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Abstract

Given a protoset of d-dimensional polyominoes, we ask which boxes can be
packed by the protoset. In some cases, it may be too difficult to give a complete
answer to this question, so we ask the easier question about determining all
sufficiently large boxes that can be packed. (We say that a box is “sufficiently
large” if all edge lengths are ≥ C for some large C.) We give numerous
examples (mostly 2-dimensional) where we can answer this easier question.
The various techniques involved are: checkerboard-type colorings/numberings
(tile homology), the boundary word method of Conway and Lagarias (tile
homotopy), ad hoc geometric arguments, and a very nice theorem of Barnes.
Barnes’ Theorem asserts that all necessary conditions for a box to be packable
can be given in a certain form, and these conditions are also sufficient for large
boxes.

Barnes’ Theorem has not received the appreciation it deserves. We give
a new, purely combinatorial proof of this important result. (Barnes’ original
proof uses techniques of algebraic geometry.) In the special case that all the
prototiles are boxes themselves, we show how to determine all sufficiently large
boxes that they pack. We prove a theorem based on Barnes’ result that reduces
this to a straightforward calculation.

1. Introduction

A d-dimensional polyomino is a union of unit d-dimensional cubes such that the
vertices of each are lattice points. It is common to require that they have connected
interior, but we do not impose that condition here. A protoset is a collection of
prototiles , each of which we have an unlimited supply. Given a finite polyomino region,
we ask if the region can be packed by the protoset, which means that the region is the
union of polyominoes that intersect at most along their boundaries, and such that each
is congruent to one of our prototiles. In general, this is a difficult problem (see [17]), and
we concentrate on the special case when the region to be packed is a box (rectangular
parallelepiped). There are several reasons for interest in this special case. Firstly, boxes
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are the most basic type of finite regions to consider. Secondly, this problem has already
attracted some attention; for example, see [1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 20, 22,
24]. Thirdly, we use two (known) structure theorems, which we describe in section 3
below. We include a new proof of one of them, and prove a useful new result (Theorem
3.8) based upon them.

Given a protoset, we can ask for a complete determination of all boxes that it packs.
This may be difficult to attain, even for relatively simple protosets. See Example 4.2
below to get an idea of how complex this determination can be. If we cannot find all
boxes that can be packed, we may ask instead for all “sufficiently large” boxes that can
be packed by the protoset. That is, for C � 0, determine all a1 × · · · × ad boxes with
each ai ≥ C that can be packed. This is often more tractable, even in an extreme case
like Example 4.2 below. Some results of this type have been given in [10, 14].

2. Klarner systems

In this section we develop the concept of Klarner systems, which was introduced in
[22] as a convenient framework in which to consider these packing problems.

Definition 2.1. Let d be a positive integer. A d-dimensional Klarner system , is a
subset S of Nd such that if both (a1, a2, . . . , ad) and (a1, a2, . . . , ai−1, a

′

i, ai+1, . . . , ad)
are in S, then so is (a1, a2, . . . , ai−1, ai + a′

i, ai+1, . . . , ad).

Our motivation is provided by the following example.

Example 2.2. Let T be any protoset of translation-only d-dimensional polyominoes,
and let S =

{

(a1, a2, . . . , ad) ∈ Nd | T packs an a1 × a2 × · · · × ad box
}

. Then S is
a d-dimensional Klarner system. Indeed, if T packs an a1 × · · · × ad box and also
an a1 × · · · × a′

i × · · · × ad box, then these two boxes can be juxtaposed (using only
translation) to give a packing of an a1 × · · · × (ai + a′

i) × · · · × ad box.

The condition that the prototiles be translation-only may seem unusual. Often-
times, we will want to be able to use a prototile in any orientation. To do this, we
include every orientation of the tile in the protoset. This shows that translation-only
protosets are more general than protosets where we may rotate and reflect the tiles,
which is our reason for considering them.

In view of this motivating example, we will refer to elements of a Klarner system
as “boxes”. This will be useful to distinguish them from other tuples of integers that
we will have later.

We also note that boxes can pack larger boxes in more complex ways than simply
juxtaposing two smaller boxes to made a larger box, and repeating this process. For
example, a 3 × 3 square and four 1 × 4 rectangles (used in both orientations) can pack
a 5 × 5 square, but cannot do so with a line of cleavage.

Lemma 2.3. (a) A non-empty intersection of Klarner systems is a Klarner system.

(b) An increasing union of a sequence of Klarner systems is a Klarner system.
�����������

Clear. �
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Definition 2.4. Let U be a subset of Nd. The Klarner system generated by U is the
smallest Klarner system containing U ; i.e. the intersection of all Klarner systems that
contain U .

Example 2.5. The Klarner system generated by {(3, 3), (1, 4), (4, 1)} does not contain
the box (5, 5) although a 5 × 5 square can be packed by the corresponding rectangles.

Definition 2.6. A prime of a Klarner system S is an element of S that cannot be writ-
ten as (a1, . . . , ai−1, ai+a′

i, ai+1, . . . , ad) where both (a1, . . . , ad) and (a1, . . . , a
′

i, . . . , ad)
are in S.

In connection to the motivating example above, a prime corresponds to a box that
can be tiled by the protoset, but cannot be tiled with a plane of cleavage.

The next two results, which are from [22], are easy, so we omit their proofs.

Lemma 2.7. An element (a1, a2, . . . , ad) of a Klarner system S is prime if and only if

S \ {(a1, a2, . . . , ad)} is also a Klarner system. �

Corollary 2.8. The unique minimal generating set of a Klarner system is its set of

primes. �

3. Fundamental Structure Theorems

In this section, we give the two fundamental theorems. Since they were not origi-
nally stated in the context of Klarner systems, we have translated them into that con-
text. In view of the motivating example above, the connection to the original context
should be clear.

The first fundamental theorem is due to Klarner and Göbel.

Theorem 3.1. (Klarner and Göbel) A d-dimensional Klarner system has only finitely

many primes.

This theorem was first given in [11], but the proof had an error in dimensions d ≥ 3.
The proof was later repaired by Klarner in an unpublished technical report [13]. Other
proofs have been given by de Bruijn and Klarner [6], Bodini [2], and by the current
author [22]. The theorem shows that a Klarner system can be described by giving its
finite set of primes. However, it is not clear if this is the most convenient description.
Bodini [2] discusses the problem of determining if a given box can be packed by a given
set of prototile boxes.

Definitions 3.2. A restriction is simply a d-tuple [r1, r2, . . . , rd] of non-negative in-
tegers. We will use brackets for restrictions to distinguish them from boxes. We say
that a box (a1, a2, . . . , an) satisfies the restriction [r1, r2, . . . , rd] if ai is a multiple of
ri for some index 1 ≤ i ≤ d. We say that a Klarner system satisfies a restriction if
all of its boxes satisfy the restriction. We also adopt the convention that 0 divides b if
and only if b = 0, so that “a divides b” is synonymous with “b is a multiple of a” in all
cases. We say the restriction [r1, . . . , rd] divides the restriction [s1, . . . , sd] if ri|si for
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all i. A restriction [r1, . . . , rd] is called primary if each ri is either a prime power or 0.
We will call a restriction [q1, . . . , qd] a primary divisor of the restriction [r1, . . . , rd] if it
is primary, and it divides [r1, . . . , rd], and qi = 0 if ri = 0. This last condition ensures
that every restriction has only finitely many primary divisors.

The second fundamental theorem is due to Barnes [1].

Theorem 3.3. (Barnes) Let S be a d-dimensional Klarner system. There is a finite set

of restrictions R and a constant C > 0 such that

(a) Every box in S satisfies every restriction in R, and

(b) If a1, a2, . . . , ad ≥ C, then the box (a1, a2, . . . , ad) is in S if and only if it satisfies

every restriction in R.

The “only if” part of (b) is redundant, but it allows for a necessary and sufficient
condition. We will say that a finite set of restrictions, R, characterizes a Klarner
system, if it satisfies the conditions of the theorem for some choice of C.

Barnes did not state his theorem in terms of Klarner systems, so the above is a
translation of his original statement. He also stated it only for finite protosets, so he was
apparently unaware of the theorem of Klarner and Göbel. Barnes’ Theorem does not
seem to be adequately appreciated, which is part of our motivation for presenting it here.
His original proof was based on developing some concepts in classical algebraic geometry.
We give below a combinatorial proof of this important theorem. His statement also
included more than we have here; it included information about packing with general
weights, which is not of concern to us here.

A special case of Barnes’ Theorem, in which the tiles may be rotated, was given
earlier by Katona and Szász [10, Thm. 2 and 3], with a rather cumbersome statement.

Determining the smallest value of C in the theorem is an interesting issue, but not
one that we will address here. Even in the 1-dimensional case, it is interesting; in this
case, it is essentially the Frobenius problem. (See [19] for more about various aspects
of the Frobenius problem.) In the 1-dimensional case, the necessary restrictions for
a box to be packable are also sufficient, with finitely many exceptions. In the higher
dimensional case, there may be infinitely many exceptions, as we will see below.

The set of restrictions in the theorem is not uniquely determined. If [r1, r2, . . . , rd]
is a restriction, then so is any restriction that divides [r1, r2, . . . , rd]. Therefore it makes
sense to only consider restrictions that are maximal with respect to division. Even then,
the set of restrictions is not uniquely determined. One way to achieve uniqueness is to
replace each restriction by its set of primary divisors and then choose maximal elements
from this collection. In general, this greatly increases the number of restrictions. It is
unclear if it makes the set of restrictions more “natural” in any sense, so we will not
pursue it here, although it will be useful in the proof of Theorem 3.8 below.

���������	���	
������������������
First we show that (a) follows from (b). Suppose (a1, . . . , ad)

is a box in S. Let N be a prime larger than C that does not divide any non-zero
coordinate of any restriction in R. The box (Na1, . . . , Nad) is in S, so by (b), it
satisfies every restriction in R. Thus, if [r1, . . . , rd] ∈ R, then there is an index i such
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that ri | Nai. Now ri 6= 0 is relatively prime to N , so ri | ai. Therefore the original box
(a1, . . . , ad) also satisfies the restriction, so (a) holds.

Now we prove (b) by induction on the dimension d. Suppose that d = 1. If S = ∅,
then (b) is clear: take R = {[0]} and C = 1. If S is non-empty, let g be the greatest
common divisor of elements of S. We may choose a finite subset a1 < a2 < · · · < ak of S
such that g = GCD(a1, . . . , ak). Every box in S satisfies the restriction [g]. Conversely,
if n is divisible by g, it may be expressed as a1x1 + a2x2 + · · ·+ akxk for some integers
x1, . . . , xk. Now also suppose that n ≥ (a1−1)(a2+a3+· · ·+ak). For each i = 2, 3, . . . , k,
we may replace xi by x′

i = xi−ta1 and x1 by x1+tai, for some integer t so that 0 ≤ x′

i <
a1. Then a1x1 = n− (a2x2 + a3x3 + · · ·+ akxk) ≥ n− (a1 − 1)(a2 + a3 + · · ·+ ak) ≥ 0,
so all the xi’s are non-negative, whence n ∈ S. Therefore (b) holds with R = {[g]} and
C = (a1 − 1)(a2 + a3 + · · ·+ ak).

Now suppose that (b) holds for all (d − 1)-dimensional Klarner systems and let S
be a d-dimensional Klarner system. For a positive integer n, let

S(n) =
{

(a1, a2, . . . , ad−1) ∈ Nd−1 | (a1, a2, . . . , ad−1, n) ∈ S
}

,

which is a (d−1)-dimensional Klarner system. We also have S(n1)∩S(n2) ⊆ S(n1+n2),
and then S(n) ⊆ S(kn) follows from this by induction on k.

Now we have an increasing chain S(1!) ⊆ S(2!) ⊆ S(3!) ⊆ · · ·, which stabilizes,
as every Klarner system has a finite number of generators. Thus

⋃

k S(k!) = S(n!) for
some n. Since S(k) ⊆ S(k!), this shows that there is a positive integer m such that
S(m) is maximal. For the remainder of the proof, m will denote such an integer. For
each 0 < n ≤ m, we have an increasing chain S(n) ⊆ S(n + m) ⊆ S(n + 2m) ⊆ · · ·,
which also stabilizes.

Let T (n) =
⋃

t S(n + tm), so that T (n) = S(n + tm) for sufficiently large t. Of
course T (n) depends only on the remainder of n modulo m. We claim that

(3.4) T (n1) ∩ T (n2) ∩ · · · ∩ T (nr) ⊆ T (GCD(n1, n2, . . . , nr)).

It suffices to prove (3.4) for r = 2; the general case follows by induction on r. We may
write GCD(n1, n2) = k1n1+k2n2 for some integers k1, k2. Choose positive integers k′

1, k
′

2

such that k′

i ≡ ki mod m. For large t, we have T (ni) = S(ni + tm) ⊆ S(k′

i(ni + tm)), so
that T (n1)∩T (n2) ⊆ S(k′

1(n1+tm))∩S(k′

2(n2+tm)) ⊆ S(k′

1n1+k′

2n2+(k′

1 +k′

2)tm) ⊆
T (k′

1n1 + k′

2n2) = T (k1n1 + k2n2), which proves the claim.
As a special case of (3.4), we note that T (n) = T (n) ∩ T (m) ⊆ T (GCD(m, n)).

For each divisor n of m, fix a finite set, R(n), of restrictions that characterizes the
(d − 1)-dimensional Klarner system T (n). Let R be the union of the following sets of
restrictions:

R0 = {[r1, . . . , rd−1, 0] | [r1, . . . , rd−1] ∈ R(m)} ,

and for each prime power pf that divides m, let pe be the largest power of p dividing
m, and set

Rpf =
{

[r1, . . . , rd−1, p
f ] | [r1, . . . , rd−1] ∈ R(m/pe−f+1)

}

.
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To complete the induction, we will show that R characterizes S.
First we show that every box in S satisfies every restriction in R. Suppose that

(a1, . . . , ad) is a box in S. Then (a1, . . . , ad−1) ∈ S(ad) ⊆ S(m) = T (m), so it satis-
fies every restriction in R(m). Thus (a1, . . . , ad) satisfies every restriction in R0. Let
pf be a prime power that divides m. If pf |ad, then (a1, . . . , ad) satisfies every restric-
tion in Rpf . Otherwise, GCD(ad, m) divides m/pe−f+1, so we have (a1, . . . , ad−1) ∈
S(ad) ⊆ T (ad) ⊆ T (GCD(ad, m)) ⊆ T (m/pe−f+1), so it satisfies every restriction in
R(m/pe−f+1). Therefore (a1, . . . , ad) satisfies every restriction in Rpf , which shows
that S satisfies every restriction in R.

Now we show that S contains every sufficiently large box that satisfies all restric-
tions in R. Choose C large enough so that S(k) = T (k) for all k ≥ C, and such that
for every n|m, if a1, . . . , ad−1 ≥ C and the box (a1, . . . , ad−1) satisfies every restriction
in R(n), then it is in T (n).

Suppose that a1, . . . , ad ≥ C and the box (a1, . . . , ad) satisfies every restriction in
R. For a prime p that divides m, let pe be the largest power of p dividing m, and let pf

be the largest power of p that divides GCD(ad, m). We claim that the box (a1, . . . , ad−1)
is in T (m/pe−f ). If f < e, then pf+1 divides m but does not divide ad. Since
(a1, . . . , ad) satisfies every restriction in Rpf+1 , it follows that the box (a1, . . . , ad−1)
satisfies every restriction in R(m/pe−f ). Therefore, (a1, . . . , ad−1) ∈ T (m/pe−f ), be-
cause a1, . . . , ad−1 ≥ C, so the claim holds in this case.

If f = e, the box (a1, . . . , ad) satisfies every restriction in R0, so it follows that
(a1, . . . , ad−1) satisfies every restriction in R(m) = R(m/pe−f ), and as before, we have
(a1, . . . , ad−1) ∈ T (m/pe−f ). This proves the claim in all cases.

Finally, write n = GCD(ad, m) = pf1

1 · · · pfr
r , where we include every prime divi-

sor of m (so some exponents may be 0). From the claim, we have (a1, . . . , ad−1) ∈

T (m/pei−fi

i ) for each i, so by (3.4) above, we have (a1, . . . , ad−1) ∈
⋂

i T (m/pei−fi

i ) ⊆

T (GCD({m/pei−fi

i })) = T (n) ⊆ T (ad). Since ad ≥ C, we have T (ad) = S(ad), which
shows that the box (a1, . . . , ad) is in S. �

Remark 3.5. In the proof of Theorem 3.3, we used Theorem 3.1 during the induction
step. However, we used it only for (d− 1)-dimensional Klarner systems. The beginning
of the induction step follows along the same lines as the inductive proof of Theorem 3.1
given in [22], so one may even prove both theorems at once, inducting on the dimension.
In comparison, the proof of Theorem 3.3 requires more analysis. This is curious in light
of the fact that the set of primes determines the Klarner system completely, but the set
of restrictions only determines its “sufficiently large” boxes.

Let U ⊆ Nd be a set of boxes, and R a set of restrictions. If every box in U
satisfies every restriction in R, then the same holds for every box in the Klarner system
generated by U . Indeed, the set of boxes that satisfies every restriction in R is a Klarner
system, and it contains U . Barnes has shown that restrictions are preserved even under
more complex box-packing, which is the content of the next theorem.

Theorem 3.6. (Barnes) Suppose that every box in the set S satisfies the restriction
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[r1, . . . , rd]. If a box can be tiled by the boxes in S by translation only, then this box

also satisfies the restriction [r1, . . . , rd].

This theorem is the discrete analogue of the main theorem treated by Wagon [23].
If S1 and S2 are two d-dimensional Klarner systems, let S1 +S2 denote the Klarner

system generated by S1∪S2. Based on Theorem 3.3, we can understand how restrictions
behave under this operation. First we have an easy lemma.

Lemma 3.7. Suppose the Klarner system S is characterized by the finite set of restric-

tions R. If [q1, q2, . . . , qd] is a primary restriction that every box of S satisfies, then

[q1, q2, . . . , qd] divides some restriction in R.
�����������

We prove the contrapositive. Suppose that [q1, q2, . . . , qd] does not divide any
restriction in R. Then, for all [r1, . . . , rd] ∈ R, there is an index i such that qi - ri. Put
R(i) = {[r1, . . . , rd] | qi - ri}, and let ai = LCM({ri | [r1, . . . , rd] ∈ R(i)}). Since qi is
a prime power or 0, and ai is the least common multiple of non-zero integers, none of
which is divisible by qi, it follows that ai is also not a multiple of qi. This holds for all i,
so the box (a1, . . . , ad) does not satisfy the restriction [q1, . . . , qd]. On the other hand,
(a1, . . . , ad) satisfies all the restrictions in each R(i), and since R(1)∪R(2)∪· · ·∪R(d) = R,
it satisfies all the restrictions in R. The same holds for (Na1, . . . , Nad), so if N is
sufficiently large, the box (Na1, . . . , Nad) is in the Klarner system S. If N is also chosen
to be relatively prime to all the non-zero coordinates of [q1, . . . , qd], then (Na1, . . . , Nad)
does not satisfy this restriction. This proves the contrapositive. �

If [r1, . . . , rd] and [s1, . . . , sd] are two restrictions, let [r1, . . . , rd]∨[s1, . . . , sd] denote
[GCD(r1, s1), . . . , GCD(rd, sd)], where, as a matter of convention, we put GCD(0, a) =
a = GCD(a, 0) for all non-negative integers a.

Theorem 3.8. Suppose that S1 and S2 are d-dimensional Klarner systems, charac-

terized by the finite sets of restrictions R1 and R2 respectively. The Klarner system

S1 + S2 is characterized by the finite set of restrictions

R1 ∨R2 = {[r1, . . . , rd] ∨ [s1, . . . , sd] | [r1, . . . , rd] ∈ R1, [s1, . . . , sd] ∈ R2} .

�����������
It is clear that every box in S1 ∪ S2 satisfies every restriction in R1 ∨ R2, and

therefore so does every box in the Klarner system S1 + S2. By Theorem 3.3, S1 + S2

is characterized by a finite set of restrictions, R, and we may also assume that every
restriction in R is primary. Since S1 ⊆ S1+S2, every box in S1 satisfies every restriction
[q1, . . . , qd] in R. From the lemma, [q1, . . . , qd] divides some restriction [r1, . . . , rd] in R1,
and similarly, it divides some [s1, . . . , sd] in R2. Thus [q1, . . . , qd] divides the restriction
[r1, . . . , rd]∨ [s1, . . . , sd] in R1∨R2. This shows that every restriction in R divides some
restriction in R1 ∨R2. Therefore, if (a1, . . . , ad) is a sufficiently large box that satisfies
all the restrictions in R1 ∨ R2, then it satisfies every restriction in R, so it is in the
Klarner system S1 + S2. This proves the theorem. �

Example 3.9. A problem from the Putnam Competition in 1991 asks
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Does there exist a real number L such that, if m and n are integers greater
than L, then an m × n rectangle may be expressed as a union of 4 × 6 and
5 × 7 rectangles, any two of which intersect at most along their boundaries?

The rectangles may be rotated, so we are concerned with the Klarner system gen-
erated by (4, 6), (6, 4), (5, 7) and (7, 5). The Klarner system generated by (4, 6) is
simply {(4m, 6n)}, which is characterized by the restrictions {[4, 0], [0, 6]}. Likewise,
the Klarner system generated by (5, 7) is characterized by {[5, 0], [0, 7]}. Therefore, by
Theorem 3.8, the Klarner system generated by (4, 6) and (5, 7) is characterized by the
set of restrictions

{[4, 0] ∨ [5, 0], [4, 0]∨ [0, 7], [0, 6]∨ [5, 0], [0, 6]∨ [0, 7]} = {[1, 0], [4, 7], [5, 6], [0, 1]} .

Any restriction with a coordinate equal to 1 is automatically satisfied by every box, so
these can be removed. Thus the Klarner system generated by (4, 6) and (5, 7) is charac-
terized by {[4, 7], [5, 6]}. By interchanging the coordinates, we see that the Klarner sys-
tem generated by (6, 4) and (7, 5) is characterized by {[7, 4], [6, 5]}. Apply Theorem 3.8
to these two Klarner systems; we find that the Klarner system generated by (4, 6), (6, 4),
(5, 7) and (7, 5) is characterized by {[4, 7] ∨ [7, 4], [4, 7]∨ [6, 5], [5, 6]∨ [7, 4], [5, 6]∨ [6, 5]}
= {[1, 1], [2, 1], [1, 2], [1, 1]}. Since these restrictions are all irrelevant, the Klarner sys-
tem is characterized by the empty set of restrictions. This proves that the answer to
the Putnam problem is “yes”.

This illustrates the power of Theorem 3.8; it reduces this type of problem to a simple
calculation, as above. One can show, by an elementary, but somewhat tedious compu-
tation, that the Klarner system generated by (4, 6), (6, 4), (5, 7) and (7, 5) contains
all boxes (m, n) with m, n ≥ 42, but does not contain (41, 41). The original Putnam
problem allows packings that do not have lines of cleavage; however, the corresponding
rectangles are not in the Klarner system. When considering these more complex pack-
ings, Narayan and Schwenk [18] show that all m × n rectangles with m, n ≥ 34 can be
packed by 4 × 6 and 5 × 7 rectangles, but a 33 × 33 square cannot be packed. In fact,
most of their analysis is the consideration of more complex packings.

In this example, every box satisfies the (vacuous) necessary condition to be in the
Klarner system. However, there are infinitely many such boxes that are not in the
Klarner system, for example, (3, n) for all n.

4. Asymptotically optimal box packing theorems

Let T be a protoset of translation-only d-dimensional polyominoes.

Definition 4.1 A prime of T is a b1 × · · · × bd box such that (b1, . . . , bd) is a prime of
the Klarner system {(a1, . . . , ad) ∈ Nd | T packs an a1 × · · · × ad box }.

Thus a prime is a box that can be packed by T , but cannot be split into two
smaller boxes, both of which can be packed by T . The reader should be aware that our
definition differs slightly from Klarner and Göbel’s. A prime box is strongly prime if
it cannot be split into any number of smaller boxes, each of which can be packed by T .
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This corresponds to Klarner and Göbel’s definition of “prime”. The distinction between
these two concepts is discussed briefly in [22].

In the examples we consider below, the protoset will be invariant under rotation
and/or reflection. In such cases, it is reasonable to consider two prime boxes to be “the
same” if one is a rotation of the other, i.e. the dimensions of one are a permutation of
the dimensions of the other.

For a protoset T , we would like to know all boxes that can be packed by T . If we
cannot determine this, we may still ask for all sufficiently large boxes that can be packed
by T . If we can resolve this, then we have what we call an “asymptotically optimal
box-packing theorem”. In the special case that all the prototiles are boxes themselves,
a simple calculation, as in Example 3.9 above, determines sufficient conditions for a box
to be packable. Moreover, these conditions are also necessary, by Theorem 3.6, so it is
easy to give an asymptotically optimal box-packing theorem in this special situation.

Example 4.2. Let T1 =

{

(all orientations allowed)

}

. Which rectangles

can T1 pack? It is not obvious that T1 packs any rectangle, but in [20] a packing of
a 42 × 230 rectangle was given. We have since determined the smallest rectangle that
T1 packs; it has dimensions 63 × 80, which answers part of Question 2 in [20]. T1 does
not pack any rectangle of width less than 42. By using a computer program based on
[20, Prop. 2.1], we have succeeded in determining which rectangles of width 42 can be
packed by T1, which is equivalent to finding the primes of T1 of the form 42 × `. There
are 179 such primes; the shortest is 42 × 230 and the longest is 42 × 3535. T1 does not
pack a 42× ` rectangle for ` = 3305, but does so for all larger `. T1 also packs all 42× `
rectangles where ` ≥ 1852 is even. By contrast, the shortest 42× ` with odd ` that can
be packed by T1 is 42 × 3121.

The extreme complexity of these packings suggests that it is unlikely we can answer
the original question about determining all rectangles that T1 can pack. Nonetheless,
we can determine all sufficiently large rectangles that T1 can pack.

Theorem 4.3. There is a constant C such that if m, n ≥ C, then T1 packs an m × n
rectangle if and only if 14 divides mn.
�����������

The condition 14|mn is clearly necessary, since the area any rectangle packed
by T1 must be a multiple of 14. We have found packings of 42× 230, 42× 3121, 56× 94
and 63 × 80 rectangles. Let S be the Klarner system generated by (42, 230), (230, 42),
(42, 3121), (3121, 42), (56, 94), (94, 56), (63, 80) and (80, 63). A simple calculation based
on Theorem 3.8 shows that S is characterized by the restrictions {[2, 2], [7, 7]}. These
two restrictions are equivalent to the conditions 2|mn and 7|mn, which proves the
theorem. �

We can also show that C = 3306 suffices in the theorem. This is based upon
packings of 42 × n rectangles for all n ≥ 3306, 56 × (94 + 7n) rectangles for all n ≥ 0,
and packings of (63 + 7m) × 80 rectangles for all m ≥ 0. The best possible value of C
is probably much smaller.
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Example 4.4. Let T2 =

{

(all orientations allowed)

}

. Which rectangles

can T2 pack? A packing of a 28 × 132 rectangle is given in [20], and several necessary
conditions are proved for the dimensions of a rectangle that can be packed, but they are
strictly weaker than Theorem 4.5 below. Several other rectangles that can be packed
by T2 are 26 × 216, 27 × 368 and 27 × 376, and we have also determined the smallest
rectangle that can be packed, which has dimensions 45× 48. Using these rectangles (in
both orientations) and applying Theorem 3.8, we find that T2 packs all sufficiently large
rectangles that satisfy the restrictions {[3, 3], [4, 8], [8, 4]}.

To give an asymptotically optimal box-packing theorem, we must show that these
restrictions are indeed satisfied by every rectangle that can be packed by T2. We do
this now.

Theorem 4.5. There is a constant C such that if m, n ≥ C, then T2 packs an m × n
rectangle if and only if

(a) 3 divides mn, and

(b) either 4 divides m or 8 divides n, and

(c) either 8 divides m or 4 divides n.
�����������

We have just seen that conditions (a), (b) and (c) are sufficient, so it remains to
show that every rectangle that can be packed by T2 satisfies these conditions. Condition
(a) is clearly satisfied, because the area of any rectangle packed by T2 must be divisible
by 3.

Now we show that the restriction [4, 8] is satisfied. If T2 packs an m× n rectangle,
then it also packs a km × `n rectangle for all k, ` > 0. If, in addition, 4 - m and 8 - n,
then k and ` can be chosen so that km ≡ 2 mod 4 and `n ≡ 4 mod 8. Therefore it
suffices to show that T2 cannot pack a rectangle with dimensions (4a + 2) × (8b + 4).
Number the squares of the infinite lattice by

(i, j) 7→

{

1 if i and j are both even, and i + j ≡ 0 mod 4,
0 otherwise.

We note that a 2×4 rectangle placed on the infinite lattice (in either orientation) always

covers a total of 1. The disconnected shape always covers a total of 0 or 2.
Since the tile in T2 can be decomposed into one 2 × 4 rectangle, and two of the latter
shape, it always covers an odd total, no matter where it is placed on the grid. On the
other hand, a (4a + 2) × (8b + 4) is composed of an odd number of 2 × 4 rectangles,
so it covers an odd total. If it could be packed by T2, the packing would use and even
number of tiles, since the area is divisible by 8. However this would mean it covers an
even total, a contradiction.

This shows that the restriction [4, 8] is satisfied, and similarly, the restriction [8, 4]
is also satisfied. �

The above approach outlines a general approach for determining all sufficiently
large boxes that can be packed by a protoset, T , of d-dimensional polyominoes. On even
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numbered days, we search for box packings, and each time we find one, we adjoin it to
our Klarner system, and calculate the restrictions characterizing the Klarner system. On
odd numbered days, we try to prove restrictions that all boxes packed by T must satisfy.
If, at some point, the two sets of restrictions agree, then we have an asymptotically
optimal box-packing theorem.

Example 4.6. Let T3 =
{

(all orientations allowed)
}

, which packs 4 × 6 and

5 × 12 rectangles. The Klarner system generated by (4, 6), (6, 4), (5, 12) and (12, 5)
is characterized by the restrictions {[4, 4], [6, 6], [2, 12], [12, 2]}. Any rectangle packed
by T3 satisfies the restrictions [4, 4] and [6, 6]; this is proved in [22]. The restriction
[2, 12] is equivalent to the two restrictions [2, 3] and [2, 4], which divide [6, 6] and [4, 4]
respectively. Thus the restriction [2, 12] is implied by the two restrictions [4, 4] and [6, 6],
although it is not implied by either of them individually. The same holds for [12, 2], so
the Klarner system is characterized by {[4, 4], [6, 6]}. In fact, the Klarner system was
determined completely in [22] in the form of giving the prime rectangles of T3, which
are precisely 4 × 6 and 5 × 12.

Example 4.7. Let T4 =

{

(all orientations allowed)

}

, which has an easy

packing of a 6×6 square. We have also found packings of 18×25 and 27×93 rectangles,
among others. The Klarner system generated by these rectangles (and their rotations)
is characterized by {[3, 18], [18, 3]}.

Theorem 4.8. There is a constant C such that if m, n ≥ C, then T4 packs an m × n
rectangle if and only if

(a) either 3 divides m or 18 divides n, and

(b) either 18 divides m or 3 divides n.
�����������

We must prove that every rectangle packed by T4 satisfies the restriction [3, 18];
the proof for [18, 3] is similar. The restriction [3, 18] is equivalent to the two restrictions
[3, 2] and [3, 9]. The latter restriction is clearly satisfied because any rectangle packed
by T4 must have area which is a multiple of 9. To prove the restriction [3, 2] is satisfied,
number the squares of the grid by (i, j) 7→ (−1)j . Then any placement of the tile covers
a total of ±3; in particular, it covers a multiple of 3. If n is odd, then a placement of
an m × n rectangle, with the side of length m parallel to the x-axis, covers a total of
±m. If the rectangle can be packed by T4, the total covered must be a multiple of 3, so
3|m. This shows that the restriction [3, 2] is satisfied, which completes the proof. �

Example 4.9. Let T5 =

{

(all orientations allowed)

}

. We have found pack-

ings of 22 × 80, 22 × 88, 26 × 64, 28 × 60 and 36 × 40 rectangles, among others. Note
that the 36× 40 rectangle is smaller than the 32× 48 rectangle, which is claimed to be
minimal in [16]. The Klarner system generated by these rectangles (in all orientations)
is characterized by {[2, 0], [0, 2], [4, 8], [8, 4]}.

Theorem 4.10. There is a constant C such that if m, n ≥ C, then T5 packs an m × n
rectangle if and only if
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(a) m and n are both even, and

(b) either 4 divides m or 8 divides n, and

(c) either 8 divides m or 4 divides n.
�����������

If we color the squares of the lattice in a checkerboard pattern, then any
placement of the tile covers 3 squares of one color and 5 of the other color. Therefore
this octomino satisfies Klarner’s criterion [12, Thm. 2] and hence is “even” in his
terminology. This means that any rectangle packed by this shape uses an even number
of tiles, so its area is divisible by 16. This proves that the restrictions [4, 8] and [8, 4]
are satisfied.

To show that each side of a rectangle packed by T5 has even length, we claim that
every tile covers an even number of squares of the second row from the edge. There
are four essentially different possibilities for a tile to cover an odd number of squares of
that row, as shown.

��������������������
No tile can cover an odd number of squares of the second row.

In three of these cases, some squares are blocked so they cannot be filled. In the
last case, there is only one way to fill the indicated square, and that creates a hole that
cannot be filled. This proves the claim, which shows that the restrictions [2, 0] and [0, 2]
are satisfied. �

Example 4.12. Let T6 =

{

,
(all orientations allowed)

}

, which packs

4 × 6, 5 × 12 and 15 × 21 rectangles, among others. (The first two of these rectangles
use only the second prototile.) These rectangles generate all sufficiently large rectangles
that satisfy the restrictions [3, 6] and [6, 3]. That the restriction [3, 6] is satisfied by any
rectangle packed by T6 was stated (without proof) in [21, Thm. 7.9]. After proving this
result, we obtain an asymptotically optimal theorem.

Theorem 4.13. There is a constant C such that if m, n ≥ C, then T6 packs an m × n
rectangle if and only if

(a) either 3 divides m or 6 divides n, and

(b) either 6 divides m or 3 divides n.
�����������

The packings of 4 × 6, 5 × 12 and 15 × 21 rectangles, used in all orientations,
generate all sufficiently large rectangles that satisfy the restrictions [3, 6] and [6, 3]. Now
we must show that any rectangle packed by T6 satisfies these restrictions. We use the
boundary word method, in the form of a representation proof, as described in [21]. Let
x = (1, 2)(3, 4, 5) and y = (1, 2, 3)(4, 5) be permutations in the symmetric group S5.
We easily check that the boundary words of each orientation of each prototile is triv-
ial in S5, that is, x2yx−1y2x−2y−1xy−2, y−2xyx2y2x−1y−1x−2, x2y2xyx−2y−2x−1y−1,
y−2x2y−1xy2x−2yx−1, x4yx−1yx−2y−1x−1y−1, y−4xyxy2x−1yx−1, x−4y−1xy−1x2yxy
and y4x−1y−1x−1y−2xy−1x are all equal to the identity of S5. If an m×n rectangle can
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be packed, then its boundary word must also be trivial, which means that xm commutes
with yn. Now x and y each have order 6, so it is easy to check this condition. The only
values 0 ≤ m, n < 6 for which xm commutes with yn, are m = 0, n arbitrary; n = 0, m
arbitrary, and (m, n) = (3, 3), and in each of these cases, either 3 divides m or 6 divides
n. (In fact, this representation also shows that the restriction [6, 3] is satisfied.) This
proves the Theorem. �

In this case, we have even found all primes of T6. These are 4 × 6, 5× 12, 10× 78,
11× 30, 13× 42, 14× 18, 15× 18, 15× 21, 15× 27, 17× 18 and 21× 21. The best value
of C in this case is C = 16.

We give here several more examples, where in each case, the only restrictions arise
from the size of the tile dividing the area of a rectangle. (These packings, as well as
others mentioned in the paper, are available from the author.)

Example 4.14. Let T7 =
{

(all orientations allowed)
}

. The smallest rect-

angle that can be packed by T7 has dimensions 19 × 28, and was found by Dahlke [5]
and Marlow [15]. We have also found a packing of a 21 × 51 rectangle, see [20, Figure
11], and many others. From the 19× 28 and 21× 51 rectangles, we deduce that T7 can
pack all sufficiently large rectangles whose area is a multiple of 7.

Example 4.15. Let T8 =

{

(all orientations allowed)

}

. Marshall found the

smallest rectangle that can be packed by T8, which has dimensions 30× 32; see [8]. We
have found packings of 18× 60, 18× 65, 20× 54 and 20× 59 rectangles, among others.
These rectangles generate all sufficiently large rectangles whose area is divisible by 10.

Example 4.16. Let T9 =

{

(all orientations allowed)

}

. Marshall [16] found

the smallest rectangle that can be packed by T9, which has dimensions 30×46. We have
found packings of 30 × 83 and 34 × 65 rectangles, as well as others. These rectangles
generate all sufficiently large rectangles whose area is a multiple of 10.

Example 4.17. Let T10 =

{

(all orientations allowed)

}

. A packing of a

30 × 154 rectangle was given in [20]. We have also found packings of of 30 × 165,
36 × 187, 39 × 132, 39 × 143, 41 × 132, 41 × 143 rectangles, as well as the smallest
rectangle that can be packed, which has dimensions 54× 55. These rectangles generate
all sufficiently large rectangles whose area is divisible by 11.

We conclude this section with a 3-dimensional example.

Example 4.18. Let T11 =

{

(all orientations allowed)

}

. Note that this

shape is derived from the 2-dimensional prototile in T3, by extruding it 1 unit in the
third dimension. Thus T11 has packings of 1 × 4 × 6 and 1 × 5 × 12 boxes obtained
by extruding the packings of rectangles in the third dimension. We have also found
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packings of 3× 4× 4 and 3× 5× 30 boxes, as well as several others. We can now prove
an asymptotically optimal theorem for this protoset.

Theorem 4.19. There is a constant C such that if m, n, p ≥ C, then T11 packs an

m × n × p box if and only if

(a) one of m, n, p is a multiple of 3, and

(b) either 2 divides m, or 2 divides n or 6 divides p, and

(c) either 2 divides m, or 6 divides n or 2 divides p, and

(d) either 6 divides m, or 2 divides n or 2 divides p.
�����������

The 1 × 4 × 6, 1 × 5 × 12, 3 × 4 × 4, and 3 × 5 × 30 boxes above, used in
all orientations, generate all sufficiently large boxes that satisfy the restrictions [3, 3, 3],
[2, 2, 6], [2, 6, 2] and [6, 2, 2].

Next we must show that these restrictions are satisfied by every box that can be
packed by T11. The restriction [3, 3, 3] is clearly satisfied, as it simply means that the
volume of the box is divisible by 3. We now prove that the restriction [2, 2, 6] is satisfied
(the proofs for [2, 2, 6] and [2, 6, 2] are similar). Number the cubes of the lattice by

(i, j, k) 7→

{

(−1)i+j+k if k is divisible by 3,
0 otherwise.

The prototile in T11 can be decomposed into two pieces; a 1 × 2 × 2 block, and a
disconnected shape of two unit cubes, three units apart. It is easy to show that any
placement of either of these components on the grid covers a total of 0, and therefore
the same holds for any placement of the prototile. We also note that any placement of
a 1 × 1 × 6 block on the grid covers a total of 0 (this can be deduced by decomposing
it into three of the disconnected shapes).

Now suppose that m and n are both odd, and p is not divisible by 6. An m×n× p
box can be decomposed into an m × n × 6k and an m × n × t box for some k ≥ 0 and
0 < t < 6. The first box always covers a total of 0, and it is easy to show that the second
can be placed so it covers a total of ±1. To achieve the latter, position the m × n × t
box with the edge of length t parallel to the z-axis, and so that it intersects exactly
one level of (i, j, k) cubes with 3|k. Since mn is odd, it covers a total of ±1. Therefore,
the m × n × p box covers a non-zero total, so cannot be packed. This shows that the
restriction [2, 2, 6] is satisfied, which completes the proof. �

5. Some philosophy

In the 2-dimensional examples we have considered, which includes considerably
more than we have given in the previous section, the restrictions we have found are
generally of three different types:

(i) restrictions that come from tile homology, i.e. from checkerboard-type argu-
ments,

(ii) restrictions that arise from tile homotopy, i.e. from boundary word conditions
(see [4]), and
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(iii) restrictions that come from “geometric” considerations.

Although there is some overlap between the types, the proofs of these restrictions
seem to be sharply distinguished. For example, Theorems 4.5 and 4.8 above are proved
by tile homology methods, as are the restrictions [4, 8] and [8, 4] for protoset T5, which
is proved via Klarner’s criterion [12, Thm. 2]. The restriction [6, 6] for protoset T3,
which is proved in [22], also arises from tile homology, as do all restrictions coming
from considering area. The restriction [4, 4] for protoset T3 is proved in [22] using tile
homotopy, as is Theorem 4.13 above.

It seems reasonable to believe that any restrictions that do not arise from tile
homology or tile homotopy will be “geometric” in nature. Unfortunately, we are unable
to give a precise definition to the notion of “geometric” in this context, so we cannot
make a precise conjecture. We give some examples that hopefully convey the meaning
of “geometric” restrictions. The restrictions [2, 0] and [0, 2] for protoset T5 above are
proved by a geometric argument. Another example is the following.

Example 5.1. Let T12 =

{

(all orientations allowed)

}

. By examining

the way that T12 can fill the corner of a quadrant, we find that it can fill the first 35
diagonals, but cannot fill 36 diagonals. Therefore it cannot tessellate a quadrant, and
hence cannot pack any rectangle. The relevant Klarner system is characterized by the
single restriction [0, 0].

Hochberg and Reid [9] show that the “notched cube” in 3 dimensions and higher
cannot pack any box. They prove this by showing there is a unique packing of an
orthant, and the proof considers the geometry of various configurations.

Walkup [24] shows that if the T tetromino packs a rectangle, then both sides are
multiples of 4. His proof is geometric; he shows that certain patterns must propagate
along diagonals in any packing of a quadrant. See also [21] where it is shown that
Walkup’s result cannot be obtained by tile homotopy.

The next example provides one of the more interesting geometric arguments we
have encountered.

Example 5.2. Let T13 =
{

, (all orientations allowed)
}

. It is easy to

show that the tile homotopy group of this protoset is trivial, so it does not give us any
information at all. Nevertheless, this protoset has some restrictions.

Theorem 5.3. If T13 packs an m × n rectangle, then mn is even.

�����������
We will show that the pentominoes (tiles with 5 squares) occur in pairs. If

a pentomino occurs in the packing, the square in the gap must be filled. There are
essentially two different ways to fill that square. In the first, it is filled with a pentomino,
and these two are paired up. In the second case, the square is filled by a hexomino, which
then creates another gap. There are two ways to fill this gap; one with a pentomino,
the other with a hexomino. In the first case, the two pentominoes are paired up;
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in the second case, there is another gap created that must be filled, and the pattern
continues. Thus we see that pentominoes occur in pairs, with a (possibly empty) chain
of hexominoes between them.

����������! ��"���
The pentominoes must occur in pairs.

This shows that the area of a rectangle packed by T13 must be even. �

We have also found all prime rectangles for the protoset T13. There are 177 such,
the smallest of which is 12 × 14. T13 packs all m × n rectangles where mn is even and
m, n ≥ 26. Moreover, the value of 26 cannot be reduced.

To test our theory that any restrictions that do not arise from tile homology or tile
homotopy must come from geometry, we will propose a specific conjecture.

Example 5.5. Let T14 =
{

(all rotations and reflections allowed)
}

, and

let T15 =
{

(all rotations allowed, but no reflections)
}

, where the tile has
n squares.

Theorem 5.6. (a) If n is odd, then the tile homotopy group of T14 is cyclic of order n.

(b) If n is odd, then the tile homotopy group of T15 is cyclic of order n.

�����������
(a) Recall that the tile path group is the group generated by x and y, whose

relators are boundary words of tiles. The two oriented tiles

give the relations y−1xn−1y = yxy−1xn−2 and y−1xn−1y = xn−2yxy−1 in the tile
path group. By equating these, we obtain xn−2(yxy−1) = (yxy−1)xn−2, so that xn−2

commutes with yxy−1x−1. The two oriented tiles

give the relations yn−2xy2−n = x−1y−1x2y and yn−2xy2−n = y−1x2yx−1, so then we
have x2(yxy−1x−1) = (yxy−1x−1)x2. Therefore x2 commutes with yxy−1x−1. Because
xn−2 also commutes with this element, and n is odd, it follows that x commutes with
xyx−1y−1 = (yxy−1x−1)−1. Since T14 is invariant under rotation, [21, Thm. 6.1] shows
that its tile homotopy group is cyclic and its order is the greatest common divisor of
the sizes of its prototiles. This proves (a).
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(b) T15 packs a 2×n rectangle, and therefore an (n−1)×n rectangle. By “untiling”
a single tile as shown, we see that the boundary word of an (n−1)× (n−1) square with
one corner removed is trivial. We can then consider this shape as a “virtual” prototile.
Untile this shape from an n × (n − 1) rectangle to obtain the original prototile in a
reflected orientation.

This means that in the tile path group of T15, the boundary words of the reflected tiles
are all trivial. Therefore it has the same tile path group as T14, so the result now follows
from (a). �

It is also interesting to know what happens if n is even. In the case of T14, if n is
divisible by 4, then its tile homotopy group is Z× (Z/nZ), and if n ≡ 2 mod 4, then its
tile homotopy group is Z× (Z/mZ), where m = n/2. I do not know the general answer
for T15. For n = 4, it is Z × (Z/4Z) (so it is the same as for T14), and when n = 6, it
is Z × (Z/15Z). I do not know about larger even values of n, nor do I know if the tile
homotopy group is abelian in these cases.

Theorem 5.6 says that, for odd n, the tile homotopy groups of T14 and T15 can only
detect area modulo n. Since we do not expect there to be any “geometric” restrictions,
we expect that to be the only necessary condition for large rectangles to be packable.

Conjecture 5.7. Suppose n is odd.

(a) There is a constant C such that T14 packs all a× b rectangles, when a, b ≥ C and n
divides ab.

(b) There is a constant C such that T15 packs all a× b rectangles, when a, b ≥ C and n
divides ab.

When n is odd, T14 packs an (n + 2) × 3n rectangle; see [16, 20]. If n is prime,
this is sufficient to deduce part (a) of the conjecture, with C = n + 1. We have also
found enough packings of rectangles to confirm part (a) when n = 9. Part (b) of the
conjecture is stronger; it implies part (a). We have also confirmed part (b) for n = 5
and n = 7. (For n = 3, the two protosets coincide, so both parts of the conjecture are
true.) For n = 5, we have even found all the prime rectangles; they are 2 × 5, 13 × 55,
15 × 39, 17 × 35 and 19 × 25.

The conjecture, if true, would provide an infinite family of examples that support
our philosophy, which would carry more weight than individual examples. This is our
main reason for interest.

It is an intriguing question if there is a higher dimensional analogue of the Conway-
Lagarias boundary word method. We might hope that a higher dimensional analogue
of our philosophy should hold (although we do not have enough evidence yet). If tiling
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restrictions can be classified into different types as in the 2-dimensional case, it is likely
that this will provide some insight into this important question.
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