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1 Introduction

It is the purpose of this work to revisit an old problem using some new ideas. The old
problem is the interconnection between two distinct classes of combinatorial objects
whose enumerative properties are intimately related: Alternating Sign Matrices and
Plane Partitions [2]. The new ideas come from recent developments in the so-called
Razumov–Stroganov conjecture (formulated in [19]; see also [1, 3]). The Razumov–
Stroganov conjecture identifies the entries of the Perron–Frobenius vector of a certain
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stochastic matrix with cardinalities of subsets of Alternating Sign Matrices, the latter
being reinterpreted as configurations of a certain two-dimensional statistical model
(so-called Fully Packed Loops). Even though this statement is still a conjecture, some
progress has been made in this area in a series of papers by Di Francesco and Zinn-
Justin, starting with [4]. The method they used was, as it turned out, equivalent to
finding appropriate polynomial solutions of the quantum Knizhnik–Zamolodchikov
equation [5]. Integral representations for these and their relation to plane partition
enumeration were discussed in [6]; we shall use these integral formulae in the present
work (noting that these can be considered as purely formal integrals, so they are
simply a way of encoding generating functions).

The paper is organized as follows. In section 2, we define the various combinatorial
objects and corresponding statistical models that will be needed. In section 3, we
formulate the main theorem of the paper: the equality of doubly refined enumerations
of Alternating Sign Matrices and of Totally Symmetric Self-Complementary Plane
Partitions. Section 4 contains the proof, based on the use of integral formulae.
Finally, the appendices contain various technical results that are needed in the proof.
Note that even though we use some concepts and methods from exactly solvable
statistical models, this paper is self-contained and all proofs are purely combinatorial
in nature.

2 The models

In this section we define the various models that appear in this work. There are
two distinct models. On the one hand we have Alternating Sign Matrices (ASMs)
which are in bijection with configurations of the 6-Vertex model (also known as ice
model) with Domain Wall Boundary Conditions, as well as with Fully Packed Loop
configurations (FPL). Here we only discuss ASMs and 6-V model.

On the other hand we have Totally Symmetric Self-Complementary Plane Parti-
tions, which are in bijection with a certain class of Non-Intersecting Lattice Paths.

2.1 Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is a square matrix made of 0s, 1s and -1s such
that if one ignores 0s, 1s and -1s alternate on each row and column starting and
ending with 1s. Here are all 3 × 3 ASMs:

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 1 0
1 −1 1
0 1 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0
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Figure 1: The 6-Vertex Model is defined on a n×n grid. To each link in the network
we associate an arrow which can take two directions, the only constraint being that
at each site there are two arrows pointing in and two arrows pointing out (this leaves
6 possible vertex configurations). We are only interested in the configurations such
that the arrows at the top and at the bottom are pointing out and the arrows at the
left and the right are pointing in. Here we draw all states possibles for n = 3.

Thus, there are exactly 7 ASMs of size n = 3.
These matrices have been studied by Mills, Robbins and Rumsey since the early

1980s [14, 15, 21, 16]. It was then conjectured that An, the number of ASMs of size
n, is given by:

An =

n−1
∏

j=0

(3j + 1)!

(n + j)!
= 1, 2, 7, 42, 429, . . . (2.1)

This was subsequently proved by Zeilberger in 1996 in an 84 page article [23].
A shorter proof was given by Kuperberg [12] in 1998. The latter is based on the
equivalence to the 6-V model, which we shall also use here.

2.2 6-Vertex model

Let us now turn to the 6-Vertex Model. The model consists in a square grid of size
n×n in which each edge is given an orientation (an arrow), such that at each vertex
there are two arrows pointing in and two arrows pointing out. We use here some
very specific boundary conditions (Domain Wall Boundary Conditions, DWBC): all
arrows at the left and the right are pointing in and at the bottom and the top are
pointing out.

On figure 1 we draw all the possible configurations at n = 3. There are once again
7 configurations of size n = 3. Indeed, there is an easy bijection between ASMs and
6-V configurations with DWBC, which is described schematically on figure 2.

2.3 Totally Symmetric Self-Complementary Plane Partitions

We describe here Plane Partitions in two different ways, either pictorially or as arrays
of numbers.
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PSfrag replacements

0 0 0 0 1 -1

Figure 2: Rules to replace each vertex of a 6-V configuration with a 0 or ±1. Con-
versely, one can consistently build a 6-V configuration from an ASM starting from
the fixed arrows on the boundary, continuing arrows through the 0s and reversing
them through the ±1.

Pictorially, a plane partition is a stack of unit cubes pushed into a corner (gravity
pushing them to the corner) and drawn in isometric perspective, as examplified on
figure 3.

An equivalent way of describing these objects is to form the array of heights of
each stack of cubes. In this formulation the effect of “gravity” is that each number
in the array is less or equal than the numbers immediately above and to the left. For
example the plane partition on figure 3 may be translated into the array

75531
7433
6421
211
11

Plane partitions were first introduced by MacMahon in 1897. A problem of inter-
est is the enumeration of plane partitions that have some specific symmetries. The
Totally Symmetric and Self-Complementary Plane Partitions (TSSCPPs) are one of
these symmetry classes. In the pictorial representation, they are Plane Partitions
inside a 2n × 2n× 2n cube which are invariant under the following symmetries: all
permutations of the axes of the cube of size 2n×2n×2n; and taking the complement,
that is putting cubes where they are absent and vice versa, and flipping the resulting
set of cubes to form again a Plane Partition.

Alternatively, they can be described as 2n × 2n arrays of heights. In the n = 3
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Figure 3: We can see a plane partition (PP) as a stack of unit cubes pushed into a
corner.

case, we have, once again, 7 possible configurations:

666333 666433 666433 666543 666543 666553 666553
666333 666333 666433 665332 665432 655331 655431
666333 665332 664322 655331 654321 655331 654321
333000 433100 443200 533110 543210 533110 543210
333000 333000 332000 433100 432100 533110 532110
333000 332000 332000 321000 321000 311000 311000

(2.2)

and more generally we obtain An for any n. In fact Zeilberger’s proof of the ASM con-
jecture amounts to showing (non-bijectively) that ASMs and TSSCPPs are equinu-
merous.

2.4 Non-Intersecting Lattice Paths

Another important class of objects is the Non-Intersecting Lattice Paths (NILPs).
These paths are defined in a lattice and connect a set of initial points to a set of final
points following certain rules (see Ref. [13, 7] for the general framework). The most
important feature of NILPs is that the various paths do not touch one another.
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0 0
00

0 1
0 0

0 00

2
0 0
0 0 0

1
1
0 0 0

0 1 0
2

0 0 0 0 0 0
1 1
1 2

1
0 00

1
0

Figure 4: Reformulation of TSSCPPs as NCLPs, in the example of size n = 3. If
the origin is at the upper right corner, then at each point (0,−i), i ∈ {0, . . . , n− 1},
begins a path which can only go upwards or to the right, and stops when it reaches
the diagonal (j,−j), in such a way that the numbers below/to the right of it are
exactly those less or equal to n− i.

In order to better understand the bijection between NILPs and TSSCPPs, it is
convenient to consider an intermediate class of objects: Non-Crossing Lattice Paths
(NCLPs), which are similar to NILPs except for the fact the paths are allowed to
share a common site, although they are still forbidden to cross each other.

We proceed with the description of the bijection between TSSCPPs and a class
of NCLPs. Each TSSCPP is defined by a subset of numbers of the arrays of (2.2), a
possible choice is the triangles at the bottom right:

0 1 2 1 2 1 2
00 00 00 10 10 11 11
000 000 000 000 000 000 000

It is easy to prove that this part of the array together with the symmetries which
characterize the TSSCPPs are enough to reconstruct the whole TSSCPP.

Then, we draw paths separating the different numbers appearing, as explained
on figure 4.

The bijection with the NILPs is easily achieved by shifting the paths (NCLPs)
according to the following rules:

• The ith path begins at (i,−i);

• The vertical steps are conserved and the horizontal steps (→) are replaced by
diagonal steps (↗).

An example (n = 3) is shown on figure 5.
Our last modification is the addition of one extra step to all paths. To the first

path we add a diagonal step, as for the other paths the choice is made such that
the difference between the final point of two consecutive paths is an odd number, as
examplified on figure 6.
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Figure 5: We transform our NCLPs into NILPs: the starting point is now shifted to
the right, and the horizontals steps become diagonal steps.

Figure 6: To each path we add one extra step in order that two final points consec-
utive differ by an odd number. The first extra step is diagonal.

3 The conjecture

Various conjectures have been made to connect ASMs and TSSCPPs. Building on
the already mentioned ASM conjecture by Mills and Robbins, which says that the
number of ASMs of size n is equal to the number of TSSCPPs of size 2n (and
which is now a theorem), there are conjectures about “refined” enumeration. Before
describing them we need some more definitions.

3.1 ASM generating function

Each ASM, as can be easily proven, has one and only one 1 on the first row and on
the last row. It is natural to classify ASMs according to their position. Therefore,
we count the ASMs of size n with the first 1 in the ith position and the last 1 in the
jth position: Ãn,i,j.

We build the corresponding generating function:

Ãn(x, y) :=
∑

i,j

Ãn,i,jx
i−1yj−1 (3.1)

We define also An,i,j, which counts the ASMs with the first 1 in the ith column
and the last 1 in the (n− j + 1)st column:

An,i,j = Ãn,i,n−j+1 (3.2)

And its generating function:

An(x, y) :=
∑

i,j

An,i,jx
i−1yj−1 (3.3)
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Some trivial symmetries.

By reflecting the ASMs horizontally and vertically one gets:

An,i,j = An,j,i

whereas by reflecting them only horizontally one gets:

An,i,j = An,n−i+1,n−j+1

Obviously these symmetries are also valid for Ãn,i,j.

3.2 NILP generating function

First we recall the definition of the type of NILPs used in this article, of size n:

• The paths are defined on the square grid. Each step connects a site to a
neighbor and can be either vertical (up ↑) or diagonal (up right ↗).

• There are n starting points with coordinates (i,−i), i ∈ {0, 1, .., n− 1}. The
endpoints are at (i, 0) (so that the length of the ith path is i).

• Paths do not touch each other.

It is convenient to add an extra step, as explained in section 2.4, defined uniquely
by the following:

• Two consecutive paths, after the extra step, differ by an odd number.

• The extra step for the first path (at (0, 0)) is diagonal.

Let α be a NILP, we define u0
n(α) as the number of vertical steps in the extra

step and u1
n(α) as the number of vertical step in the last step of each path (see

appendix A.1 for an extended definition).
The generating function is:

U0,1
n (x, y) :=

∑

α

xu0(α)yu1(α) =
∑

i,j

U0,1
n,i,jx

iyj (3.4)

where U0,1
n,i,j is the number of NILPs of size n with i vertical extra steps and j vertical

last steps.
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3.3 The conjecture

We now present the conjecture, formulated by Mills, Robbins and Rumsey in a
slightly different language (see section A.2 for a detailed translation), whose proof is
the main focus of the present work:

Theorem. The number of ASMs of size n with the 1 of the first row in the (i+ 1)st

position and the 1 of last row in the (j + 1)st position is the same as the number
of NILPs (corresponding to TSSCPPs, and with the extra step) with i vertical extra
steps and j vertical steps in the last step. Equivalently,

Ãn(x, y) = U0,1
n (x, y)

For example, at n = 3, using the ASMs given in section 2.1 and the TSSCPPs
given on figure 6, we compute:

Ã3(x, y) =y2 + y + xy2 + x+ xy + x2y + x2

U0,1
n (x, y) =y2 + xy + x2 + xy2 + x2y + y + x

This is the doubly refined enumeration. Of course, by specializing one variable, one
recovers the simple refined enumeration, i.e. that the number of ASMs of size n with
the 1 of the first row in the i + 1 position is the same as the number of NILPs
(corresponding to the TSSCPPs and with the extra step) with i vertical extra steps:

An(x) := Ãn(x, 1) = U0,1
n (x, 1) := U0

n(x)

and by specializing two variables, that the number of ASMs of size n is the same as
the number of TSSCPPs of size 2n:

An = An(1) = U0
n(1)

4 The proof

4.1 ASM counting as the partition function of the 6-Vertex

model

In order to solve the ASM enumeration problem, it is convenient to generalize it
by considering weighted enumeration. This amounts to computing the partition
function of the 6-Vertex model, that is the summation over 6-V configurations with
DWBC such that to each vertex is given a statistical weight, as shown on figure 7,
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a = q−1/2w − q1/2z b = q−1/2z − q1/2w c = (q−1 − q)z1/2w1/2

Figure 7: To each site configuration corresponds a statistical weight. These weights
depend on three parameters: w (resp. z) which characterizes the column (resp. row),
and a global parameter q which will be eventually specialized to a cubic root of unity.

depending on n horizontal spectral parameters (one for each row) {z1, z2, . . . , zn}, n
vertical spectral parameters {zn+1, zn+2, . . . , z2n} and one global parameter q. This
computation was performed by Izergin [8], using recursion relations written by Ko-
repin [11], and the result is a n×n determinant (IK determinant). It is a symmetric
function of the set {z1, . . . zn} and of the set of {zn+1, . . . , z2n}. Much later, it was ob-
served by Stroganov [22] and Okada [17] that when q = e2πi/3, the partition function
is totally symmetric, i.e. in the full set {z1, . . . , z2n}.

More precisely, if we denote by Z̃n the partition function, and

Zn = (−1)n(n−1)/2(q−1 − q)
−n

2n
∏

i=1

z
−1/2
i Z̃n

then Zn was identified at q = e2πi/3 with the Schur function corresponding to the
Young diagram Yn with two rows of length n− 1, two rows of length n− 2, . . . , two
rows of length 2 and two rows of length 1:

Zn(z1, . . . z2n) = sYn
(z1, . . . , z2n) =

det[z
2n−j+dj

i ]

det[z2n−j
i ]

(4.1)

where dj is the sequence {n−1, n−1, n−2, n−2, . . . , 2, 2, 1, 1, 0, 0}. This formula is
proved in appendix B, though its explicit form will not be needed in what follows.

With this method we recover the unweighted enumeration by setting all zi = 1:

3−n(n−1)/2Zn(1, . . . , 1) = An (4.2)

where we recall that An is the number of ASMs of size n (as explained in 2.1).
The case of interest to us is when all zi = 1 except z1 and z2n:

z1 =
1 + qt

q + t

z2n =
1 + qu

q + u
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Using the fact that Zn(z1, . . . , z2n) is a symmetric function of its arguments (see
appendix B), we have

Zn(z1 =
1 + qt

q + t
, 1, . . . , 1, z2n =

1 + qu

q + u
)

= Zn(z1 =
1 + qt

q + t
, 1, . . . , 1, zn =

1 + qu

q + u
, 1, . . . , 1)

The corresponding weights take the form

ax = q−
1
2 − q

1
2

(

1 + qx

q + x

)

=
q

1
2x

q + x
(q−1 − q)

bx = q−
1
2

(

1 + qx

q + x

)

− q
1
2 =

q
1
2

q + x
(q−1 − q)

cx = (q−1 − q)

√

1 + qx

q + x

The partition function Z̃n becomes

Z̃n = (−i
√

3)n2−2n
∑

j,k

aj−1
t bn−j

t cta
k−1
u bn−k

u cuAn,j,k

= (−i
√

3)n2

√

1 + qt

q + t

√

1 + qu

q + u

(

1

q + t

)n−1 (

1

q + u

)n−1

qn−1
∑

j,k

tj−1uk−1An,j,k

where An,j,k is the number of ASMs of size n such that the only 1 in the first row is
in column j and the only 1 in the last row is in column n− k + 1.

The normalization factor is equal to: (−1)n(n−1)/2(−i
√

3)n
√

1+qt
q+t

√

1+qu
q+u

, so we

can finally compute

(q2(q + t)(q + u))n−1

3n(n−1)/2
Zn =

∑

j,k

tj−1uk−1An,j,k = An(t, u) (4.3)

Note that if one uses instead z2n = q+u
1+qu

, one gets the same formula, but with
one index reversed

(q2(q + t)(1 + qu))n−1

3n(n−1)/2
Zn = Ãn(t, u) (4.4)
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4.2 Integral formula for refined ASM counting

The traditional expression for the partition function of the 6-V model is the already
mentioned IK formula. We shall not use it here. We shall only need the following
facts (true at q = e2πi/3):

• Z1 = 1.

• Zn(z1, . . . , z2n) is a polynomial of degree n− 1 in each variable.

• The Zn satisfy the recursion relation for all i, j = 1, . . . , 2n

Zn(z1, . . . , zj = q2zi, . . . , z2n) =
∏

k 6=i,j

(qzi − zk)Zn−1(z1, . . . , ẑi, . . . , ẑj, . . . , z2n)

(4.5)

We recall how to prove them in appendix B for the sake of completeness.
Furthermore, we need the following lemma

Lemma 1. A polynomial P of degree n−1 in each variable z1, . . . , z2n which satisfies
the “wheel condition”

P (. . . , zi = z, . . . , zj = q2z, . . . , zk = q4z, . . .) = 0 for all i < j < k

is entirely determined by its cn := (2n)!/n!/(n + 1)! values at the following special-
izations: (qε1, . . . , qε2n) for all possible choices of {εi = ±1} such that

∑2n
i=1 εi = 0

and
∑j

i=1 εi ≤ 0 for all j ≤ 2n.

This lemma is proved in appendix C.
The strategy is now to introduce a certain integral representation of the partition

function of the 6-V model with DWBC, say Z ′
n

Z ′
n := (−1)(

n

2)
2n
∏

i<j

(qzi − q−1zj)

∮

. . .

∮ n
∏

l

dwl

2πi

(qz2l−1 − q−1wl)
∏

l<m(wm − wl)(qwl − q−1wm)
∏

i≤2l−1(wl − zi)
∏

i≥2l−1(qwl − q−1zi)
(4.6)

where the integration contours surround counterclockwise the zi (but not the q−2zi),
and to show that Zn and Z ′

n are both polynomials of degree n − 1 in each variable
which satisfy the “wheel condition” and coincide at the cn specializations of lemma 1.
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Let us first check that Zn satisfies the wheel condition. This is a direct conse-
quence of Eq. (4.5) in which one sets zk = q4zi. It is equally straightforward to
calculate Zn at the cn points of the lemma. The computation goes inductively using
Eq. (4.5) and it is left to the reader to check that

Zn(qε1, . . . , qε2n) = 3(n

2)

We now show that Z ′
n also satisfies the hypotheses of the lemma. We proceed in

steps.

Z ′
n is a polynomial of degree n− 1 in each variable.

By applying the residue formula to Eq. (4.6) we obtain

Z ′
n = (−1)(

n

2)
∑

K=(k1,...,kn)
kl 6=km if l 6=m

kl≤2l−1

(−1)s(K)
∏

l<m

(qzkl
− q−1zkm

)

×

∏

i<j
i/∈K or (i=kl and j<2l−1)

(qzi − q−1zj)
∏

2i−16=ki

(qz2i−1 − q−1zki
)

∏

i≤2j−1
i/∈K or i>kj

(zkj
− zi)

(4.7)

where (−1)s(K) is the sign of the permutation that orders the ki. It is enough to
prove that limzkj

→zi
Z ′

n exists; the verification is a tedious but easy calculation (see

[6] for a similar check).
We can now consider the leading term in each variable zi in the summation of

Eq. (4.7), depending on whether i ∈ K or not; in both cases we find a degree n− 1.

Z ′
n satisfies the wheel condition.

Using the formula (4.7), we can verify that Z ′
n is zero at zk = q2zj = q4zi for all

k > j > i: In fact, the term
∏

s<r and s/∈K(qzs− q−1zr) implies that i and j ∈ K. As a
consequence of the term

∏

l<m(qzkl
− q−1zkm

), we must have i = km and j = kl with
l < m, but, in this case, j ≤ 2l − 1 < 2m − 1 proving that Z ′

n satisfies the “wheel
condition”.
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Recursion relation.

We show that Z ′
n, at q = e2πi/3, satisfies a weaker form of recursion relation (4.5).

Let j be an integer between 1 and 2n − 1 and evaluate Z ′
n at zj+1 = q2zj. We will

perform the calculation for j even.
If we look at formula (4.7) it is straightforward that all terms are zero except for

j = km and j + 1 ≥ 2m− 1, i.e. j = km = 2m− 2. Using the fact that zj+1 = q2zj,
we can derive

Z ′
n|zj+1=q2zj

=
∏

i<j

(qzi − q−1zj)(qzi − qzj)
∏

k>j+1

(qzj − q−1zk)(zj − q−1zk)(−1)(
n

2)

×
∏

i<k 6=j,j+1

(qzi − q−1zk)

∮

. . .

∮

∏

l

dwl

2πi

∏

l 6=m

(qz2l−1 − q−1wl)

×
∏

l<p6=m(wp − wl)(qwl − q−1wp)(zj − q−1zj)
∏

l 6=m

∏

i≤2l−1
i6=j,j+1

(wl − zi)
∏

i≥2l−1
i6=j,j+1

(qwl − q−1zi)

×
∏

n>m

(wn − zj)(qzj − q−1wn)

(wn − zj)(wn − q2zj)

∏

l<m

(zj − wl)(qwl − q−1zj)

(qwl − q−1zj)(qwl − qzj)

× 1

(zj − q2zj)
∏

i<j(zj − zi)
∏

k>j+1(qzj − q−1zk)

After multiple cancellations we get:

Z ′
n(. . . , zj, zj+1 = q2zj, . . .) =

∏

i6=j,j+1

(qzj − zi)Z
′
n−1(z1, . . . , zj−1, zj+2, . . . , z2n) (4.8)

The formula actually holds for both parities of j; the proof for j odd is similar.

Calculating Z ′
n at the cn points.

Using the formula above, we can easily calculate Z ′
n at the cn points of the lemma.

One can always choose two consecutive variables which are (q−1, q) and apply the
recursion relation above:

Z ′
n(. . . , zj = q−1, zj+1 = q2zj = q, . . .) =

∏

i6=j,j+1

(1 − zi)Z
′
n−1

= (1 − q)n−1(1 − q−1)n−1Z ′
n−1

The second equality uses the fact that there is the same number of εi = 1 and
εi = −1. Since we have Z ′

1 = 1, we obtain:

Z ′
n = 3(n

2)
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We finally conclude, by applying lemma 1, that

Zn = Z ′
n

Starting from our new integral formula for the partition function of the 6-Vertex
model (4.6), we are now in a position to calculate

(q2(q + x)(1 + qy))n−1

(q − q−1)n(n−1)
Zn(

1 + qx

q + x
, 1, . . . , 1,

q + y

1 + qy
)

After some tedious computations and using new variables

ui =
wi − 1

qwi − q−1

we obtain:

(y + x− yx)

∮

. . .

∮ n
∏

l

dul

2πi

1

u2l−2
l

∏

l<m(um − ul)(1 + um + umul)

(1 + ul − x)(1 + ul(1 − y))

n
∏

j=2

(1 + uj)

where the integral contours surround counterclockwise ui = 0 and ui = x − 1 (and
not 1/(y − 1)).

To simplify our calculation we integrate on u1:

Ãn(x, y) =

∮

. . .

∮ n
∏

l=2

dul

2πi

(1 + ul)(1 + xul)

u2l−2
l (1 + ul(1 − y))

n
∏

l<m

(um − ul)(1 + um + umul) (4.9)

where the contours surround the remaining poles at ui = 0 only.

4.3 Integral formula for refined NILP counting

We will derive a contour integral formula for the generating polynomial N ′
10(t0, t1, . . .,

tn−1) of our NILPs with a weight ti per vertical step in the ith slice (between y = 1−i
and y = −i). We use the Lindström–Gessel–Viennot formula [13, 7] (see also the
third chapter of [2]):

N ′
10(t0, t1, . . . , tn−1) =

∑

1=r1<...<rn−1
ri≤2i+1

ri+1−ri odd

det[Pi,rj
] (4.10)
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where Pi,r is the weighted sum over all possible lattice paths from (i,−i) to (r+1, 1).
Such paths counts with r − i + 1 diagonal steps and 2i− r vertical ones, hence:

Pi,r =
∑

0≤i1<...<i2i−r≤i

2i−r
∏

l=1

til =

i
∏

k=0

(1 + tku)|u2i−r (4.11)

where the subscript u2i−r stands for the coefficient of the corresponding power of u
in the polynomial.

We can reintroduce the path beginning at (0, 0) and rewrite the equation as a
contour integral:

N ′
10(t0, t1, . . . , tn−1) =

∮

. . .

∮ n
∏

i=1

dui

2πiu2i−1
i

i−1
∏

k=0

(1 + tkui)
∑

0=r0<r1<...<rn−1
ri+1−ri odd

det[u
rj−1

i ]

where the paths of integrations are small counterclockwise circles around zero.
The last sum can be evaluated as a standard result for the sum over all Schur

functions corresponding to even partitions (see exercise 4.3.9 in [2]):

∑

0=r0<r1<...<rn−1

ri+1−ri odd

det[u
rj−1

i ] =

∏

j>i(uj − ui)
∏

j≥i(1 − ujui)
(4.12)

where we have relaxed the condition r0 = 0 into r0 ≥ 0 and even, since this does not
affect the integral.

The integral can thus be transformed as follows:

N ′
10(t0, t1, . . . , tn−1) =

∮

. . .

∮ n
∏

i=1

dui

2πiu2i−1
i

1

1 − u2
i

i−1
∏

k=0

(1 + tkui)
∏

j>i

uj − ui

1 − ujui
(4.13)

We are mainly interested in the case where t0 = t, t1 = s and all the others ti
equal 1. In this case, we rewrite the equation:

N ′
10(t, s, 1, . . . , 1) := U 0,1

n (t, s)

=

∮

. . .

∮ n
∏

i=1

dui

2πiu2i−1
i

1

1 − u2
i

(1 + tui)(1 + sui)1̂(1 + ui)
i−2
1̂

∏

j>i

uj − ui

1 − ujui
(4.14)

where 1̂ means that we exclude the term corresponding to u1.
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4.4 Equality of integral formulae

At this point, we have two integral expressions, An(x, y) (in equation (4.9)) and
U0,1

n (x, y) (in equation (4.14)) and we want to prove that they are the same. The
first step is to integrate over u1 the expression (4.14):

U0,1
n (x, y) =

∮

. . .

∮ n
∏

i=2

dui

2πiu2i−2
i

(1+xui)(1+yui)(1+ui)
i−2

∏

i<j(uj − ui)
∏

i≤j(1 − ujui)
(4.15)

At this stage we use the following identity:

∮

. . .

∮

∏

i

dui

2πi

ϕ(u)

u2i
i

∏

i<j

(uj − ui)(1 + τuj + uiuj)

=

∮

. . .

∮

∏

i

dui

2πi
ϕ(u)

(1 + τui)
i−1

u2i
i

∏

i<j(uj − ui)
∏

i≤j(1 − uiuj)
(4.16)

for any ϕ(u) completely symmetric in (u1, u2, . . . , un) and without poles in a neigh-
borhood of zero. This was conjectured in [6] and proved in [24]. We present in
appendix D an independent proof of a stronger formula that implies Eq. (4.16).

If we shift the indexes (i − 1) → i, consider τ = 1 and set ϕ(u) =
∏n−1

i=1 (1 +
xui)(1 + yui) we can apply the equality:

U0,1
n (x, y) =

∮

. . .

∮ n
∏

i=2

dui

2πiu2i−2
i

(1+xui)(1+yui)
∏

i<j

(uj −ui)(1+uj +ujui) (4.17)

Notice that the two integrals are the same, except for the pieces (1+ul)
(1+ul(1−y))

versus
1 + yul. Unsurprisingly, we find that is possible to write both integrals as special
cases of the same integral:

In(x, y) =

∮

. . .

∮ n−1
∏

l=1

dul

2πi

(1 + ul + alu
2
l )(1 + xul)

u2l
l (1 + ul(1 − y))

n−1
∏

l<m

(um − ul)(1 + um + umul)

(4.18)
which takes the value of Ãn(x, y) if al = 0 for all l and takes the value of U 0,1(x, y)
if al = y(1 − y) for all l.

More surprising is the fact that In does not depend on the ai. We shall show by
induction on i that In is independent of ai, noting that it is a polynomial in ai of
degree at most 1.
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Let us first differentiate In with respect to a1:

d

da1
In(x, y) =

∮

du1

2πi

(1 + xu1)

(1 + u1(1 − y))

×
∮

. . .

∮ n−1
∏

l=2

dul

2πi

(1 + ul + alu
2
l )(1 + xul)

u2l
l (1 + ul(1 − y))

n−1
∏

m<l

(ul − um)(1 + ul + umul)

but, this integral has no poles at u1 so it vanishes.
Let us now assume by induction hypothesis that In does not depend on the first

(i− 1) aj, and prove that the expression (4.18) does not depend on ai either. As the
integral does not depend on aj for all j < i we can set all aj = 0 (for j < i).

If we differentiate now with respect to ai and look at what happens in the inte-
gration up to ui. We find an expression of the type:

Ji =

∮

dui

2πiu2i−2
i

∮

· · ·
∮ i−1

∏

j=1

duj

2πi

1 + uj

u2j
j

ΘiAi (4.19)

where Ai is some anti-symmetric function in the uj for all j ≤ i without any poles
in the integration domain, and Θi =

∏

j<i(1 + ui + ujui).
To prove that this integral is always zero we shall proceed once again by induction.

The first one, J1, is zero because it has no poles:

J1 =

∮

du1

2πi
A1(x1) = 0 (4.20)

Let Ji−1 = 0. All the poles are at 0, the Ai is anti-symmetric between ui and
ui−1, so we can take advantage of the fact that the ui appears with the same degree
as ui−1 in the denominator to erase all the symmetric terms in the expression (1 +
ui−1)(1 + ui + ui−1u1) and get uiu

2
i−1:

Ji =

∮

dui

2πiu2i−3
i

∮

dui−1

2πiu2i−4
i−1

∮

. . .

∮ i−2
∏

j=1

duj

2πi

1 + uj

u2j
j

Θ̂iAi (4.21)

where the hat in Θ̂i means that the term (1 + ui + ui−1ui) is skipped1. The integral
does not have yet the desired form, i.e. Ji−1, it is missing the term (1 + ui + ui−1ui),

1Note that Θ̂i is symmetric between ui−1 and ui.
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so we add and subtract it:

Ji =

∮

. . .

∮

dui

2πiu2i−3
i

dui−1

2πiu2i−4
i−1

i−2
∏

j=1

duj

2πi

1 + uj

u2j
j

(1 + ui + uiui−1 − ui − uiui−1)Θ̂iAi

=

∮

. . .

∮

dui

2πiu2i−3
i

dui−1

2πiu2i−4
i−1

i−2
∏

j=1

duj

2πi

1 + uj

u2j
j

ΘiAi

−
∮

. . .

∮

dui

2πiu2i−4
i

dui−1

2πiu2i−4
i−1

i−2
∏

j=1

duj

2πi

1 + uj

u2j
j

(1 + ui−1)Θ̂iAi

The first term is already in the form of Ji−1. The second term is almost symmetric
between ui and ui−1, using the same method as in (4.21) we can transform −(1+ui−1)
to 1+ ui + uiui−1; in this way, we recover the symmetry needed so that we can write
Ji as an integral in ui of some function multiplied by Ji−1, which is zero. As a
consequence Ji is also zero for all i, i.e. In(x, y) does not depend on any ai. We
conclude that

Ãn(x, y) = U0,1
n (x, y)

A Formulating the conjecture directly in terms of

TSSCPPs

We have used the NILP formulation throughout this paper (in particular, to prove the
main theorem), whereas Mills, Rumsey and Robbins use the language of TSSCPPs.
In A.1 we first describe the theorem in a more general form, and then prove that we
can reduce it to the one presented in 3.3. We then reformulate in A.2 our theorem
in the language of [16, 20].

A.1 Extending the theorem

Let An(x, y) and Ãn(x, y) be the same as defined in 3.1. We use the same NILPs
with the extra-step as in 3.2.

We now introduce a function uk
n(α), where α is a NILP, which counts the number

of vertical steps in the extra-step if k = 0; otherwise it counts the number of vertical
steps in the max{1, t − k + 1}-th step of the path starting at (t,−t), as shown on
figure 8.
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Figure 8: Let α be the NILP represented here. In order to calculate u0
6(α) and u3

6(α)
we highlight the extra-steps and the max{1, t− 3 + 1}-th step of the path starting
at (t,−t). Here we have u0

6(α) = 2 and u3
6(α) = 4.

We can next define the function U i
n(x):

U i
n(x) :=

∑

k

U i
n,kx

k :=
∑

α

xui
n(α) (A.1)

and more complex functions U i,j
n (x, y):

U i,j
n (x, y) :=

∑

k

U i,j
n,k,lx

kyl :=
∑

α

xui
n(α)yuj

n(α) (A.2)

We could generalize these even more, introducing more indices, but this is general
enough for our purposes. With these new functions we can rewrite our theorem:

Theorem.

Ãn(x, y) = U0,j
n (x, y) (A.3)

An(x, y) = U1,i
n (x, y) (A.4)

where j = 1, 2 . . . and i = 2, 3 . . .. If we choose U 0,1
n we have the theorem as stated

before.

On order to reduce this to our previous result, it is enough to prove that U 0,i
n

does not depend in i and that U 0,i
n,k,j = U1,i

n,n−k−1,j (for i ≥ 2).

i independence of U 0,i
n .

For the first equality we introduce a function g as explained on figure 9. This function
interchanges the number of vertical steps in two consecutive rows leaving invariant
all the other rows. This function has the important property g ◦ g = Id. So, it is
straightforward from this that U 0,i

n = U0,i+1
n , with i greater than 0.
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Figure 9: We can group the double steps in islands, such that all the starting points
(of the double steps) are consecutive. These doubles steps are, necessarily, ordered
in r double vertical steps, s vertical-diagonal steps, t diagonal-vertical steps and u
double diagonal steps. Our function g interchanges s with t at each island, so that
we interchange the number of vertical steps between the two rows.

Figure 10: In order to satisfy the extra-step rules we can only build two type of
islands, one made of r double vertical steps and s double diagonal steps, and the
other type made of t vertical-diagonal steps and u diagonal-vertical steps. Our
function h interchange simply r with s. It is important to note that the first path is
always invariant under h (it is always of the type vertical-diagonal or the inverse).

U0,i
n,k,j = U1,i

n,n−k−1,j for i > 1.

The proof follows the same structure as the former. We construct again a function
h such that h ◦h = Id, which interchanges the number of vertical steps at the extra-
step with the number of diagonal steps at the last step (before the extra-step). This
function is obviously a bijection and it leaves invariant all the rows except the last
one and the extra one because it is applied at the top of the diagrams as can be seen
on figure 10. An important remark is that the first path is always invariant under
h because it is of the type vertical-diagonal or diagonal-vertical. This proves our
equality.

In conclusion, all these variations ((A.3) and (A.4)) are truly the same, and we
can concentrate on only one version.

A.2 The conjecture in terms of TSSCPPs

Mills, Robbins and Rumsey conjectured this theorem by means of TSSCPPs, not
NILPs, but behind the different formulations lies the same result. To show that, we
describe some of the content of [16] and explain the equivalence.

Recall that TSSCPPs can be represented as 2n× 2n matrices a, as in Eq. (2.2).
In [16] is introduced a quantity which we shall denote by uk

n(a), and which depends
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Figure 11: We can see on this figure what the function u2
3 counts. The signs minus

represents the part: at,t−k − at,t−k+1, so they count the vertical steps, and the little
circles represents #{at,n+1 | at,n+1 < 2n − t}. If we stretch our diagrams to obtain
the NILPs we recover our definition of uk

n.

on the upper-left n× n submatrix of a:

uk
n(a) =

n−k+1
∑

t=1

(at,t+k−1 − at,t+k) +
n

∑

t=n−k+2

#{at,n | at,n > 2n− t + 1} (A.5)

where # means cardinality, and where conventionally, at,n+1 := 2n − t + 1 in this
equation. Also defined is the function:

U i,...k
n (x, . . . , z) =

∑

a

xui
n(a) . . . zuk

n(a) for all i, . . . , k ∈ {1, . . . , n+ 1} (A.6)

We claim that these are our functions u and U defined above. To make the con-
nection, reexpress this function in terms of the lower-right n × n submatrix of a:

uk
n(a) =

2n
∑

t=n+k

(at,t−k − at,t−k+1) +
n+k−1
∑

t=n+1

#{at,n+1 | at,n+1 < 2n− t} (A.7)

where we replace at,n with 2n−t. What this function counts is described on figure 11.
Finally, if we shift the diagrams to obtain NILPs we recover our functions U k

n as
expected.

As a final remark, in the article [20] three functions are defined: f1, f2 and f3

and the conjecture is stated with any two of them. In fact, f1 is connected with the
u0

n, f2 with the u1
n and f3 with un

n, as can be seen using the same procedure.

B Properties of the 6-Vertex model partition

function

Consider, as in section 4.1, the 6-Vertex model with Domain Wall Boundary Condi-
tions. Let Z̃n be its partition function (with Boltzmann weights given by Fig. 7), and

Zn to be Z̃n divided by the normalization factor (−1)n(n−1)/2(q−1 − q)
n ∏2n

i=1 z
1/2
i .
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Figure 12: Yang–Baxter equation. Summation over arrows of the internal edges is
implied, while the external arrows are fixed and the equality holds for any choice of
them.

The model thus defined satisfies the following essential property (Yang–Baxter
equation) shown on Fig. 12. The vertex with diagonal edges is assigned weights (the
so-called R matrix) which are those of Fig. 7 in which we have rotated the picture
45 degrees clockwise, and with parameters z1, q

1/2z2. parameter. In fact here we
do not need the explicit expression of the R matrix, only that it is invariant by
reversal of all arrows and that it satisfies the ice rule i.e. there are as many outgoing
arrows as incoming arrows. Since the Yang–Baxter equation is invariant by change of
normalization of R, we can divide all weights by b in such a way that R↑↑

↑↑ = R↓↓
↓↓ = 1,

with obvious notations.

B.1 Korepin recursion relation

In this paragraph, q is kept arbitrary. We shall now list the following four proper-
ties which determine entirely Zn and only sketch their proof (since they have been
reproved many times since their original appearance [11], see for example [12, 10])

• Z1 = 1.

This is by definition.

• Zn is a symmetric function of the variables {z1, . . . , zn} and {zn+1, . . . , z2n}.
It is sufficient to prove that exchange of zi and zi+1 (for 1 ≤ i < n) leaves
the partition function unchanged. This can be obtained by repeated use of the
Yang–Baxter property. Multiplying the partition function by R(zi+1/zi) and
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noting that it is unchanged, we find

Z̃n(. . . , zi, zi+1, . . .) =PSfrag replacements

zi zi+1

=PSfrag replacements

zi zi+1

=PSfrag replacements

zi zi+1

= · · · =PSfrag replacements

zi zi+1

=PSfrag replacements

zizi+1

= Z̃n(. . . , zi+1, zi, . . .)

and similarly for the {zn+1, . . . , z2n}.

• Zn(z1, . . . , z2n) is a polynomial of degree (at most) n− 1 in each variable.

Let us choose one configuration. Then the only weights which depend on zi are
the n weights on row i. Since the outgoing arrows are in opposite directions,
the number of vertices of type c on this row is odd, and in particular is at least
1. Power counting then shows that the contribution to the partition function
of any configuration is of the form z

1/2
i times a polynomial of zi of degree at

most n − 1. Summing over all configurations and removing z
1/2
i by definition

of Zn, we obtain the desired property.

• The Zn obey the following recursion relation:

Zn(z1, . . . , zn; zn+1 = q−1z1, . . . , z2n)

= q−n+1

n
∏

j=2

(z1 − q2zj)

2n
∏

j=n+2

(z1 − q−1zj)Zn−1(z2, . . . , zn; zn+2, . . . , z2n) (B.1)

Since zn+1 = q−1z1 implies a(zn+1, z1) = 0, by inspection all configurations
with non-zero weights are of the form shown on Fig. 13. This produces the
following identity for unnormalized partition functions

Z̃n(z1, . . . , zn; zn+1 = q−1z1, . . . , z2n) = (q−1 − q)z1q
−1/2

×
n

∏

j=2

(q−3/2z1 − q1/2zj)

2n
∏

j=n+2

(q−1/2zj − q1/2z1)Z̃n−1(z2, . . . , zn; zn+2, . . . , z2n)
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Figure 13: Graphical proof of the recursion relation.

which in turns leads to the recursion relation above for the Zn.

Note that by the symmetry property, Eq. (B.1) fixes Zn at n distinct values of
zn+1 = q−1zi, i = 1, . . . , n. Since Zn is of degree n−1 in zn+1, it is entirely determined
by it.

B.2 Cubic root of unity case

Let us set q = e2πi/3. First, once can simplify the recursion relation (B.1) to

Zn(z1, . . . , zn+1 = q2z1, . . . , z2n) =
∏

j 6=1,n+1

(q−2z1 − zj)Zn−1(z2, . . . , zn, zn+2, . . . , z2n)

Secondly, one wishes to show the enhanced symmetry property of Zn in the full
set of variables {z1, . . . , z2n}. For this, it is simplest to prove Eq. (4.1), which displays
explicitly this symmetry. Let us show that the Schur function sYn

(z1, . . . , z2n) satisfies
all the properties of the previous section.

sY0 = 1 by definition. sYn
is symmetric in all variables (which is what we want

to prove for Zn), and therefore in particular symmetric in the {z1, . . . , zn} and
{zn+1, . . . , z2n}. It is a polynomial of degree n − 1 in each variable because the
width of the Young diagram Yn is n− 1. Finally, to obtain the recursion relation, we
note that as soon as (zi, zj, zk) = (z, q2z, q4z) for distinct i, j, k, the three correspond-
ing rows in the numerator of Eq. (4.1) are linearly dependent so that the numerator
vanishes while the denominator does not. Thus, at zj = q2zi, i 6= j,

sYn
(z1, . . . , zj = q2zi, . . . , z2n) =

∏

k 6=i,j

(q−2zi − zk)Z
′′
n−1(z2, . . . , ẑi, . . . , ẑj, . . . , z2n)
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where Z ′′
n−1 does not depend on zi because the 2n− 2 prefactors exhaust the degree

in zi.
Now set zi = 0: the Schur function has 2n − 2 remaining arguments, so the full

column of length 2n− 2 can be factored out and we are left with the Young diagram
Yn−1:

sYn
(z1, . . . , zi = 0, . . . , zj = 0, . . . , z2n) =

∏

k 6=i,j

zk sYn−1(z2, . . . , ẑi, . . . , ẑj, . . . , z2n)

By comparison, we conclude that Z ′′
n−1 = sYn−1 , so that sYn

satisfies the desired
recursion relation.

We conclude that sYn
satisfies all the properties of the previous section, which

determine uniquely Zn. Thus, Eq. (4.1) holds.

C The space of polynomials satisfying the wheel

condition

In order to prove that Z ′
n (defined in (4.6)) is the partition function of the 6-V model,

we need to prove lemma 1. That is, a polynomial P of degree (at most) n − 1 in
each variable z1, . . . , z2n satisfying the “wheel condition” is entirely determined by
its values at the following specializations: (qε1, . . . , qε2n) for all possible choices of
{εi = ±1} such that

∑2n
i=1 εi = 0 and

∑j
i=1 εi ≤ 0 for all j ≤ 2n (these are just

increments of Dyck paths).
Or equivalently, if a polynomial satisfies these conditions and is zero at all the

specializations, then it is identically zero. For example, at n = 1 the polynomial is of
degree 0 i.e. a constant, and as it vanishes at (z1, z2) = (q−1, q) it is identically zero.

We now proceed by induction. We suppose that the lemma is true for n < p. Let
φp be a polynomial of degree (p−1) at each variable which is zero at all specializations.
The polynomial satisfies the “wheel condition” at zi+1 = q2zi, so we can write

φp(z1, . . . , z2p)|zi+1=q2zi
=

∏

j 6=i,i+1

(qzi − zj)ψp−1(z1, . . . , zi−1, zi+2, . . . , z2p) (C.1)

where ψp−1 is a function of degree p − 2 in each zj (except zi and zi+1) which still
follows the “wheel condition”. Furthermore, let πp be a specialization which has
(zi, zi+1) = (q−1, q) and π′

p−1 the same specialization but without zi and zi+1. We
apply (C.1):

φp(πp) = (1 − q)n−1(1 − q−1)n−1ψp−1(π
′
p−1) = 0 (C.2)
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The mapping πp 7→ πp−1 is a bijection from Dyck paths with (q−1, q) at locations
(i, i+ 1) to all Dyck paths. Thus our induction hypothesis applies, and ψp−1 = 0.

Therefore, one can write:

φp =

2n−1
∏

i=1

(zi+1 − q2zi)φ
(1)
p (C.3)

where φ
(1)
p is a polynomial of degree δ1 = δ2p = p− 2 at z1 and z2p and δi = p− 3 at

all the other variables which follows a weak version of the “wheel condition”:

φ
(1)

p|zk=q2zj=q4zi
= 0 for all k ≥ j + 2 ≥ i+ 4

This implies:

φ
(1)

p|zi+2=q2zi
=

∏

j /∈[i−1,i+3]

(qz1 − zj)ψ
(1,i)
p (C.4)

By degree counting in zi we find that they are identically zero.
Now, we can write

φ(1)
p =

2n−2
∏

i=1

(zi+2 − q2zi)φ
(2)
p (C.5)

where φ
(2)
p has degree δ1 = δ2p = p−3, δ2 = δ2p−1 = p−4 and all the others δi = p−5.

Clearly, this procedure can be repeated; at step r, φ
(r)
p has degree:

δ1 = p− r − 1

δ2 = p− r − 2

...

δr = p− 2r

...

δi = p− 2r − 1

...

δ2p = p− r − 1

We write
φ

(r)

p|zi+r+1=q2zi
=

∏

j /∈[i−r,i+2r+1]

(qzi − zj)ψ
(r,i)
p
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Counting the degree in zi we conclude that ψ
(r,i)
p = 0. So we can construct φ

(r+1)
p .

When r ≥ n
2

we obtain a polynomial of negative degree which implies that the
polynomial is identically zero.

Remark: What this lemma shows in other words is that the vector space of
polynomials of degree at most n− 1 in each variable satisfying the wheel condition
is of dimension at most cn. In fact it is known to be of dimension exactly cn; the
standard proof involves the fact that it is an irreducible representation of the affine
Hecke algebra, see e.g. [18, 9].

D An antisymmetrization formula

The goal of this section is to prove identity (4.16), which allows to turn an equation
of the type (4.15) into one of the type (4.9). Identity (4.16) was conjectured by Di
Francesco and Zinn-Justin in [6] and proved by Zeilberger [24]. Equivalently, it was
proved that the integrand of the l.h.s. without the factor ϕ(u), once antisymmetrized
and truncated to its negative degree part (the positive powers of the ui cannot
contribute to the integral), reduces to the integrand of the r.h.s. without the factor
ϕ(u). Here we prove in an independent way a much stronger statement. Indeed,
here we perform the exact antisymmetrization of a spectral parameter dependent
generalization of the integrand.2

D.1 The general case

Let hq(x, y) = (qx − q−1y)(qxy − q−1) (and, obviously, h1(x, y) = (x − y)(xy − 1)).
Let us also define

f(w, z) =
1

z(1 − q2w2)(q−2 − 1)

(

1

h1(w, z)
− 1

hq(w, z)

)

(D.1)

=
1

h1(w, z)hq(w, z)

The quantity of interest is

Bn(w, z) = AS

{

∏

i<j(qwi − q−1wj)
∏

i≤j h1(wj, zi)
∏

i≥j hq(wj, zi)

}

(D.2)

2More precisely, the expression we antisymmetrize is the integrand before the homogeneous limit
in which spectral parameters come in pairs {z, 1/z}.
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where AS(φ)(w1, . . . , wn) =
∑

σ∈Sn
(−1)|σ|φ(wσ(1), . . . , wσ(n))

We then claim that Bn can be written as:

Bn(w, z) =
q

n(n−1)
2 fn

∏

i<j h1(zi, zj)(1 − q2wiwj)
(D.3)

where fn = det[f(wi, zj)]i,j≤n.
Again, we prove it by induction. For n = 1, we obtain on both sides:

B1 =
1

h1(w1, z1)hq(w1, z1)

Let the equality of (D.2) and (D.3) hold at n−1. Starting from (D.2) and pushing
zn and wj out of the anti-symmetrization we can write our equation as follows:

Bn(w, z) =
∑

j

(−1)n+j

∏

i6=j

(qwi − q−1wj)

∏

i

h1(wj, zi)hq(wi, zn)
AS















∏

i<k

(qwl − q−1wk)

∏

i≤k

h1(wk, zi)
∏

i≥k

hq(wk, zi)















ẑnŵj

where the hat over ẑn and ŵj means that the terms that include them are absent from
the anti-symmetrization. We use the hypothesis to replace the anti-symmetrization
part:

Bn =
∑

j

(−1)n+j

∏

i6=j(qwi − q−1wj)
∏

i h1(wj, zi)hq(wi, zn)

q
(n−1)(n−2)

2 fn−1,ŵj ẑn
(
∏

i<k h1(zi, zk)(1 − q2wiwk)
)

ŵj ẑn

=
∑

j

(−1)n+j

∏

i6=j hq(wi, wj)
∏

i6=n h1(zi, zn)
∏

i h1(wj, zi)hq(wi, zn)

(−1)n−1q
n(n−1)

2 fn−1,ŵj ẑn
(
∏

i<k h1(zi, zk)(1 − q2wiwk)
)

The idea now is to rewrite this under the form
∑

j(−1)n+jfn−1,ŵj ẑn

∑

i gif(wj, zi)
for some functions gi. Indeed, using the fact that fn is a determinant, we would get

∑

j

(−1)n+jfn−1,ŵj ẑn

∑

i

gif(wj, zi) =
∑

j

(−1)n+jfn−1,ŵj ẑn
gnf(wj, zn) = fngn

One can guess the form of gi:

gi =

∏

j 6=i,n h1(zj, zn)
∏

j hq(wj, zi)
∏

j 6=i,n h1(zi, zj)
∏

j hq(wj, zn)
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One can verify this decomposition directly. Equivalently, it can be written as

∑

i

∏

j 6=i,n h1(zj, zn)
∏

j hq(wj, zi)
∏

j 6=i,n h1(zi, zj)
∏

j hq(wj, zn)
f(wk, zi) =

∏

i6=k hq(wi, wk)
∏

i6=n h1(zi, zn)
∏

i h1(wk, zi)hq(wi, zn)
(D.4)

or, by multiply both sides with
∏

i h1(wk, zi)hq(wi, zn) to obtain polynomials of wk

of degree 2(n− 1):

∑

i

∏

j 6=i,n h1(zj, zn)
∏

j 6=i,n h1(zi, zj)

∏

j 6=k

hq(wj, zi)
∏

j 6=i

h1(wk, zj) =
∏

i6=k

hq(wi, wk)
∏

i6=n

h1(zi, zn) (D.5)

It is enough to prove that this equation is the same in all points wk = zi and
wk = z−1

i . In the first case we have:

∏

j 6=i,n h1(zj, zn)
∏

j 6=i,n h1(zi, zj)

∏

j 6=k

hq(wj, zi)
∏

j 6=i

h1(zi, zj) =
∏

j 6=k

hq(wj, zi)
∏

j 6=n

h1(zj, zn)

∏

j 6=i,n

h1(zj, zn)
∏

j 6=i

h1(zi, zj) =
∏

j 6=n

h1(zj, zn)
∏

j 6=i,n

h1(zi, zj)

which is always true. In the second case wk = z−1
i :

∏

j 6=i,n h1(zj, zn)
∏

j 6=i,n h1(zi, zj)

∏

j 6=k

hq(wj, zi)
∏

j 6=i

h1(z
−1
i , zj) =

∏

j 6=k

hq(wj, z
−1
i )

∏

j 6=n

h1(zi, zn) (D.6)

multiplying both sides by z
2(n−1)
i and knowing that z2

i h1(z
−1
i , x) = h1(zi, x) and

z2
i hq(x, z

−1
i ) = hq(x, zi) we obtain the same equality.

Finally we calculate gn:

gn =

∏

j 6=n h1(zj, zn)
∏

j hq(wj, zn)
∏

j 6=n h1(zn, zj)
∏

j hq(wj, zn)
= (−1)n−1 (D.7)

we replace
∑

i gif(wj, zi) by gnf(wj, zn):

Bn =
∑

j

(−1)n+j qn(n−1)/2fn−1,ŵj ẑn
f(wj, zn)

(
∏

i<k h1(zi, zk)(1 − q2wiwk)
) (D.8)

= q
n(n−1)

2
fn

(
∏

i<k h1(zi, zk)(1 − q2wiwk)
)
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D.2 Integral version

A special case (of direct interest to us) is when we integrate Bn on a contour which
surrounds only the poles wi = z±1

j . Let us thus consider the following integral

∮

. . .

∮

∏

i

dwi

2πi
ψ(w, z)Bn(w, z) (D.9)

where ψ(w, z) is an analytic function of the w in the integration region. Looking at
the expression (D.1), we note that if in the calculation of fn we pick a term with at
least one hq(wi, zj) there will be fewer than n poles and the integral will be zero.
This way, we can erase all the terms with hq(wi, zj), and form the restricted f̄n:

f̄n =
1

(q−2 − 1)n
∏

i zi(1 − q2w2
i )

det

∣

∣

∣

∣

1

h1(wi, zj)

∣

∣

∣

∣

If we rewrite h1(wi, zj) = wizj(wi +w
−1
i −zj −z−1

j ) we easily identify f̄ with a Cauchy
determinant, which can be evaluated:

f̄n =

∏

i<j(wi + w−1
i − wj − w−1

j )(zj + z−1
j − zi − z−1

i )

(q−2 − 1)n
∏

i z
2
iwi(1 − q2w2

i )
∏

i,j(wi + w−1
i − zj − z−1

j )

=
1

(q−2 − 1)n
∏

i zi(1 − q2w2
i )

∏

i<j h1(wi, wj)h1(zj, zi)
∏

i,j h1(wi, zj)

Thus, in Eq. (D.9) one can rewrite Bn, given in general by Eq. (D.3), as the same
expression in which fn is replaced with f̄n.

Let us now assume that ψ is of the form ψ(w, z) =
∏

i<j(wj − wi)φ(w, z) where
φ is symmetric in the wi. Then

∮

. . .

∮

∏

i

dwi

2πi
ψ(w, z)Bn(w, z)

= n!

∮

. . .

∮

∏

i

dwi

2πi
φ(w, z)

∏

i<j(wj − wi)(qwi − q−1wj)
∏

i≤j h1(wj, zi)
∏

i≥j hq(wj, zi)

=
1

(q−2 − 1)n

∮

. . .

∮

∏

i

dwi

zi2πi
φ(w, z)

q
n(n−1)

2

∏

i<j(wj − wi)h1(wj, wi)
∏

i≤j(1 − q2wiwj)
∏

i,j h1(wi, zj)
(D.10)
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D.3 Homogeneous Limit

The case of interest to us is when we set all the zi = 1. We can then use the same
transformation as before:

ui =
wi − 1

qwi − q−1

to deduce the desired equation from Eq. (D.10).

Call ϕ(u) =
∏

i(1 − qui)
2φ(wi = 1−q−1ui

1−q ui
, zi = 1). The second line becomes

n!

∮

. . .

∮

∏

i

dui

2πiu2i
i

ϕ(u)

(q − q−1)n(n+2)

∏

i<j

(uj − ui)(1 + τuj + uiuj)

while the expression on the third line becomes

∮

. . .

∮

∏

i

dui

2πiu2n
i

ϕ(u)

(q − q−1)n(n+2)

∏

i<j(uj − ui)(ui − uj)(ui + ui + τuiuj)
∏

i≤j(1 − uiuj)

In both cases, the integrals surround zero.
In the latter, one can reinterpret some factors as a Vandermonde determinant:

AS

{

∏

i

(1 + τui)
i−1

u2i
i

}

=
∏

i

1

u2n
i

∏

i<j

(ui − uj)(ui + uj + τuiuj)

and replace to obtain our final result:

∮

. . .

∮

∏

i

dui

2πi

ϕ(u)

u2i
i

∏

i<j

(uj − ui)(1 + τuj + uiuj)

=

∮

. . .

∮

∏

i

dui

2πi
ϕ(u)

(1 + τui)
i−1

u2i
i

∏

i<j(uj − ui)
∏

i≤j(1 − uiuj)
(D.11)

where we recall that ϕ(u) is some analytic function in a neighborhood of zero (that
is, without poles in this domain) and symmetric in the ui.
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