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Abstract

Mantaci et al have shown that if a word x on the alphabet {a, b} has a Burrows-

Wheeler Transform of the form biaj then x is a conjugate or a power of a conjugate

of a standard word. We give an alternative proof of this result and describe words

on the alphabet {a, b, c} whose transforms have the form cibjak. These words have

some common properties with standard words. We also present some results about

words on larger alphabets having similar properties.

1 Introduction

We use the usual notation for combinatorics on words. A word of n elements is x = x[1..n],
with x[i] being the ith element and x[i..j] the factor of elements from position i to position
j. The letters in x come from some alphabet A. The set of all words with letters from
A is A∗. The length of x, written |x|, is the number of letters in x and the number of
occurrences of the letter a in x is |x|a. A factor of length n is an n-factor. Two or more
adjacent identical factors form a power. A word which is not a power is primitive. A word
x or factor x is periodic with period p if x[i] = x[i+ p] for all i such that x[i] and x[i+ p]
are in the word. Two words x and y are conjugate if there exist words u and v such that
x = uv and y = vu. We write C(x) for the set of conjugates of a word x. If x precedes y
lexicographically we write x ≺ y and x � y means that either x ≺ y or x = y. Often we
will use capital letters for sets of words. X ≺ Y means every word in the set X precedes
every word in the set Y . If u and v are words then uXv is a set of words each having
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prefix u and suffix v. For any non-empty word x, F (x) and L(x) are, respectively, the first
and last letters in x. If x = α1α2 . . . αn then the reverse of x, written xR, is αn . . . α2α1.

A word x is a palindrome if x = xR. If m and n are integers we write gcd(m,n) for the
greatest common divisor of m and n.

The Burrows-Wheeler Transform (henceforth BW Transform) [2] was introduced in
1994 as part of a data compression scheme, and has since been heavily studied (see, for
example, [7] and [9] and references therein). To perform the transform on a word x first
list its conjugates in lexicographic order. The transform is then formed by concatenating
the final letters of the conjugates in this order. For example to transform “hello” we
produce the list

elloh, hello, llohe, lohel, ohell

and obtain the transform hoell. We will write BWT (x) for the BW Transform of x.
The advantage of the transform is that for some words, such as English text, it produces
transforms with many repeated letters, and these locally skew first-order statistics can
be exploited by a compressor. For example the first two sentences of this paragraph
transform to:

no]mnhe.rW)fn4asaxsdstttmcsnmead mser [991 . B- 2t rr

rrpw dgiunsi er rohhmchcehhldptrlo ssrseuotTtWc(phx sfl

nen rrrreoiiooeoaaaiTr cc icw fffffr nameeTtTgoopeooootru

iaoteaaw nnnseirssraar nidjBn o e

An extreme example of this is when all occurrences of each letter make up a factor
in the transform. For example BWT (bbabbba) = b5a2 and BWT (cacbca) = c3ba2. It is
interesting to ask what words have such BW Transforms: they represent the best case for
BWT based compressors. In the case of words on a 2 letter alphabet this question was
answered by Mantaci et al [6] who obtained the remarkable result that if BWT (x) = biaj

then x is a conjugate or a power of a conjugate of a standard word (defined below).
Standard words are, in a sense, the building blocks of the ubiquitous Sturmian words.
It is surprising that they should turn up in connection with BW Transforms. It is not
possible to have BWT (x) = aibj with i and j positive and a and b having their usual
lexicographic order. In the next section we give a new proof of the Mantaci et al result,
and in the third section obtain a similar result for words on a three letter alphabet. In
the final section we present some results about words on larger alphabets having similar
properties and compare our words on the three letter alphabet with standard words.

2 Size 2 alphabet

We consider words defined on the alphabet A = {a, b}. We will describe the set of all
words on this alphabet which have BW Transforms of the form biaj where i and j are
non-negative integers. The main result of this section is Theorem 2.5 in which we describe
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such words with gcd(i, j) = 1. In Corollary 2.6 we use some results from [6] to obtain the
general case. The morphisms φ and φ̃ are defined by

φ(a) = a φ̃(a) = ba

φ(b) = ab φ̃(b) = b.

We let S be the smallest set containing a and b which is closed under both φ and φ̃. The
set S is the set of standard words on {a, b}. See [5], Chapter 2, where standard words
are defined in terms of ordered pairs (u, v) of standard words, each pair giving rise to
the two ordered pairs (u, uv) and (vu, v). In our case the ordered pairs have the form
(X(a), X(b)) where X ∈ {φ, φ̃}∗ and concatenation implies composition. The children of
(X(a), X(b)) are (X(a), X(a)X(b)) and (X(b)X(a), X(b)) which equal (X(φ(a)), X(φ(b)))
and (X(φ̃(a)), X(φ̃(b))) respectively. From this it is easy to see the equivalence of the
definitions.

We will need the following lemmas. The first two are Propositions 2 and 3 from [6].

Lemma 2.1. Two words x and y are conjugate if and only if BWT (x) = BWT (y).

Lemma 2.2. If x = ud and BWT (u) = α1α2 . . . αn then BWT (x) = αd
1α

d
2 . . . α

d
n.

Lemma 2.3. If x and y come from {a, b}∗, have the same length and x ≺ y then φ(x) ≺
φ(y) and φ̃(x) ≺ φ̃(y).

Proof. Write x = pas and y = pbt for possibly empty strings p, s and t. Applying φ we
have φ(x) = φ(p)aφ(s) and φ(y) = φ(p)abφ(t). By the definition of φ, φ(s) must begin
with an a so that φ(s) ≺ bφ(t) and so φ(x) ≺ φ(y). The proof of the second part is
similar.

Lemma 2.4. If x ∈ {a, b}∗ is a conjugate of y then φ(x) is a conjugate of φ(y).

Proof. By observation.

We notice that in general {φ(y) : y ∈ C(x)} 6= C(φ(x)), as φ(x), being longer than x,
has more conjugates.

Theorem 2.5. BWT (x) = biaj for some i and j with gcd(i, j) = 1 if and only if x is a
conjugate of a word in S.

Proof. We first use induction on the length of x to show that every x in S has BWT (x) of
the required form, then show that the members of S are the only words with this property.
It is clear that a and b belong to S and have BW Transforms of the appropriate form, so
the statement holds for |x| = 1.

Suppose that any x ∈ S with |x| < n has a BW Transform of the required form. Each
member of S\{a, b} is the image under φ or φ̃ of some other member. Consider a word y
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in S with |y| = n. Then there exists x in S such that φ(x) = y or φ̃(x) = y. Without loss
of generality suppose y = φ(x). The conjugates of x make up sets

aX1a, aX2b, bX3a, bX4b.

Either aX1a or bX4b must be empty else BWT (x) does not have the required form.
Suppose that aX1a is empty. The conjugates are lexicographically ordered thus:

aX2b ≺ bX4b ≺ bX3a.

Applying φ to these and using Lemma 2.3 we get

aφ(X2)ab ≺ abφ(X4)ab ≺ abφ(X3)a.

The set of conjugates of y = φ(x) also includes baφ(X2)a and babφ(X4)a. Since each
member of φ(X2) begins with a, the full set of conjugates, ordered lexicographically, is

aφ(X2)ab ≺ abφ(X4)ab ≺ abφ(X3)a ≺ baφ(X2)a ≺ babφ(X4)a.

By inspecting the final letters of each set we see that BWT (y) has the form biaj. A
similar analysis applies if y = φ̃(x). By assumption BWT (x) = bi

′

aj′ for some i′ and j ′

with gcd(i′, j ′) = 1. Then i = i′ + j ′ and j = j ′ so that gcd(i, j) = 1 as required. We have
shown that any member of S has a BW Transform of the required form. We now show
that the only words with such BW Transforms are conjugates of words in S.

By Lemma 2.1 words are conjugates if and only if they have the same BW Transform,
so it is sufficient to show that all words of the form biaj with gcd(i, j) = 1 are transforms
of some member of S. This is equivalent to showing that for all such i and j there is a
member x of S with |x|a = i and |x|b = j. This is proved easily by induction on i+ j. It
clearly holds when i + j = 1 since a and b are in S. Suppose it holds for all pairs (i, j)
with gcd(i, j) = 1 and i+ j < k. Consider a pair (i′, j ′) with gcd(i′, j ′) = 1 and i′ + j ′ = k.
Suppose i′ > j ′ ≥ 1. Then gcd(j ′, i′ − j ′) = 1 so S contains y, say, with |y|a = i′ − j ′

and |y|b = j ′. But then a appears i′ times in φ(y) and b appears j ′ times, as required. If
j ′ > i′ the same reasoning applies with φ replaced by φ̃. This completes the proof.

Corollary 2.6. A word x has BW Transform biaj if and only if it is a conjugate of a
word in S or a conjugate of a power of a word in S.

Proof. We first show that for any i and j there is a word in S with BW Transform biaj.
Let gcd(i, j) = d. If d = 1 then the statement is equivalent to the theorem. Otherwise
write i = pd and j = qd where gcd(p, q) = 1. By the theorem there exists x in S with
BWT (x) = bpaq and by Lemma 2.2 BWT (xd) = bpdaqd as required. The converse follows
from Lemma 2.1.
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3 Size 3 alphabet

We now describe the set of words x on the alphabet {a, b, c} with the property that

BWT (x) = cibjak (3.1)

for non-negative integers i, j and k. We call a word satisfying (3.1) a Type I word.
Examples are given at the beginning of the last section. We will construct a set T of
primitive words, each satisfying (3.1) and such that any primitive word satisfying (3.1)
is a conjugate of a word in T . Then by Lemma 2.1 and Lemma 2.2 any Type I word is
either a conjugate of a word in T or a power of such a conjugate.

The words in the set S of the last section satisfy (3.1) with i = 0. Let γ1 be the
morphism defined by

γ1(a) = b, γ1(b) = c.

It is easy to see that if x ∈ S and BWT (x) = bjak then BWT (γ1(x)) = cjbk. Similarly if
γ2 is defined by

γ2(a) = a, γ2(b) = c

then BWT (γ2(x)) = cjak, so both γ1(x) and γ2(x) are Type I. Let

T0 = S ∪ {γ1(x) : x ∈ S} ∪ {γ2(x) : x ∈ S}. (3.2)

The conjugates of the words in T0 are the only primitive words which contain at most 2
distinct letters from {a, b, c} and which satisfy (3.1).

We now extend the morphism φ defined in the last section to

φ(a) = a, φ(b) = ab, φ(c) = ac.

Note that this agrees with the earlier definition when applied to a or b. We also need θ

defined by
θ(a) = c, θ(b) = b, θ(c) = a.

We will introduce a third mapping ψ below. We define T to be the minimal set of words
which includes T0 and is closed under the mappings θ, φ and ψ. To prove that T has the
required properties we need several lemmas.

Let x1 ≺ x2 ≺ · · · ≺ xn be the conjugates of a word x having length n so that
BWT (x) = L[x1]L[x2] . . . L[xn]. It is clear that the set of 2-factors occurring in x is
precisely {L[xi]F [xi] : i = 1 . . . n}. It is also clear that a necessary and sufficient condition
for x to be Type I is that

xi ≺ xj ⇒ L(xi) � L(xj). (3.3)

Lemma 3.1. Let x be a Type I word with |x|a = α, |x|b = β and |x|c = γ.
(i) If β + γ > α ≥ γ then the set of 2-factors in x is a subset of {ab, ac, ba, bb, ca}.
(ii) If α ≥ β + γ then the set of 2-factors in x is a subset of {aa, ab, ac, ba, ca}.
(iii) If α+ β > γ ≥ α then the set of 2-factors in x is a subset of {ac, bb, bc, ca, cb}.
(iv) If γ ≥ α + β then the set of 2-factors in x is a subset of {ac, bc, ca, cb, cc}.
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Proof. Let the conjugates of x be x1 ≺ · · · ≺ xn. Since x is Type I BWT (x) = cγbβaα

which is the concatenation L(x1) . . . L(xn). We also have F (x1) . . . F (xn) = aαbβcγ. Con-
sider the case β + γ > α ≥ γ. We see that

F [xi]L[xi] = ac for i = 1 . . . γ

F [xi]L[xi] = ab for i = γ + 1 . . . α

F [xi]L[xi] = bb for i = α + 1 . . . β + γ

F [xi]L[xi] = ba for i = β + γ + 1 . . . α + β

F [xi]L[xi] = ca for i = α + β + 1 . . . α + β + γ

Since the set of 2-factors in x is precisely the set of L[xi]F [xi] values, part (i) of the
Lemma follows. The proofs of the other parts are similar.

Lemma 3.2. Let x and y be words on the alphabet {a, b, c}.
(a) If x ≺ y then φ(x) ≺ φ(y) and θ(x) � θ(y).
(b) If x is a conjugate of y then φ(x) is a conjugate of φ(y) and θ(x) is a conjugate of
θ(y).

Proof. (a) This is immediate since for any letters α and β from {a, b, c} α ≺ β implies
φ(α) ≺ φ(β) and θ(α) � θ(β).
(b) This is also immediate.

Note that {φ(y) : y ∈ C(x)} includes all conjugates of φ(x) except those with prefix
ba or ca and that {θ(y) : y ∈ C(x)} includes all conjugates of θ(x).

Lemma 3.3. The word x is Type I if and only if θ(x) is Type I.

Proof. Let the conjugates of x be x1 ≺ x2 ≺ · · · ≺ xn. Then by Lemma 3.2 the conjugates
of θ(x) are θ(x1) � θ(x2) � · · · � θ(xn). Also note that L(x) � L(y) implies L(θ(x)) �
L(θ(y)). By (3.3) x is Type I if and only if

xi ≺ xj ⇒ L(xi) � L(xj),

that is, if and only if
θ(xi) � θ(xj) ⇒ L(θ(xi)) � L(θ(xj)),

that is, by (3.3), if and only if θ(x) is Type I.

Lemma 3.4. The word x is Type I if and only if φ(x) is Type I.

Proof. Suppose x is Type I. Then its 2-factors come from one of the four sets in Lemma
3.1. Suppose they come from {ab, ac, ba, bb, ca}. Then the conjugates of x may be written

aX1c ≺ aX2b ≺ bX3b ≺ bX4a ≺ cX5a.
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The order is implied by x being Type I. Applying φ and using part (a) of Lemma 3.2 we
have, using an obvious notation,

aφ(X1)ac ≺ aφ(X2)ab ≺ abφ(X3)ab ≺ abφ(X4)a ≺ acφ(X5)a.

The full set of conjugates of φ(x) also includes baφ(X2)a, babφ(X3)a and caφ(x)a. Since
each word in φ(X2) begins with a we have baφ(X2)a ≺ babφ(X3)a ≺ caφ(x)a. By in-
specting the final letters of each set of conjugates we see that φ(x) is Type I. A similar
argument applies if the 2-factors belong to any of the other sets in Lemma 3.1.

Now suppose that y = φ(x) is Type I. Let the lexicographically ordered conjugates of
x be

x1 ≺ x2 ≺ · · · ≺ xn.

Then by part (a) of Lemma 3.2 we have

φ(x1) ≺ φ(x2) ≺ · · · ≺ φ(xn)

and by (b) each of these is a conjugate of y. Then (3.3) tells us that

L(φ(x1)) � L(φ(x2)) � · · · � L(φ(xn)).

However, for any word u, L(φ(u)) = L(u) so

L(x1) � L(x2) � · · · � L(xn).

This implies, by (3.3), that x is Type I.

We now introduce the mapping ψ. Let x be a word of length n and let i ∈ [1, n].
(a) Suppose x[i] = a. If i < n and x[i+ 1] = a or if i = n and x[1] = a then ψ ′(x[i]) = ab;
otherwise ψ′(x[i]) = a.
(b) Suppose x[i] = b. If i < n and x[i+ 1] 6= b or if i = n and x[1] 6= b then ψ ′(x[i]) = bb;
otherwise ψ′(x[i]) = b.
(c) Suppose x[i] = c. If i < n and x[i + 1] = c or if i = n and x[1] = c then ψ ′(x[i]) = cb;
otherwise ψ′(x[i]) = c.

Then ψ(x) is the concatenation

ψ′(x[1])ψ′(x[2]) . . . ψ′(x[n]).

A more intuitive explanation of this is to say that we form ψ(x) from x by inserting a b
in the middle of each factor aa, cc, ba and bc and by regarding L(x)F (x) as a factor. For
example,

ψ(abbacaabac) = abbbacababbac

ψ(aabaca) = ababbacab.

We will show that x is Type I if and only if ψ(x) is Type I. This will require two lemmas.
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Lemma 3.5. If x is a conjugate of y then ψ(x) is a conjugate of ψ(y).

Proof. This is easily checked.

Note that {ψ(y) : y ∈ C(x)} includes all conjugates of ψ(x) except those with prefix
ba or bc.

Lemma 3.6. If x and y have the same length, are Type I and x ≺ y then ψ(x) ≺ ψ(y).

Proof. If x and y have different first letters then it is easy to see that the statement holds.
We therefore assume they have a non-empty common prefix. Let x and y have prefixes
uαβ and uαγ respectively where α, β and γ are letters with β ≺ γ. Suppose that α = a.
We note that if a word z has prefix uaa, uab or uac then ψ(z) has, respectively, prefix
vaba, vabb or vac for some word v. Since vaba ≺ vabb ≺ vac we see that if α = a then
ψ(x) ≺ ψ(y). A similar analysis shows this relation also holds when α = b or α = c, and
and the statement of the lemma follows.

Lemma 3.7. The word x is Type I if and only if ψ(x) is Type I.

Proof. Let x be a Type I word with 2-factors from the set {aa, ab, ac, ba, ca}. The conju-
gates of x make up sets

aX1c ≺ aX2b ≺ aX3a ≺ bX4a ≺ cX5a.

Applying ψ to each of these sets and using Lemma 3.6 gives sets

aY1c ≺ aY2bb ≺ aY3ab ≺ bbY4a ≺ cY5a, (3.4)

where ψ(aX1c) = aY1c et cetera. By Lemma 3.5 these are all conjugates of ψ(x). To make
up the full set of conjugates we include baY2b and baY3a. By (3.4) we have baY2b ≺ baY3a,
so that

aY1c ≺ aY2bb ≺ aY3ab ≺ baY2b ≺ baY3a ≺ bbY4a ≺ cY5a

from which it follows that ψ(x) is Type I.
If instead the set of 2-factors of x is a subset of {ab, ac, ba, bb, ca} then its conjugates

make up sets
aX1c ≺ aX2b ≺ bX3b ≺ bX4a ≺ cX5a.

Applying ψ to these gives sets

aY1c ≺ aY2bb ≺ bbY3b ≺ bbY4a ≺ cY5a (3.5)

and set of conjugates baY2b which slots in lexicographically between the second and third
terms. Again ψ(x) is Type I. Similar analyses apply when the set of 2-factors is one of
the others in Lemma 3.1.

So far we have shown that if x is Type I then so is ψ(x). We now show the converse.
Suppose that ψ(x) is Type I. The definition of ψ means that ψ(x) cannot contain aa

or cc as 2-factors so its set of 2-factors comes from the set {ab, ac, ba, bb, ca} or the set
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{ac, bb, bc, ca, cb}. Suppose the 2-factors comes from the first of these. Then x cannot
contain the factor cb as this would mean ψ(x) also contains this factor which we have
denied. Similarly it cannot contain bc. Neither can it contain cc as then ψ(x) would
contain bc. Let the set of conjugates of x be the union of sets

aX1c, aX2b, aX3a, bX4b, bX5a, cX6a.

Under ψ these give rise to the following sets of conjugates of ψ(x):

aY1c, aY2bb, aY3ab, bbY4b, bbY5a, cY6a,

together with baY2b and baY3a. The fact that ψ(x) is Type I imposes certain constraints
on these sets.

We must have aY1c ≺ aY2bb and hence by Lemma 2.4 aX1c ≺ aX2b and thus X1 ≺ X2.
We must also have baY2b ≺ baY3a which implies X2 ≺ X3. Combining these observations
gives

X1 ≺ X2 ≺ X3. (3.6)

We also need bbY4b ≺ bbY5a which implies

X4 ≺ X5. (3.7)

At least one of the sets baY3a and bbY4b must be empty, otherwise we get a contradiction
with (3.3). This means that either X3 or X4 is empty. The ordered set of conjugates of
x is therefore

aX1c ≺ aX2b ≺ bX4b ≺ bX5a ≺ cX6a

or
aX1c ≺ aX2b ≺ aX3a ≺ bX5a ≺ cX6a.

By inspecting the last letters we see that x is Type I, as required. Similar arguments
show that x is Type I when y has 2-factors from {ac, bb, bc, ca, cb}.

Lemma 3.8. Every Type I word which contains each of a, b and c has a conjugate in the
range of φ, θ ◦ φ or ψ.

Proof. Let y be a Type I word. We know from Lemma 3.1 that its set of 2-factors
comes from one of the sets {aa, ab, ac, ba, ca}, {ab, ac, ba, bb, ca}, {ac, bb, bc, ca, cb} and
{ac, bc, ca, cb, cc}.

Suppose it comes from the first. If y does not begin with a then replace it with one of
its conjugates that does. Then each occurrence of the letter b is preceded by a: we can
replace such a pair with φ(a). Similarly each occurrence of c is preceded by a and the
pair ac can be replaced with φ(c). The remaining occurrences of a can be replaced with
φ(a) and we see that y is in the range of φ.

Suppose the factors of y come from the fourth set. If y does not begin with c then
replace it with one of its conjugates that does. Then the factors of θ(y) come from the
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first set, so by the previous case there exists x such that φ(x) = θ(y). But θ is its own
inverse so θ ◦ φ(x) = y and y is in the range of θ ◦ φ.

Now suppose the 2-factors of y come from the set {ab, ac, ba, bb, ca}. If y begins with
ba or bc replace it with a conjugate that doesn’t. Say that a factor y[i..j] is a b-run if
each of its letters equals b, but neither y[i− 1] nor y[j + 1] equals b. Construct a word x

by removing a b from each b-run, except in the case where both a prefix and a suffix of y
are b-runs. In this case remove a b from the prefix b-run but not from the suffix b-run. A
b-run of length 1 in y will be preceded and followed by a’s and correspond to a pair of a’s
in x. It is easy to see that y = ψ(x).

If the factors come from the third set a similar argument applies but with c in the role
of a.

We have not yet shown that the words in T are primitive. The following theorem does
this and will be used later to specify the possible values of i, j and k when BWT (x) =
cibjak. If x is in {a, b, c}∗ then the Parikh vector for x is the vector p(x) = [|x|a, |x|b, |x|c].
If p(x) = [α, β, γ] then it is clear that

p(θ(x)) = [γ, β, α] (3.8)

and
p(φ(x)) = [α + β + γ, β, γ]. (3.9)

The Parikh vector for ψ(x) is less obvious. Suppose that ψ(x) is Type I and that its set
of 2-factors comes from either {ab, ac, ba, bb, ca} or {aa, ab, ac, ba, ca}. We write |x|ab for
the number of occurrences of ab in x. If L(x) = a and F (x) = b we regard L(x)F (x) as
an occurrence of ab and count it in |x|ab. We define |x|aa et cetera in a similar fashion.
Since each occurrence of c in x is preceded and succeeded by a we have

|x|ac = |x|ca = |x|c. (3.10)

It is clear that |ψ(x)|a = α and |ψ(x)|c = γ. Also from the definition of ψ and (3.10),

|ψ(x)|b − |x|b = |x|aa + |x|cc + |x|ba + |x|bc

= |x|a + |x|c − |x|ca − |x|ac

= |x|a − |x|c.

If the 2-factors of ψ(x) come from {ac, bb, bc, ca, cb} or {ac, bc, ca, cb, cc} then a similar
equality holds with a and c interchanged. In either case we have

p(ψ(x)) = [α, β + |α− γ|, γ]. (3.11)

.

Theorem 3.9. If x is in T and p(x) = [α, β, γ] then gcd(α, β, γ) = 1 and gcd(α+ β, β +
γ) = 1.

the electronic journal of combinatorics 15 (2008), #R83 10



Proof. First suppose that x is in T0 and recall that x is therefore a copy of a word in S.
Thus one of α, β and γ equals 0 and the other two are relatively prime, so the statement
of the theorem holds.

We complete the proof using induction on the sum α+ β + γ. The statement holds if
the sum equals 1. Suppose it holds for all values less than n and suppose x ∈ T\T0 where
|x| = n and p(x) = [α, β, γ]. We may suppose α ≥ γ since otherwise we can replace x
with θ(x) - clearly the statement of the theorem is true for x if and only if it is true for
θ(x). Then, by the definition of T , x = φ(y) or x = ψ(y) for some y ∈ T We don’t need to
consider x = θ◦φ(y) which is impossible if α ≥ γ, nor x = θ◦ψ(y) as then x = ψ◦θ(y). By
(3.9) and (3.11) it follows that p(y) equals [α− β− γ, β, γ] or [α, β− (α− γ), γ]. Suppose
p(y) = [α− β − γ, β, γ]. By the induction hypothesis the components have gcd = 1 from
which gcd(α, β, γ) = 1. Also by the induction hypothesis we have

gcd((α− β − γ) + β, β + γ) = 1

⇒ gcd(α− γ, β + γ) = 1

⇒ gcd(α + β, β + γ) = 1.

Thus the statement holds when when x = φ(y). The other case can be settled in the same
way, and the theorem is proven by induction.

Corollary 3.10. The words in T are primitive.

Proof. A word that is not primitive is a power, and each element of its Parikh vector will
be divisible by the exponent of the power. By the theorem such a word cannot belong to
T .

Theorem 3.11. The Type I words are precisely the conjugates of those in T and the
powers of these conjugates.

Proof. By Lemmas 3.3, 3.4 and 3.7 every word in T is Type I. By Lemmas 2.1 and 2.2 so
are conjugates of words in T and their powers.

To prove the converse we use induction on word length to show that all primitive Type
I words are conjugates of words in T . This clearly holds for words of length 1 and for
words containing at most 2 distinct letters. Suppose it holds for all words of length less
than n and let x′ be a primitive Type I word which contains each of a, b and c and has
length n. By Lemma 3.8 x′ has a conjugate x for which there exists y such that either
x = φ(y) or x = ψ(y) or x = θ ◦ φ(y), and by the “only if” parts of Lemmas 3.3, 3.4 and
3.7 y is Type I. Clearly |y| < n so by the induction hypothesis y is the conjugate of a word
in T , say z. But then, by Lemmas 3.2 and 3.5 either φ(z) = x, ψ(z) = x or θ ◦ φ(z) = x,
so x is in T and x′ is a conjugate of a word in T .

We have shown that every primitive Type I word is a conjugate of a word in T . To
show that every non-primitive Type I word is a power of a conjugate of a word in T we
apply Lemma 2.2 and argue as in the proof of Lemma 2.6.

Theorem 3.12. The vector [i, j, k] is the Parikh vector of a Type I word if and only if
gcd(i, j, k) = gcd(i+ j, j + k).
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Proof. (⇒) Suppose x is Type I with p(x) = [i, j, k]. If x ∈ T then both greatest common
divisors equal 1 by Theorem 3.9. This also applies if x is a conjugate of a word in T .
Otherwise x is the dth power of such a conjugate and then both greatest common divisors
equal d, as required.

(⇐) We show that that if gcd(i, j, k) = gcd(i + j, j + k) then there exists a Type I
word x with p(x) = [i, j, k]. This holds if i + j + k ≤ 2 since all words with such Parikh
vectors are Type I. Suppose it holds whenever i+ j + k < n and consider [i, j, k] with

gcd(i, j, k) = gcd(i+ j, j + k) = d (3.12)

and i+ j + k = n. We consider 4 cases.
Case 1. If i ≥ j+k consider the vector [i−j−k, j, k]. By (3.12) gcd(i−j−k, j, k) = gcd(i−
k, j + k) = d so, providing at least one of j and k is positive, we can apply the induction
hypothesis and conclude that there exists a Type I word y with p(y) = [i−j−k, j, k]. But
then φ(y) is Type I by Lemma 3.4, and by (3.9) p(φ(y)) = [i, j, k]. So x = φ(y) satisfies
the statement of the theorem. If j = k = 0 then the Type I word x = ai is satisfactory.
Case 2. If j + k ≥ i ≥ k consider [i, j − i + k, k]. By (3.12) gcd(i, j − i + k, k) =
gcd(j + k, j − i + 2k) = d. Providing i 6= k we can apply the induction hypothesis and
conclude there exists a Type I word y with p(y) = [i, j − i+ k, k]. Now ψ(y) is Type I by
Lemma 3.7 and by (3.11) p(ψ(y)) = [i, j, k] so that ψ(y) satisfies the requirements of the
theorem. Now consider the case i = k. If i = k and j = 0 the word (ac)i is Type I with
Parikh vector [i, j, k] as required. If i = k = 0 we use bj. If i = k > 0 and j > 0 then
gcd(i + j, j + k) = i + j > gcd(i, j, k), contradicting (3.12).
Cases 3 and 4. If k ≥ i + j we use the vector [k − i− j, j, i] and argue as in Case 1 with
θ ◦ φ in the role of φ and if i + j ≥ k ≥ i we use [k, i + j − k, i] and argue as in Case 2
with θ ◦ ψ in the role of ψ.

This completes the proof by induction.

Note that the sets in the four cases are not disjoint. This reflects the fact that some
Type I words are in the ranges of both φ and ψ. For example [2, 1, 1] is covered by Cases
1 and 2 and φ(bc) = ψ(aac) = abac. We also mention that a result equivalent to Theorem
3.9 has been obtained by Pak and Redlich [8].

4 Discussion

Some words in T are

baca, cbbca, cbcacca, bbabbaca, ccaccbcca, babacabaca,

acabacabaca, ababaacaaca, bbabbbabbaca, cbbbbbbbbbca,

cbcbbcbbcbca, cbcacbcacbcbca, ccccaccccbcccca.

We note that each of these has the two palindrome property, that is, it can be written
as uv where u and v are palindromes or empty. Standard words also have this property -
see Theorem 2.2.6 of [5]. We shall generalise this to larger alphabets.

the electronic journal of combinatorics 15 (2008), #R83 12



We consider a word x over the alphabet a1 ≺ a2 ≺ · · · ≺ as for which

BWT (x) = ams

s a
ms−1

s−1 . . . am1

1 (4.1)

for some non-negative integers m1, m2,. . . , ms.
Let the conjugates of x be x1 ≺ x2 ≺ · · · ≺ xn where |x| = n and write F (i) for

the first letter in xi and L(i) for the last. (Earlier we used F (xi) and L(xi).) We now
encounter a notational awkwardness. Consider the lexicographically ordered conjugates
of x = aab.

aab

aba

baa

Here F (1) = L(3) as they both equal a, but F (1) corresponds to the first appearance
of a in x and L(3) to the second. If F (i) and L(j) correspond to the same appearance
of a letter in x we write F (i) ≡ L(j). Thus in the example above F (1) ≡ L(2) and
F (2) ≡ L(3). An important property of the BW Transform is given in the following
lemma.

Lemma 4.1. If F (i1) ≡ L(j1), F (i2) ≡ L(j2) and i1 < i2 then j1 < j2.

A demonstration of this result and an explanation of how it is used to invert the BW
Transform are given in [2] and [6]. Equation (4.1) implies that

F (i) = L(n + 1 − i) (4.2)

for i = 1, . . . , n. But note that we cannot replace “=” with “≡” here. For x satisfying
(4.1) define ω to be the function satisfying

F (i) ≡ L(ω(i)).

If x satisfies (4.1) then we evaluate ω as follows. Let k be the least integer such that

k∑

j=1

mj ≥ i,

then

ω(i) = i+ n−

k−1∑

j=1

mj −

k∑

j=1

mj.

The straightforward derivation of this formula (using Lemma 4.1 and equation (4.1)) is
omitted. We also have the following formula for ω−1. Let k be the least integer such that

i ≥ n+ 1 −

k∑

j=1

mj,
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then

ω−1(i) = i− n+

k−1∑

j=1

mj +

k∑

j=1

mj.

We need the following lemma.

Lemma 4.2. For i ∈ [1, n] and j ≥ 1,

ωj(i) = n+ 1 − ω−j(n + 1 − i). (4.3)

Proof. Using the formulae above we obtain

ω(i) = n+ 1 − ω−1(n+ 1 − i). (4.4)

(In obtaining this we find the value of k in each formula to be the same. One can also
see (4.4) immediately by recognising the symmetry imposed by Lemma 4.1 and equation
(4.1)). From (4.4) we prove (4.3) by induction. Suppose it holds for j = k. Then

ωk+1(i) = ω(ωk(i))

= n + 1 − ω−1(n+ 1 − ωk(i))

= n + 1 − ω−1(ω−k(n+ 1 − i))

= n + 1 − ω−(k+1)(n + 1 − i),

as required.

We can use ω to obtain xi. The first letter in xi is F (i) which equals L(ω(i)), and
L(ω(i)) is followed by F (ω(i)). Continuing in this way we find

xi = F (i)F (ω(i))F (ω2(i)) . . . F (ωn−1(i)). (4.5)

Similarly, the reverse of xi is

xR
i = L(i)L(ω−1(i)) . . . L(ω−(n−1)(i)). (4.6)

We now obtain two important results about words satisfying (4.1).

Theorem 4.3. If x satisfies (4.1) and has lexicographically ordered conjugates x1, x2, . . . ,
xn then, for i = 1, . . . , n,

xi = xR
n+1−i.

Proof. Using (4.6), Lemma 4.2, (4.2) and (4.5) we have

xR
n+1−i = L(n + 1 − i)L(ω−1(n+ 1 − i)) . . . L(ω−(n−1)(n+ 1 − i))

= L(n + 1 − i)L(n+ 1 − ω(i)) . . . L(n + 1 − ωn−1(i))

= F (i)F (ω(i)) . . . F (ωn−1(i))

= xi.
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Corollary 4.4. Under the conditions of the theorem each conjugate of x has the two
palindrome property.

Proof. Consider xi. If i = n + 1 − i then by the theorem xi = xR
i so xi is a palindrome

and therefore has the two palindrome property. Now suppose i 6= n+1− i so that xi and
xn+1−i are different conjugates of x. Then xi = uv and xn+1−i = vu for some u and v. By
the theorem

uv = (vu)R = uRvR

so that u and v are palindromes, and xi has the two palindrome property.

As noted above the binary alphabet case of Corollary 4.4 is known. The binary case
of Theorem 4.3 has been obtained by Restivo and Sciortino [10] and reported at the
conference WORDS 2005 in Montreal, and at the Workshop on Fibonacci Words, Turku,
September 2006. They found various other interesting symmetries that apply in this case
but do not hold with larger alphabets.

The complexity of a word x is a function c(n) equalling the number of distinct factors of
length n appearing x. An important property of standard words is that their complexity
satisfies c(n) ≤ n + 1 for all n. Indeed standard words are factors of Sturmian words
and for Sturmian words c(n) = n + 1 for all n. We will show that for Type I words
c(n) ≤ 2n+1 for all n. In fact we prove a stronger result in Theorem 4.5 below. But first
some notation. A finite word w is a left special factor of a word x if there exists more
than one distinct letter α such that αw is a factor of x. The number of such α is the left
degree of w, written λ(w). Thus w is left special if and only if λ(w) is greater than 1.
From these definitions we have, for a word x,

c(n+ 1) =
∑

|w|=n

λ(w), (4.7)

where the sum is over all distinct length n factors of x. Right special factors and right
degrees are defined in a similar way.

Theorem 4.5. If x is a word on the alphabet {a1, a2, . . . , ak} for which BWT (x) =
amk

k . . . am1

1 for some integers m1, . . . , mk then

c(n) ≤ (k − 1)n+ 1

for all n.

Proof. Consider a left special factor w of x which has length n and degree t, and consider
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those conjugates of x which have prefix w. In lexicographic order these have the form

wv1at

wv2at

...

wvk1
at

wvk1+1at−1

...

wvk2
at−1

...

wvkt
a1

Note that the last column here has changed value t − 1 times. But this column is part
of BWT (x), which contains at most k− 1 such changes. Each w will contribute λ(u)− 1
such changes, so we have ∑

|u|=n

(λ(u) − 1) ≤ k − 1

where the sum is over all distinct length n factors u of x. Noting that
∑

|u|=n 1 = c(n)

and applying (4.7) gives
c(n+ 1) ≤ c(n) + k − 1.

Since c(1) = k we obtain, by induction, that c(n) ≤ (k − 1)n+ 1 for all n.

On setting k = 3 we obtain the following corollary.

Corollary 4.6. If x is a Type I word then its complexity satisfies c(n) ≤ 2n+1 for all n.

Note that we haven’t assumed any ordering on a1, a2, . . . , ak in the theorem, so the
result applies also, for example, to a word x for which BWT (x) = ciajbk. Such words
do exist, for example abcbc. So do words x for which BWT (x) = bicjak, for example
bacbabba. Other orderings of a, b and c are not possible. We call such words Types II
and III respectively. We haven’t made a thorough investigation of these, but note that
(a) the morphism θ transforms a Type II word into a Type III word, and vice versa, and
(b) these words do not, in general, have the two palindrome property.

We mention that a different set of words satisfying c(n) ≤ 2n + 1 appears in [1] and
is discussed in [3] where they are called 3-standard words. Like ours they have some
properties in common with standard words. For example standard words are connected
with the Fine-Wilf Periodicity Lemma [4] which states that if a word has periods p and q
and length at least p+ q − gcd(p, q) then it has period gcd(p, q). If a word w has periods
p and q with gcd(p, q) = 1, length p+ q − 2 and does not have period 1 then wab or wba
is a standard word. For example abaaba has periods 3 and 5 and length 3 + 5 − 2. Both
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abaabaab and abaababa are standard words. In [3] a three period version of the Periodicity
Lemma is proved and the words which are critical for it are the 3-standard words. These
have the two palindrome property but not the property described in Theorem 4.3.

There are several directions in which this work might be extended. First, can we find
characterisations of words on larger alphabets which have simple Burrows-Wheeler Trans-
forms and can we characterise the Type II and Type III words mentioned above? For
larger alphabets can we find results like Theorem 3.12? For binary alphabets standard
words can be extended to Sturmian words which are infinite with complexity c(n) = n+1
for all n. Can our Type I words be used to construct infinite words with complexity 2n+1
for all n?
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kindly alerting us to reference [8]. He has also informed us that Giovanna Rosone has
independently proved Theorem 4.3 and Corollary 4.4.
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