolated or not,
(q3) q(G) = (u′ − 1)2q(Gab − a− b)+

+q(G− a) + q(G− b) − q(G− a− b) if a ∼ b.

However, the recursive definition of q in Proposition 6 of [3] uses rules (q1), (q2) and
the following one:
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(q3’) q(G) = ((u′ − 1)2 − 1)q(Gab − a− b) + q(G− a) + q(Gab − b) if a ∼ b
instead of (q3). We will now prove the equivalence of both sets of rules. The following
corollary of Proposition 15 generalizes Proposition 8 of [3]:

Corollary 18: If a ∼ b in G then:

Cy=0(G− a) − Cy=0(G− a− b) = Cy=0(G
ab − a) − Cy=0(G

ab − a− b).

Proof: Immediate from Proposition 15 since yb = 0 for all b. �

We get thus the following corollary.

Corollary 19: For every graph G and every vertex a, we have:
(1) Cy=0(∅) = 1
(2) Cy=0(G) = (1 + xav)Cy=0(G− a) if N(G, a) = ∅ and a is not a loop,
(3) Cy=0(G) = xau · Cy=0(G

a − a) + Cy=0(G− a) if a is a loop, isolated or not,
(4) Cy=0(G) = (xbxau

2 − 1)Cy=0(G
ab − a− b)+

+Cy=0(G− a) + Cy=0(G
ab − b) if a ∼ b.

If we apply to these rules the substitution σ′ we find the rules of Proposition 6 of [3].
Hence, Corollary 19 lifts at the multivariate level the recursive definition of this article.

4.2 Toggled loops made invisible in the polynomial

We now consider the polynomial Cx=y(G) := σ=(C(G)) where σ= is the substitution
[ya := xa for all a ∈ V ]. This gives:

Cx=y(G) =
∑

A,B⊆V,A∩B=∅

xA∪Bu
rk((G∇B)[A∪B])vn((G∇B)[A∪B])

Note that the factor xA∪B does not distinguish A and B. The sets B of toggled loops
play a role, but they are not visible in monomials like yB.

This polynomial has two specializations. First the polynomial Q of [1] defined by
Q(G, v′) = τ ′(Cx=y(G)) where τ ′ is the substitution:

[u := 1; v := v′ − 2; xa := ya := 1 for all a ∈ V ]

so that:
Q(G, v′) =

∑

A,B⊆V,A∩B=∅

(v′ − 2)n((G∇B)[A∪B]).

Another one is the independence polynomial (Levit and Mandrescu [23]), expressible
by:

I(G, v) = η(Cx=y(G))

where η is the substitution [u := 0; xa := 1 for all a ∈ V ].
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Proposition 20: (1) Cx=y(G∇T ) = Cx=y(G) for every graph G and set of vertices T .
(2) A graph G without loops and its polynomial C(G) can be uniquely determined

from ρ(Cx=y(G)), where ρ replaces v by 1.

Proof : (1) follows from Lemma 4.
(2) Consider two distinct vertices a and b. By looking at the ranks of the graphs

obtained by adding loops to G[{a, b}], we see that if a ∼ b, then we have the monomials
xaxbu and 3xaxbu

2 in ρ(Cx=y(G)). Otherwise, we have the monomials xaxb, 2xaxbu and
xaxbu

2. �

Corollary 13 yields the following recursive definition:

Proposition 21: For every graph G:
(1) Cx=y(∅) = 1
(2) Cx=y(G) = (1 + xa(u+ v))C(G− a) if N(G, a) = ∅,
(3) Cx=y(G) = xaxbu

2{Cx=y(G
ab − a− b) + Cx=y((G

a)b − a− b)}
+xbu{Cx=y(G

b − b) − Cx=y(G
b − a− b)}

+Cx=y(G− a) + Cx=y(G− b) − Cx=y(G− a− b) if b ∈ N(G, a).

We wish to compare this definition with the one given in [1] for Q (and for graphs
without loops). Proposition 21 yields the following reduction formulas:

(Q1) Q(∅) = 1
(Q2) Q(G) = u′ ·Q(G− a) if N(G, a) = ∅,
(Q3) Q(G) = Q(Gab − a− b) +Q((Ga)b − a− b)

+Q(Gb − b) −Q(Gb − a− b)
+Q(G− a) +Q(G− b) −Q(G− a− b) if b ∈ N(G, a).

However, in the recursive definition of [1], Formula (Q3) is replaced by the following:
(Q3’) Q(G) = Q(G− b) +Q(G ∗ b− b) +Q(Gab − a) if a ∈ N(G, b),

where G ∗ b := (G∇N(G, b))b = Gb∇N(G, b).

We can prove the equivalence of the two recursive definitions. Proposition 15 yields
for G such that a ∼ b:

Q(Gab − a) =
Q(G− a) −Q(G− a− b) +Q(Gab − a− b) −Q(Gb − a− b) +Q((Ga)b − a− b),

so that (Q3) reduces to
Q(G) = Q(G− b) +Q(Gb − b) +Q(Gab − a).

It remains to check that Q(G ∗ b− b) = Q(Gb − b). From the definition of G ∗ b we have:
Q(G ∗ b− b) = Q(Gb∇N(G, b) − b)
= Q((Gb − b)∇N(G, b))
= Q(Gb − b)

with the help of Proposition 20 (1), as was to be proved. Hence (Q3) is equivalent to (Q3’).
Hence, we have reestablished the recursive definition of [1], but not at the multivariate level
as this was the case for q in Corollary 19. In order to obtain it from that of Proposition
21, we had to take u = 1 and xa = 1 for all a.
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The advantage of the definition using (Q1), (Q2), (Q3’) is that it only deals with loop-
free graphs, whereas the definition of Proposition 21, even if used to compute Cx=y(G)
for G without loops uses the graphs with loops (Ga)b and Gb. It proves also that Q is
positive, which is not obvious from the static definition.

4.3 The independence polynomial.

The independence polynomial is defined by

I(G, v) =
∑

k
skv

k

where sk is the number of stable sets of cardinality k. (A looped vertex may belong to a
stable set). Hence, we have:

I(G, v) = η(Cx=y(G))

where η is the substitution [u := 0; xa := 1 for all a ∈ V ].

We let CI(G) = η′(C(G)) where η′ is the substitution that replaces u by 0. It is a
multivariate version of the independence polynomial, that can be defined directly by:

CI(G) =
∑

ψ(A,B)
xAyBv

n((G∇B)[A∪B])

where ψ(A,B) is the set of conditions:

A ⊆ V − Loops(G), B ⊆ Loops(G), (G∇B)[A ∪B] has no edge,

so that n((G∇B)[A ∪ B]) =| A ∪ B | . From Corollary 13, we obtain the recursive
definition

(I1) CI(∅) = 1
(I2) CI(G) = (1 + xav)CI(G− a) if N(G, a) = ∅, a is not a loop,
(I3) CI(G) = (1 + yav)CI(G− a) if N(G, a) = ∅, a is a loop,
(I4) CI(G) = CI(G− a) + CI(G− b) − CI(G− a− b) if b ∈ N(G, a).

However we can derive alternative reduction formulas:

Proposition 22: For every graph G:
(I1) CI(∅) = 1
(I5) CI(G) = CI(G− a) + xav · CI(G− a−N(G, a)), if a is not a loop,
(I6) CI(G) = CI(G− a) + yav · CI(G− a−N(G, a)), if a is a loop,
(I7) CI(G) = CI(G− e) − xaxbv

2 · CI(G−N(G, a) −N(G, b)),
if e is the edge linking a and b; (we do not delete a and b in G− e).

Proof : We omit the routine verifications, which use formulas (I1), (I2), (I3) and
induction on size of graphs. �

Formulas (I5), I(6), (I7) are multivariate versions of reduction formulas given in Propo-
sition 2.1 of the survey [23].
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5 Computation of interlace and other monadic sec-

ond order polynomials

We consider how one can evaluate for particular values of indeterminates, or compute
(symbolically) in polynomial time the polynomials q(G) and Q(G) and the multivariate
polynomial C(G) defined and studied in the previous sections. We first recall the obvious
fact that the recursive definitions like those of Proposition 12 do not yield polynomial time
algorithms because they use a number of calls that is exponential in the number of vertices
of the considered graphs. It is also known that the evaluation of many polynomials is
difficult in general. For an example, Bläser and Hoffmann have proved that the evaluation
of q is #P-hard in most cases [5].

We will describe a method that is based on expressing the static definitions of polyno-
mials in monadic second-order logic and that gives polynomial time algorithms for classes
of graphs of bounded clique-width. This method has been already presented in [11, 24,
25, 27], but we formulate it in a more precise way, and we extend it to multivariate poly-
nomials and their truncations. The basic definitions and facts about clique-width and
monadic second-order logic will be reviewed in Section 5.1 and 5.2 respectively. We first
explain which types of computations we may hope to do in polynomial time for interlace
polynomials.

We define the size | P | of a polynomial P as the number of its monomials. Since
monomials cannot be written in fixed size (with a bounded number of bits), this notion
of size is a lower bound, not an accurate measure of the size in an actual implementation.
It is clear that the multivariate polynomial Cy=0(G) has exponential size in the number
of vertices of G, and so have Cx=y(G) and C(G). Hence, we cannot hope for computing
them in polynomial time.

We define the quasi-degree of a monomial as the number of vertices and/or of edges
(multivariate Tutte polynomials used indeterminates indexed by edges) that index its
indeterminates. If a vertex or an edge indexes r indeterminates, we count it for r. To
take a representative example, a monomial of the form n · xAyBu

pvq has quasi-degree
| A | + | B | (and not | A ∪ B | ). For every polynomial P (G), we denote by P (G) � d
its d-truncation defined as the sum of its monomials of quasi-degree at most d.

For each d, the polynomials Cy=0(G) � d, Cx=y(G) � d and C(G) � d have sizes less
than n2d, where n is the number of vertices. Hence, asking for their computations in poly-
nomial time has meaning. Since their monomials have integer coefficients bounded by n2d,
since they have at most d occurrences of G-indexed indeterminates, and their “ordinary”
indeterminates u, v have exponents at most n, we can use the size of a polynomial for
discussing the time complexity of the computation of its truncations in such cases.

For a specialization P (G) of C(G) where all G-indexed indeterminates are replaced by
constants or by polynomials in ordinary indeterminates x, y, . . . we have P (G) = P (G) � 0.
Hence, efficient algorithms for computing d-truncations will yield efficient algorithms for
computing the classical (non multivariate) versions of these polynomials, and evaluating
them for arbitrary values of their indeterminates, but only for particular classes of graphs

the electronic journal of combinatorics 15 (2008), #R69 20



likes those of bounded tree-width or clique-width. The definition of clique-width will be
reviewed in the next section.

Theorem 23: For all integers k, d, for each polynomial P among C, Cy=0, Cx=y, CI ,
its d-truncation can be computed in time O(| V |3d+O(1)) for a graph G of tree-width or
clique-width at most k. Polynomials q(G), Q(G) can be computed in times respectively
O(| V |7) and O(| V |4) for graphs of tree-width or clique-width at most k.

This theorem gives for each d a fixed parameter tractable algorithm where clique-width
(but not d) is the parameter. The theory of fixed parameter tractability is presented in the
books [14] and [19]. As a corollary one obtains the result by Ellis-Monaghan and Sarmiento
[15] that the polynomial q is computable in polynomial time for distance-hereditary graphs,
because these graphs have clique-width at most 3, as proved by Golumbic and Rotics [18].

This theorem will be proved by means of expressions of the considered polynomials
by formulas of monadic second-order logic. The proof actually applies to all multivariate
polynomials expressible in a similar way in monadic second-order logic. Hence we will
present in some detail the logical expression of graph polynomials.

5.1 Clique-width

Clique-width is, like tree-width, a graph complexity measure based on hierarchical decom-
positions of graphs. These decompositions make it possible to build efficient algorithms
for hard problems restricted to graphs of bounded clique-width or tree-width (see [9,14,19]
for tree-width). In many cases, one obtains Fixed-Parameter Tractable algorithms, that is,
algorithms with time complexity f(k).nc where f is a fixed function, c is a fixed constant,
k is the clique-width or the tree-width of the considered graph, and n is its number of
vertices. Tree-width or clique-width is here the parameter.

Let C = {1, . . . , k} to be used as a set of labels. A k-graph is a graph G given with
a total mapping from its vertices to C, denoted by labG. We call labG(x) the label of a
vertex x. Every graph is a k-graph, with all vertices labeled by 1. For expressing its
properties by logical formulas we will handle a k-graph as a tuple (V,M, p1, . . . , pk) where
the adjacency matrix M is treated as a binary relation (M(x, y) is true if M(x, y) = 1,
and false if M(x, y) = 0) and p1, . . . , pk are unary relations such that pj(x) is true if and
only if labG(x) = j.

The operations on k-graphs are the following ones:
(i) For each i ∈ C, we define constants i and i` for denoting isolated vertices labeled

by i, the second one with a loop.
(ii) For i, j ∈ C with i 6= j, we define a unary function addi,j such that:

addi,j(V,M, lab) = (V,M ′, lab)

where M ′(x, y) = 1 if lab(x) = i and lab(y) = j or vice-versa (we want M ′ to be symmet-
ric), and M ′(x, y) = M(x, y) otherwise. This operation adds undirected edges between
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any vertex labeled by i and any vertex labeled by j, whenever these edges are not already
in place.

(iii) We let also reni→j be the unary function such that

reni→j(V,M, lab) = (V,M, lab′)

where lab′(x) = j if lab(x) = i and lab′(x) = lab(x) otherwise. This mapping relabels by
j every vertex labeled by i.

(iv) Finally, we use the binary operation ⊕ that makes the union of disjoint copies of
its arguments. (Hence G ⊕ G 6= G and the number of vertices of G ⊕ G is twice that of
G.)

A well-formed expression t over these symbols will be called a k-expression. Its value
is a k-graph G = val(t). The set of vertices of val(t) is (or can be defined as) the set of
occurrences of the constants (the symbols i and i`) in t. However, we will also consider
that an expression t designates any graph isomorphic to val(t). The context specifies
whether we consider concrete graphs or graphs up to isomorphism.

For an example, a path with 5 vertices with a loop at one end is the value of the
3-expression:

ren2→1(ren3→1[add1,3(add1,2(1 ⊕ 2) ⊕ add1,2(1 ⊕ 2`) ⊕ 3)]).

The clique-width of a graph G, denoted by cwd(G), is the minimal k such that G =
val(t) for some k-expression t. It is clear that clique-width does not depend on loops:
cwd(G∇T ) = cwd(G) for every set of vertices T .

A graph with at least one edge has clique-width at least 2. The complete graphs Kn

have clique-width 2 for n ≥ 2. Trees have clique-width at most 3. Planar graphs, and in
particular square grids, have unbounded clique-width.

If a class of graphs has bounded tree-width (see [9,14,19]), it has bounded clique-width
but not vice-versa. It follows that our results, formulated for graph classes of bounded
clique-width also hold for classes of bounded tree-width.

The problem of determining if a graph G has clique-width at most k is NP-complete if
k is part of the input (Fellows et al. [17]). However, for each k, there is a cubic algorithm
that reports that a graph has clique-width > k or produces an f(k)-expression for some
fixed function f . Several algorithms have been given by Oum in [28] and by Hlinĕný and
Oum in [21]; the best known function f is f(k) = 2k+1 − 1 (by the result of [21]). The
method for construction fixed parameter algorithms based on clique-width and monadic
second-order logic is exposed in [11, 24], and will be reviewed in Section 5.4 below.

The following extension of the definition k-expression will be useful. An ordered k-
graph G is a k-graph equipped with a linear order ≤G on V . On ordered k-graphs, we will
use the variant

−→
⊕ of ⊕ defined as follows:

(iv) G
−→
⊕ H is the disjoint union of G and H with a linear order that extends those

of G and H and makes the vertices of G smaller than those of H.
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The other operations are defined in the same way. This extension will be used as
follows: a graphG being given by a k-expression t, we replace everywhere in t the operation
⊕ by

−→
⊕ . The obtained expression

−→
t defines G together with a linear ordering on its

vertices.

5.2 Monadic second-order logic and polynomial-time computa-
tions

Our proof of Theorem 23 will make an essential use of the expression of the considered
polynomials in monadic second-order logic. We review the basic definitions and examples.
For a systematic exposition, the reader is refered to [9]. In a few words monadic second-
order logic is the extension of first-order logic using variables denoting sets of objects,
hence in the case of graphs, sets of vertices, and in some cases sets of edges (but we will
not use this feature in this article).

Formulas are written with special (uppercase) variables denoting subsets of the do-
mains of the considered relational structures in the general case, and sets of vertices in
this article. Formulas use atomic formulas of the form x ∈ X expressing the membership
of x in a set X. In order to write more readable formulas, we will also use their negations
x /∈ X. The syntax also allows atomic formulas of the form Cardp,q(X) expressing that
the set designated by X has cardinality equal to p modulo q, where 0 ≤ p < q and q is at
least 2. We will only need in this article the atomic formula Card0,2(X) also denoted by
Even(X). (All interpretation domains are finite, hence these cardinality predicates are
well-defined). Rather than a formal syntax, we give several significant examples.

An ordered k-graph is handled as a relational structure (V,M,≤, p1, . . . , pk). For a
k-graph, we simply omit ≤. Set variables denote sets of vertices. Here are some examples
of graph properties expressed in monadic second-order logic. That a graph G is 3-vertex
colorable (with neighbour vertices of different colors) can be expressed as G � γ, read “γ
is true in the structure (V,M) representing G” (here ≤, p1, . . . , pk do not matter) where
γ is the formula:

∃X1, X2, X3 · [∀x(x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3)∧
∀x(¬(x ∈ X1 ∧ x ∈ X2) ∧ ¬(x ∈ X2 ∧ x ∈ X3) ∧ ¬(x ∈ X1 ∧ x ∈ X3))
∧∀u, v(M(u, v) ∧ u 6= v =⇒ ¬(u ∈ X1 ∧ v ∈ X1) ∧ ¬(u ∈ X2 ∧ v ∈ X2)
∧¬(u ∈ X3 ∧ v ∈ X3))].

That G[B] (where B ⊆ V ) is not connected can be expressed by the formula δ(X),
with free variable X:

∃Y · [∃x · (x ∈ X ∧ x ∈ Y ) ∧ ∃y · (y ∈ X ∧ y /∈ Y )∧
∀x, y · (x ∈ X ∧ y ∈ X ∧M(x, y)

=⇒ {(x ∈ Y ∧ y ∈ Y ) ∨ (x /∈ Y ∧ y /∈ Y )})].

For B a subset of V , (G,B) � δ(X), read “δ is true in the structure representing G
with B as value of X”, if and only if G[B] is not connected.
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The formula γ has no free variables, hence it expresses a property of the considered
graph. The formula δ with free variable X expresses a property of sets of vertices in the
considered graphs, “given as input” to δ as values of X. We now give an example of a
property of a pair of sets of vertices, expressed by a formula with two free set variables.

The vertex set V of an ordered graph is linearly ordered, with a strict order denoted
by <. Hence sets of vertices can be compared lexicographically. For subsets U and W of
V we let U ≤lex W if and only if

either U = W , or U ⊆ W and every element of W −U is larger than every element of
U or U −W 6= ∅ and the smallest element of (W − U) ∪ (U −W ) is in U .

This can be expressed by the validity of σ(U,W ) where σ(X, Y ) is the formula:
∀x · ((x ∈ X =⇒ x ∈ Y ) ∧ ∀y · [(y ∈ Y ∧ y /∈ X) =⇒ ∀u · (u ∈ X =⇒ u < y)])
∨(∃x · (x ∈ X ∧ x /∈ Y ) ∧ ∀y · [(y ∈ Y ∧ y /∈ X) =⇒ ∃u · (u ∈ X ∧ u /∈ Y ∧ u < y)]).
The following lemma will be useful for the monadic second-order expression of interlace

polynomials.

Lemma 24 [13]: There exists a monadic second-order formula ρ(X, Y ) expressing
that, in a graph G = (V,M) we have Y ⊆ X and the row vectors of M [X,X] associated
with Y form a basis of the vector space spanned by the row vectors of the matrix M [X,X].
Hence, for each set X, all sets Y satisfying ρ(X, Y ) have the same cardinality equal to
rk(G[X]).

Proof : We first build a basic formula λ(Z,X) expressing that Z ⊆ X and that the
row vectors of M [X,X] associated with Z are linearly dependent over GF(2).

Condition Z ⊆ X is expressed by ∀y · (y ∈ Z =⇒ y ∈ X). (We will then use ⊆ in
formulas, although this relation symbol does not belong to the basic syntax).

The second condition is equivalent to the fact that for each u ∈ X, the number of
vertices z ∈ Z such that M(z, u) = 1 is even. This fact is written:

∀u · (u ∈ X =⇒ ∃W · [Even(W ) ∧ ∀z · (z ∈ W ⇐⇒ z ∈ Z ∧M(z, u))]).

With λ(Z,X) one expresses that Y (such that Y ⊆ X) forms a basis by:

¬λ(Y,X) ∧ ∀Z · ({Y ⊆ Z ∧ Z ⊆ X ∧ ¬(Z ⊆ Y )} =⇒ λ(Z,X)).

We get thus the formula ρ(X, Y ). �

We will say that the rank function is definable by a monadic second-order (MS) for-
mula. In general we say that a function f associating a nonnegative integer f(A,B,C)
with every triple of sets (A,B,C) is defined by an MS formula ψ(X, Y, Z, U) if, for ev-
ery (A,B,C) the number f(A,B,C) is the common cardinality of all sets D such that
(G,A,B, C,D) � ψ(X, Y, Z, U). (We distinguish the variables X, Y, Z, U from the sets
A,B,C,D they can denote). The generalization to functions f with k arguments is clear,
and the defining formula has then k + 1 free variables.
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5.3 Multivariate polynomials defined by MS formulas and sub-
stitutions

For an MS formula ϕ with free variables among X1, . . . , Xm, for a graph G, we let:

sat(G,ϕ,X1, . . . , Xm) ={(A1, . . . , Am) | A1, . . . , Am ⊆ V,

(G,A1, . . . , Am) � ϕ(X1, . . . , Xm)}.

This is the set of all m-tuples of sets of vertices that satisfy ϕ in G. The condition
(G,A1, . . . , Am) � ϕ(X1, . . . , Xm) will be written in a shorter way as ϕ(A1, . . . , Am). We
can write the set sat(G,ϕ,X1, . . . , Xm) in the form of a multivariate polynomial:

Pϕ(G) =
∑

ϕ(A1,...,Am)
x

(1)
A1
. . . x

(m)
Am
.

It is clear that Pϕ describes exactly sat(G,ϕ,X1, . . . , Xm) and nothing else. Its set
of indeterminates is WG where W = {x(1), . . . , x(m)}. Such a polynomial is called a basic
MS polynomial, and m is its order. Neither the polynomial Z(G) recalled in the introduc-
tion nor the interlace polynomial C(G) is a basic MS-polynomial. Before giving general
definitions, we show how multivariate polynomials can be expressed as specializations of
basic MS-polynomials. To avoid heavy formal definitions, we consider a typical example:

P (G) =
∑

ϕ(A,B,C)
xAyBu

f(A,B,C) (6)

where ϕ(X, Y, Z) is an MS formula and f is a function on triples of sets defined by an MS
formula ψ(X, Y, Z, U). (This necessitates that for each triple X, Y, Z all sets U satisfying
ψ(X, Y, Z, U) have the same cardinality). After usual summation of similar monomials
(those with same indeterminates with same exponents) the general monomial of P (G) is
of the form c ·xAyBu

p where c is the number of sets C such that f(A,B,C) = p. We first
observe that P (G) = σ(P ′(G)) where:

P ′(G) =
∑

ϕ(A,B,C)
xAyBzCu

f(A,B,C)

where σ replaces each zc by 1. We are looking for an expression of P (G) as µ(σ(Pθ(G)))
= µ ◦ σ(Pθ(G)) where µ replaces each ud by u in:

Pθ(G) =
∑

θ(A,B,C,D)
xAyBzCuD

for some formula θ(X, Y, Z, U). Taking θ(X, Y, Z, U) to be ϕ(X, Y, Z) ∧ ψ(X, Y, Z, U)
would be incorrect in cases where several sets D satisfy ψ(A,B,C,D) for a triple (A,B,C)
satisfying ϕ. We overcome this difficulty in the following way: we let V be linearly ordered
in an arbitrary way; we let ψ′ be the formula, written with a new binary relation symbol
≤ denoting the ordering of V, such that ψ′(X, Y, Z, U) is equivalent to:

ψ(X, Y, Z, U) ∧ ∀T · [ψ(X, Y, Z, T ) =⇒ “U ≤lex T”]
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where U ≤lex T means that U is less than or equal to T in the lexicographic order derived
from the ordering of V . This is expressible by an MS formula as we have seen in Section
5.2. The formula ψ′(X, Y, Z, U) defines the function f by selecting a unique set D such
that f(A,B,C) =| D |. This set is unique for each linear order on V by the hypothesis
on ψ, but its cardinality does not depend on the chosen linear order. Hence we have the
desired expression of P :

P (G) = (µ ◦ σ)(
∑

ϕ(A,B,C)∧ψ′(A,B,C,D)
xAyBzCuD).

This expression uses an ordering of the given graph, but P (G) does not depend on
the chosen order. The substitution µ ◦ σ replaces replaces each ud by u and each zc by
1. These remarks motivate the following definition:

Definition 25: Monadic second-order (MS-) polynomials
An MS-polynomial is a polynomial of the form:

P (G) =
∑

ϕ(A1,...,Am)
x

(1)
A1
. . . x

(m′)
Am′

u
f1(A1,...,Am)
1 . . . ufp(A1,...,Am)

p (7)

where ϕ(X1, . . . , Xm) is an MS formula, m′ ≤ m and f1, . . . , fp are monadic second-order
definable functions. An MS-polynomial in normal form is a polynomial of the form
P = σ ◦ Pϕ where:

Pϕ(G) :=
∑

ϕ(A1,...,Am)
x

(1)
A1
. . . x

(m)
Am

(8)

for an MS formula ϕ and a substitution σ that can replace a variable xa by 1 or by
an ordinary variable say u. From the above observations, it is clear that every MS-
polynomial can be written in normal form, for graphs arbitrarily ordered. The expression
of P is said to be order-invariant : we mean by this that even if the logical expression of P
uses a linear order on the set of vertices, in particular for handling monadic second-order
definable functions, then for any two linear orders, the defined polynomials are the same.

A generalized MS-polynomial is a polynomial defined as P = σ◦Pϕ where Pϕ is as in
(8) for an MS-formula ϕ and a specializing substitution σ. A generalized MS-polynomial
may have negative coefficients, and in this case, cannot have a normal form. We say that
P is of order m if it can be expressed as P = σ ◦ Pϕ where ϕ has m free variables. Hence
a polynomial of the form (7) above is of order at most m + p. Then for a graph G with
n vertices and P defined by (7), P (G) has size at most 2m

′n, degree at most n(m′ + p),
positive coefficients of value at most 2mn. These bounds will be useful for evaluating the
cost of computations of truncations of polynomials.

Question : Is it true that every positive generalized MS-polynomial (i.e., that is
positive for every graph) has an expression in normal form ?

Transformations of MS-polynomials.
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In order to show the robustness of the definition, we make precise how some special-
izations can be reflected by transformations of the defining formulas. We review some
cases which arise in the present article, by taking a polynomial P of the form (6) with
associated formulas ϕ, ψ. For each case 1 to 4 we denote by Pi the polynomial obtained
from P.

Case 1 : xa := 0. We have:
P1(G) =

∑

ϕ′(B,C) yBu
f(∅,B,C)

where ϕ′(Y, Z) is defined as ∃X · [ϕ(X, Y, Z)∧∀z ·z /∈ X] so that ϕ′(B,C) is equivalent
to ϕ(∅, B, C). The function f(∅, Y, Z) is defined by ∃X · [ψ(X, Y, Z, U) ∧ ∀z · z /∈ X].

Case 2 : u := 0. We have
P2(G) =

∑

ϕ′(A,B,C) xAyB
where ϕ′(X, Y, Z) is ϕ(X, Y, Z)∧∃U · [ψ(X, Y, Z, U)∧∀z · z /∈ U ], which is equivalent

to ϕ(X, Y, Z) ∧ “f(X, Y, Z) = 0”. The assumption that f is defined by ψ implies that if
ψ(X, Y, Z,∅) is true, then no nonempty set U satisfies ψ(X, Y, Z, U).

Case 3 : xa := 1. We have
P3(G) =

∑

ϕ(A,B,C) yBu
f(A,B,C).

The sets A are, like the sets C, “invisible” in the monomials. However, they play a
role. They contribute to the multiplicity of the monomials yBu

p, for p = f(A,B,C). This
case has been considered above at the beginning of Section 5.3. No transformation of
formulas has to be done in this case.

Case 4 : xa := ya. Here
P4(G) =

∑

ϕ(A,B,C) xA∪Bu
f(A,B,C)

We assume here, and this is enough for the cases considered in this article, that the
condition ϕ(A,B,C) implies that A and B are disjoint. Then to reach the general syntax
we write P4(G) as follows

P4(G) =
∑

ϕ′(D,B,C) xDu
g(D,B,C)

where D stands for A ∪ B, ϕ′(W,Y, Z) is chosen to be equivalent to the condition:
Y ⊆ W ∧ ϕ(W − Y, Y, Z) and the function g is defined by:

g(D,B,C) = f(D − B,B,C)
whence also by a formula ψ′(W,Y, Z, U) equivalent to:

∃X · [ψ(X, Y, Z, U) ∧X ⊆ W ∧ “Y = W −X”].

Lemma 26: Each polynomial P among C, Cy=0, Cx=y, CI is a generalized MS-
polynomial. It can be expressed as P = σ ◦ Pθ for a monadic second-order formula θ
expressing properties of ordered graphs, and a specializing substitution σ, so that P (G) =
σ ◦ Pθ(G) for every graph G, ordered in an arbitrary way. We have P (G) = σ(Pθ(G)) for
every linear order on G.

Proof: We only consider C(G). The other cases follow by the techniques presented
above. We recall the definition:

C(G) =
∑

A,B⊆V,A∩B=∅

xAyBu
rk((G∇B)[A∪B])vn((G∇B)[A∪B])
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We let
Pθ(G) =

∑

θ(A,B,C,D)
xAyBuCvD

where θ(A,B,C,D) holds if and only if A ∩ B = ∅, C ⊆ A ∪ B,D = A ∪ B − C,
C is the smallest basis of the vector space spanned by the row vectors of the matrix
MG∇B[A ∪ B,A ∪ B] (where MG∇B is the adjacency matrix of G∇B). By “smallest” we
mean with respect to the lexicographic ordering derived from the ordering of G. It follows
that | C |= rk((G∇B)[A ∪ B]) and | D |= n((G∇B)[A ∪ B]). By Lemma 24, one can
express these conditions by an MS formula θ. Hence, C(G) = (σ◦Pθ)(G) where σ replace
each ua by u and each va by v. �

5.4 The Fefermann-Vaught paradigm applied to monadic second
order polynomials

In order to prove Theorem 23, we will show how multivariate polynomials defined by MS
formulas can be computed by induction on k-expressions defining graphs of clique-width
bounded by a fixed value k (Definitions are in Section 5.1). We will use the Fefermann-
Vaught paradigm, presented in detail by Makowsky [24] and used in [25] to compute the
Tutte polynomial of graphs of bounded tree-width.

We need operations that manipulate sets of q-tuples, in particular, those of the form
sat(G,ϕ,X1, . . . , Xq), and, equivalently as we will see, the polynomials Pϕ(G). For sets
R, S and S ′ ⊆ P(V )q, we write:

R = S ] S ′ if R = S ∪ S ′ and S ∩ S ′ = ∅, and
R = S � S ′ if S ⊆ P(V1)

q, S ′ ⊆ P(V2)
q, V1 ∩ V2 = ∅, and R is the set of q-tuples

(A1 ∪B1, . . . , Aq ∪Bq) such that (A1, . . . , Aq) ∈ S and (B1, . . . , Bq) ∈ S ′.

For each S ⊆ P(V )q, we let P (S) be the multivariate polynomial:

P (S) =
∑

(A1,...,Aq)∈S
x

(1)
A1
. . . x

(q)
Aq
.

Hence, Pϕ(G) = P (sat(G,ϕ,X1, . . . , Xq)). The following is clear:

Lemma 27: For S, S ′ ⊆ P(V )q, we have P (S ] S ′) = P (S) + P (S ′) and P (S � S ′) =
P (S) · P (S ′).

We denote by Uk the (finite) set of unary operations allowed in k-expressions. We
denote by MS(k, q) the set of MS formulas written with the basic symbols =, 6=,∈, /∈,
Cardr′,r and the relation symbols M,≤, p1, . . . , pk (hence able to express properties of
ordered k-graphs) with free variables in the set {X1, . . . , Xq}.

One could hope to define sat(G
−→
⊕H,ϕ,X1, . . . , Xq) in terms of sat(G,ϕ,X1, . . . , Xq)

and sat(H,ϕ,X1, . . . , Xq) but this not possible in general. Auxiliary sets sat(G, θi, X1, . . . ,
Xq) and sat(H,ψi, X1, . . . , Xq) are needed, but only for finitely many auxiliary formulas
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θi and ψi. This is the key of the construction of linear algorithms from monadic second-
order formulas. The following theorem discussed in [24] is proved in [9,12] in closely
related forms:

Theorem 28: For every k, q, for every formula ξ in MS(k, q), there exists a finite
subset Φ of MS(k, q) containing ξ and satisfying the following properties:

(1) For every ϕ ∈ Φ for every op ∈ Uk there exists a formula ϕop ∈ Φ such that, for
every ordered k-graph G:

sat(op(G), ϕ,X1, . . . , Xq) = sat(G,ϕop, X1, . . . , Xq).
(2) For every ϕ ∈ Φ there exist p and (θ1, . . . , θp, ψ1, . . . , ψp) ∈ Φ2p such that for

disjoint ordered k-graphs G and H:
sat(G

−→
⊕H,ϕ,X1, . . . , Xq) =

]1≤i≤psat(G, θi, X1, . . . , Xq) � sat(H,ψi, X1, . . . , Xq).
These statements also hold for (unordered) k-graphs and the operation ⊕ instead of

−→
⊕ .

The existence of fixed parameter tractable algorithms for checking monadic second-
order properties and for listing the sets sat(G,ϕ,X1, . . . , Xq) for graphs of bounded
clique-width G and monadic second-order formulas ϕ (see Flum et al. [18] for a detailed
presentation of this result for graphs of bounded tree-width) is based on this result.
Basically, this theorem says that the computations can be done by induction on the
structure of k-expressions defining the input graphs. Since the set Φ is finite for fixed k
and ξ (although it is very large), the computations can be done in time linear in the sizes
of the given k-expressions (with very large constants).

Let Φ be a set of formulas as in Theorem 28. We get a finite family of polynomials
(Pϕ)ϕ∈Φ that satisfy mutually recursive computations rules. Actually, the recursive rules
apply to the family of polynomials (σ ◦ Pϕ)ϕ∈Φ where σ is a specializing substitution.We
recall that by a polynomial we mean (ambigously) a mapping P associating with a graph
G a polynomial in Z[U ∪ WG].

Corollary 29: Let Φ satisfy the properties of Theorem 28. Let σ be a specializing
substitution. We have the following computation rules:

(1) For every ϕ ∈ Φ, for every op ∈ Uk, for every ordered k-graph G:
(σ ◦ Pϕ)(op(G)) = (σ ◦ Pϕop)(G).

(2) For every ϕ ∈ Φ for every two disjoint ordered k-graphs G and H:
(σ ◦ Pϕ)(G

−→
⊕H) =

∑

1≤i≤p(σ ◦ Pθi
)(G) · (σ ◦ Pψi

)(H).
where ϕop and (θ1, . . . , θp, ψ1, . . . , ψp) are as in Theorem 28.

Proof : If σ is the identity substitution, then (1) and (2) are direct translations of (1)
and (2) of Theorem 28.

Since σ ◦ (P +Q) = σ ◦ P + σ ◦ Q i.e., (σ ◦ P + σ ◦Q)(G) = σ(P (G)) + σ(Q(G)) =
σ((P + Q)(G)) and similarly, σ ◦ (P · Q) = (σ ◦ P ) · (σ ◦ Q), for every substitution σ
and every two polynomials P,Q, the equalities extend to the general case as stated. �
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Hence, this corollary concerns all multivariate polynomials described in Section 5.3.
We will use it for computing their truncations.

5.5 Computing monadic second-order polynomials in polyno-

mial time

We discuss the computation of polynomials written in the form σ ◦ Pξ for a basic MS-
polynomial Pξ and a substitution σ. This will also apply to evaluations of polynomials
where all indeterminates are given some numeric value, either integer, real or in some other
field. Such an assignment of values can formalized by the application of a substitution.

Let a graph G be given by a k-expression t. We “order” t into
−→
t which defines G

with a linear order of its vertices (cf. Section 5.1). This will be useful in cases where we
have to select a unique lexicographically minimal set satisfying a condition. It is clear
that for each constant, i or i`, each polynomial (σ ◦Pϕ)(i

`) can be computed by using the

definitions. By Corollary 29, we can thus compute for each subterm s of
−→
t the family

of polynomials ((σ ◦ Pϕ)(val(s)))ϕ∈Φ. In particular, at the end of the computation, one
gets the Φ-tuple ((σ ◦Pϕ)(G))ϕ∈Φ. It clearly best to have sets Φ of “small cardinality”. A
method for restricting such computations to their useful parts is described in [12] or in
[24], Definition 4.17.

This computation uses at most n· | Φ | times the computation rules of Corollary 29
(2) (n will always be the number of vertices of the considered graph G), because in a
term, the number of occurrences of

−→
⊕ is s− 1, where s is the number of occurrences of

constants, which is equal to | V |= n. Here, | Φ | is constant. The computation time is
bounded by 2n · cG · pmax· | Φ |, where pmax is the maximum value of p in the rules of
Theorem 28 (2), and cG bounds the cost of the addition and of the multiplication of two
polynomials. This bound depends on G.

When do we obtain a polynomial algorithm in n?

We first make precise the way we will count the cost of operations on polynomials.
Using unit cost measure, we will count for one the cost of each basic operation on num-
bers : comparison, addition, substraction, multiplication. The cost of evaluating xm for a
positive integer m is thus O(log(m)) if we use iterated squarings: x, x2, x4, . . . and mul-
tiplications of intermediate results. In the computation of a truncated polynomial P � d,
we will consider d as “small” and fixed, like | Φ | (and actually much smaller in potential
applications.) Hence we will count for one the cost of computing xm for m ≤ d.

However, for measuring computations and evaluations of polynomials, we could also
use the real cost measure and consider that the cost of a comparison, an addition, a
substraction and a multiplication of two positive integers x and y is O(log(x+y)). Coeffi-
cients of polynomials may be exponential in the sizes of the considered graphs. However,
in situations where the absolute values of coefficients and exponents are no larger than
2p(n) for fixed polynomials p, a polynomial bound on computation time with respect to
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unit cost measure remains polynomial with respect to real cost measure. The exponents
of the polynomial bounds are just larger.

We will base the following estimations of the cost of computations on straightforward
data structures: a polynomial is a uniquely defined list of monomials sorted by increasing
order of quasi-degree, where two monomials of same quasi-degree are ordered lexicograph-
ically. Each monomial is written in a canonical way by means of a fixed ordering of inde-
terminates. We deal with monomials with a variable number of indeterminates, however,
this number is always bounded by n· | X | + | U | where the G-indexed indeterminates
are defined from X, and U the set of ordinary indeterminates.

The basic operations on pairs of monomials m,m′ are comparison, summation of
coefficients if m,m′ are similar monomials (if they have same indeterminates with same
respective degrees), and multiplication. For a monomialm, we denote by v(m) the number
of its indeterminates. The costs of these operations are respectively O(v(m) + v(m′)), 1
and O(v(m) + v(m′)).The cost of the multiplication of two monomials is not 1 because
one must sort the indeterminates according to the chosen order. We denote by v(P ) the
number of indeterminates in a polynomial P .

Lemma 30 : For every P,Q, d, if v(P ),v(Q) ≤ vmax we have:
(1) (P +Q) � d = P � d+Q � d and (PQ) � d = ((P � d) · (Q � d)) � d.
(2) Computing P +Q takes time O(vmax · (| P | + | Q |)).
(3) Computing PQ takes time: O(vmax· | P |2 · | Q |) if | P |≤| Q | .

Proof : (1) Clear from the definitions.
(2) Note that | P +Q |≤| P | + | Q |. The addition of P and Q is done by interleaving

their lists of monomials and by adding the coefficients of similar monomials. This gives
the result by the remaks on the cost of operations on monomials.

(3) Let | P |≤| Q | and v(P ),v(Q) ≤ vmax. Note that | PQ |≤| P | · | Q |. We
compute PQ by multiplying | P | times the polynomial Q by a monomial of P , and by
performing | P | −1 additions of polynomials of size at most | P | · | Q |. The time taken
is at most:

O(vmax· | P | · | Q | +(| P | −1) · vmax· | P | · | Q |) = O(vmax· | P |2 · | Q |). �

If in (3) P and Q are positive, one gets the bound O(vmax· | P | · | PQ |) because all
intermediate results have size at most | PQ | .

Theorem 31: Let k, d be fixed integers. The d-truncation of a generalized MS-
polynomial P (G) can be computed in time O(n6d+O(1)) for every graph G of clique-width
at most k.

The constants hidden by the O-notation depend on P and k. The particular case of
evaluations (for numerical values of indeterminates) will be discussed later. Closely related
formulations of this theorem are in [11, 24, 25]. For a polynomial P , we define ‖P‖ :=
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(| P |, deg(P ), Cmax(P )) where deg(P ) is the degree of P and Cmax(P ) the maximum
absolute value of its coefficients. Triples of integers are ordered componentwise.

Lemma 32: Let P be a polynomial and σ be a substitution such that ‖σ(x)‖ ≤
(smax,dmax, cmax) for every indeterminate x. The polynomial σ ◦ P satisfies:

‖σ ◦ P‖ ≤ (| P | ·(smax)
deg(P ), deg(P ) · dmax, | P | ·Cmax(P ) · (smaxcmax)

deg(P )).

Proof : Easy verification. �

It follows from observations made in Definition 25 that if Pϕ has order m, then for
every graph G, the polynomial σ(Pϕ(G)) has size and coefficients bounded by 2O(n) and
degree bounded by n(m′ + p) ·dmax = O(n) (m′ ≤ m and p are as in that definition). We
can thus use the unit cost measure.

Proof of Theorem 31: Let k, d be integers, let P be a polynomial expressed as σ◦Pξ
for an MS formula ξ and a substitution σ. We aim at computing its d-truncation. Let
Φ be the corresponding set of formulas as in Theorem 28. We observe that by Lemma 30
(1), Corollary 29 yields:

(1) For every ϕ ∈ Φ, for every op ∈ Uk for every ordered k-graph G:
σ(Pϕ(op(G))) � d = σ(Pϕop(G)) � d.

(2) For every ϕ ∈ Φ for every disjoint ordered k-graphs G and H:
σ(Pϕ(G

−→
⊕H)) � d =

∑

1≤i≤p((σ(Pθi
(G)) � d) · (σ(Pψi

(H)) � d)) � d.

Note that we do not have: σ(P (G)) � d = σ(P (G) � d) in general.

For a graph G given by a k-expression
−→
t that defines it together with a linear order

on its vertex set, we will use (1) and (2) above to compute for each subterm s of
−→
t the family of “truncated polynomials” ((σ ◦ Pϕ)(val(s)) � d)ϕ∈Φ. At the end of the
computation, we get the Φ-tuple ((σ ◦ Pϕ)(G) � d)ϕ∈Φ from which we can extract the
desired polynomial (σ ◦Pξ)(G) � d. As observed above, the time to compute σ(P (G)) � d
is 2n·cG ·pmax· | Φ |, where cG bounds the costs of adding and multiplying the polynomials
occuring in recursion rules (1) and (2). We need only count multiplications which are more
costly than additions and in proportional number. Let us assume that all the polynomials
σ(Pϕ(G)) are in Z[XG ∪ U ]. By Lemma 30 we have, for the d-truncations of all such
polynomials P,Q:

(i) cG = O(vmax· | P � d |2 · | Q � d |) with
(ii) vmax = n· | X | + | U |= O(n), and
(iii) | P � d |= O(n2d+|U |).
For proving (iii), we note that a monomial of P � d is a product of at most d factors of

the form xsa and of at most | U | factors of the form us, in both cases for s ≤ deg(P )·dmax.
There are n· | X | · deg(P ) · dmax factors of the form xsa and deg(P ) · dmax factors us

for each u. Hence:

| P � d |= O((n · deg(P ))d · deg(P )|U |) = O(n2d+|U |)

since deg(P ) = O(n). This gives for 2n · cG · pmax· | Φ | the bound O(n2+6d+3|U |).
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We must take into account the cost of building for a graph G of clique-width at most k
a clique-width expression. In cubic time, one can construct for graphs of clique-width at
most k an f(k)-expression, for a fixed function f , by the results of [21, 28]. This suffices
for our purposes. The total time is thus O(nt) where t = Max{3, 2+6d+3· | U |}. (This
bound applies if d =| U |= 0.) �

We now extend this result to numerical evaluations. Let P (G) be a polynomial in
Z[XG ∪ U ]. An evaluating substitution ν replaces indeterminates by numerical values.
Let ν be such a mapping. One can consider ν(P (G)) as a polynomial reduced to a
constant, that is the desired value of P (G) for the values of indeterminates specified by
ν. Note that ν(P (H)) is well-defined for every graph H with set of vertices included in
the set V of vertices of G. This remark will be useful for the computation of ν(P (G)) by
an induction on the structure of G using Corollary 29. The costs of computations are
the same for polynomials with numerical values of their indeterminates since we use unit
cost measure.

Corollary 33: Let k be an integer. For every generalized MS-polynomial P and every
evaluating substitution ν, the corresponding value of P (G) for a graph G of clique-width
at most k can be computed in cubic time in the number of vertices of G. It can be
computed in linear time if the graph is given by a k-expression.

Proof : Let ν be an evaluating substitution. It associates a number with each u in U
and each xa in XG, for a given graph G. As in the proof of Theorem 31 we have:

(1) For every ϕ ∈ Φ, for every op ∈ Uk, for every ordered k-graph H with VH ⊆ VG:
ν(Pϕ(op(H))) = ν(Pϕop(H)).

(2) For every ϕ ∈ Φ and all disjoint ordered k-graphs H and H ′ with VH , VH′ ⊆ VG:
ν(Pϕ(H

−→
⊕H ′)) =

∑

1≤i≤p ν(Pθi
(H)) · ν(Pψi

(H ′)).
Here we compute the family of values (ν(Pϕ(val(s))))ϕ∈Φ as opposed to a family of

polynomials. The cost is thus 2n · pmax· | Φ |= O(n) assuming known a k-expression
defining G. Otherwise, one must construct an f(k)-expression and this can be done in
cubic time. �

We now make precise the bounds for the interlace polynomial C and its specializations.
Theorem 23 is actually a corollary of Theorem 31.

Proof of Theorem 23:
For each k, for every graph G with n vertices and of tree-width or clique-width at

most k, we have the following bounds:
‖C(G)‖ ≤ (3n, 2n, 1) and | C(G) � d |= O(nd+2),
‖Cy=0(G)‖ ≤ (2n, 2n, 1) and | Cy=0(G) � d |= O(nd+1),
‖Cx=y(G)‖ ≤ (n2n, 2n, 2n) and | Cx=y(G) � d |= O(nd+2),
‖CI(G)‖ ≤ (2n, 2n, 1), and | CI(G) � d |= O(nd+1),
‖q(G)‖ ≤ (n2, 2n, 2n),
‖Q(G)‖ ≤ (n+ 1, n, 3n).
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As in the proof of Theorem 29, we need only bound the costs cG of the multiplica-
tions of polynomials. From these evaluations, we get the bounds O(n3d+8) for C and
Cx=y, O(n3d+5), for Cy=0 and CI , O(n7) for q and O(n4) for Q. �

The result by Bläser and Hoffmann [5] indicates that restrictions to bounded tree-
width or clique-width (or some alternative restriction) are necessary in Theorem 23 and
Corollary 33. The result of [15] showing that the interlace polynomial can be evaluated
in polynomial time on distance hereditary graphs is a special case of Corollary 33 because
these graphs have clique-width at most 3.

Remark about the size of constants.
Sets Φ in Theorem 28 are very large if they are constructed in a blind manner from

monadic second-order formulas: their sizes are towers of exponentials proportional to the
quantification depth h of the formulas ξ which specify the considered polynomials. The
reason is that the general proof based on the Feferman-Vaught paradigm exposed in [24]
takes as set Φ the set of all formulas in some kind of normal form that have quantifier depth
at most h. However, if alternatively, families of polynomials σ ◦ Pϕ satisfying Corollary
29 are constructed directly, by taking advantage of the meanings of the properties defined
by formulas ξ, then one may obtain usable recursive definitions.

The upper bounds of Theorem 23 leave a great space for improvements.

6 Conclusion

We have defined a multivariate interlace polynomial that generalizes the existing inter-
lace polynomials. The multivariate methodology puts in light the meaning of polynomials.
Classical polynomials are degraded versions of multivariate ones. The multivariate ap-
proach is well-adapted to the logical description of polynomials, and the use of monadic
second-order logic yields fixed parameter algorithms for evaluating polynomials at par-
ticular values of indeterminates or for computing significant portions of them, called
truncations.

For computing such polynomials in full, one might use linear delay enumeration al-
gorithms and try to obtain monomials one by one, by increasing degrees, with a delay
between two outputs linear in the size of the next output. Such algorithms are consid-
ered in [10] and [4] for monadic second-order definable problems and graphs of bounded
clique-width.

Another research perspective consists in enriching the notion of configuration. In this
article, in particular in Section 5, a configuration is an m-tuple of subsets for fixed m.
One could try to extend the methodology of Section 5.3 to more complex configurations
like partitions of unbounded size or permutations.

Finally, in order to build a zoology as opposed to maintaining a zoo (as pointed out
by J. Makowsky in [26]) it is important to relate the various polynomials by means of
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algebraic reductions (specializations), or logical reductions or transformations of similar
kinds.
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