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Abstract

For a graph G = (V,E) of even order, a partition (V1, V2) of the vertices is said
to be perfectly balanced if |V1| = |V2| and the numbers of edges in the subgraphs
induced by V1 and V2 are equal. For a base graph H define a random graph G(H, p)
by turning every non-edge of H into an edge and every edge of H into a non-
edge independently with probability p. We show that for any constant ǫ there is
a constant α, such that for any even n and a graph H on n vertices that satisfies
∆(H)−δ(H) ≤ αn, a graph G distributed according to G(H, p), with ǫ

n
≤ p ≤ 1− ǫ

n
,

admits a perfectly balanced partition with probability exponentially close to 1. As
a direct consequence we get that for every p, a random graph from G(n, p) admits
a perfectly balanced partition with probability tending to 1.

1 Introduction

Given a graph G of even order, an equipartition (V1, V2) is perfectly balanced if the number
of edges spanned by G[V1] equals the number of edges spanned by G[V2]. This definition
can be extended to graphs of odd order, and in this case we require that the number of
vertices and edges in each part differ by at most 1.

It is not difficult to verify that there are graphs that do not admit perfectly balanced
partitions. The simplest example is the star K1,n−1. Caro and Yuster [5] proved that
for every graph G = (V, E) with n2−ǫ edges for some ǫ > 0 there are two disjoint sets
S1, S2 ⊆ V , |S1| = |S2| = n/2 − o(n) such that the subgraphs induced by S1 and S2 have
exactly the same number of edges, and this is asymptotically tight.

It is natural to seek for families of graphs that admit perfectly balanced partitions. In
this note we show that smoothed graphs admit such a partition almost surely. Namely,
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for a given ǫ
n
≤ p ≤ 1− ǫ

n
, let H be a graph on n vertices that satisfies ∆(H)−δ(H) ≤ αn

for some small constant α(ǫ) (here ∆(H) is the maximal degree and δ(H) is the minimal
degree of H). If we modify every edge and non-edge independently with probability p,
almost surely we get a graph that admits a perfectly balanced partition. As a corollary,
we get also that for every p = p(n), a graph distributed according to G(n, p) admits a
perfectly balanced partition almost surely.

Smoothed Graphs. Smoothed analysis studies the behavior of objects after adding a
small amount of randomness. This concept was introduced in the context of algorithms
by Spielman and Teng [8], and was studied also in the context of graphs (see, for ex-
ample, [2, 3, 7]) and hypergraphs [9]. Given a fixed graph H on n vertices, define the
probability distribution G(H, p) as follows. Every edge of H is deleted with probability
p, and every pair of non-adjacent vertices of H is connected by an edge with probability
p, all these events are mutually independent. We will usually be interested in the case
that p is relatively small, thus one may consider graphs from this distribution as noisy
(or smoothed) variations of H .

We can now state the main result of this note.

Theorem 1 For every ǫ > 0 there are α(ǫ) > 0 and c(ǫ) > 0 such that the following

holds for every even n. For every graph H on n vertices that satisfies ∆(H)−δ(H) ≤ αn,

a graph G distributed according to G(H, p) for some ǫ
n
≤ p ≤ 1 − ǫ

n
admits a perfectly

balanced partition with probability at least 1 − e−cn.

Here we state the result and provide a proof for graphs of even size. It is not difficult
to extend it to graphs of odd size. We note that the theorem is essentially tight: A
graph distributed according to G(K1,n−1,

1
2n

) admits a perfectly balanced partition with
probability o(1).

Theorem 1 implies the following corollary:

Corollary 2 Let n be an even number. A graph distributed according to G(n, p) admits

a perfectly balanced partition asymptotically almost surely.

Remark. The proof actually implies that if Ω( 1
n
) ≤ p ≤ 1−O( 1

n
), then the probability

that a graph distributed as G(n, p) admits a perfectly balanced partition is exponentially
close to 1.

In the next section we give a proof of the main theorem. We do not try to optimize
the constants throughout this work. Also, we omit floor and ceiling signs whenever these
are not crucial.

2 Proofs

For two disjoint sets of vertices S1, S2 ⊆ V (G), denote by e(S1) the number of edges in
the induced subgraph G[S1] and by e(S1, S2) the number of edges of G with one endpoint
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in S1 and the other in S2. We start by noting that given a partition (S1, S2) we have:

e(S1) =
∑

v∈S1

d(v) − e(S1, S2),

and similarly:

e(S2) =
∑

v∈S2

d(v) − e(S1, S2).

Therefore, in order to have a perfectly balanced partition we need to partition the
vertices to two equally sized sets such that the sum of their degrees is exactly the same.

A variant of the following simple claim is proved in [5].

Claim 3 If a1 ≥ . . . ≥ a2k, then there exists an equipartition [2k] = T1 ∪ T2 such that

|
∑

i∈T1
ai −

∑

i∈T2
ai| ≤ a1 − a2k.

Proof: For a subset R ⊆ [2k], denote s(R) =
∑

i∈R ai. Consider an equipartition (T1, T2)
of [2k] minimizing |s(T1) − s(T2)|, assume w.l.o.g that s(T1) ≥ s(T2). If s(T1) = s(T2)
we are done. Otherwise find elements ai ∈ T1 and aj ∈ T2 such that ai > aj , and define
a new equipartition (T ′

1, T
′
2) by swapping them: T ′

1 = T1 − ai + aj ; T ′
2 = T2 − aj + ai.

Clearly, s(T ′
1)− s(T ′

2) = s(T1)− s(T2)− 2(ai − aj) < s(T1)− s(T2). Due to the optimality
of (T1, T2), we get s(T ′

1)− s(T ′
2) < 0 and therefore s(T ′

1)− s(T ′
2) ≤ −(s(T1)− s(T2)). This

implies: s(T1) − s(T2) ≤ ai − aj ≤ a1 − a2k.

Given a graph G, a degree matching is a set M of disjoint pairs of vertices, such that
the degrees within every pair differ by exactly 1. The following claim gives a sufficient
condition for a graph to have a perfectly balanced partition in terms of the size of a largest
degree matching:

Claim 4 Suppose that a graph G contains a degree matching of size at least ∆(G)−δ(G).
Then G admits a perfectly balanced partition.

Proof: Given such a degree matching M , we can partition the vertices in V − ⋃

M
according to Claim 3, and get an equipartition such that the difference between the sums
of degrees in each part is bounded by ∆(G) − δ(G). Now we add the vertices from M
to the partition, pair by pair, where for each pair we add the vertex with higher degree
to the set of vertices with smaller total degree. Since the initial difference is at most the
number of pairs and in every round we change the difference by exactly 1, after the last
stage the difference is at most 1. The sum of the degrees of all the vertices in the graph
is even, hence we conclude that the two sets have exactly the same number of edges, and
the claim follows.

Therefore, our main result will follow from the next lemma.

Lemma 5 For every ǫ > 0 there are α(ǫ) > 0 and c(ǫ) > 0 such that for every graph H
on n vertices that satisfies ∆(H) − δ(H) ≤ αn and ǫ

n
≤ p ≤ 1 − ǫ

n
, a graph distributed

according to G(H, p) has the following properties with probability at least 1 − e−cn:
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• ∆(G) − δ(G) ≤ 2αn.

• G has a degree matching of size at least 2αn.

In the course of the proof of Lemma 5, we need the following variation of the standard
bounds of binomial variables (see, e.g., [4] Chapter 1, Theorem 6).

Claim 6 Let X ∼ Bin(k, p) where n/4 ≤ k ≤ 3n/4 is large enough and p ≤ 1/2.

• There is an absolute constant ζ > 0 such that if p ≥ 100
n

then for every z ∈ [kp −
2
√

np, kp + 2
√

np], Pr [X = z] ≥ ζ√
np

.

• For every constants ǫ > 0 and B > 0 there is a constant ξ(ǫ, B) > 0 such that if
ǫ
n
≤ p ≤ 100

n
then for every 0 ≤ z ≤ B, Pr [X = z] ≥ ξ(ǫ, B).

Proof of Lemma 5. We will prove this theorem for p ≤ 1
2
; the case p > 1

2
follows by

taking the complement. The first item follows using Chernoff-type bounds; For any pair
of vertices u and v, we have |dH(u)−dH(v)| ≤ αn, so for every p, the probability that the
difference after modifying edges is at least 2αn is exponentially small. Using the union
bound we conclude that the first property holds with probability exponentially close to
1, as claimed.

For the second item, let V1 = {v : dH(v) ≤ n/2} and let V2 = V − V1. We can assume
that |V1| ≥ n/2, the other case can be treated similarly. Let U1 ⊆ V1 be an arbitrarily
chosen set of size n/4. Clearly, for every u ∈ U1, there are at least n/4 vertices outside
U1 which are non-adjacent to u.

We expose the neighbors of U1 in G in three stages. At the first stage, we expose
the edges inside U1. For every vertex u ∈ H , denote by Nu the set of vertices outside
U1 that are adjacent to u in H , and by Su the set of non-adjacent vertices to u outside
U1. At the second stage, for every u ∈ U1 and v ∈ Nu, we delete the edge uv inde-
pendently with probability p. We denote the degree of u after this stage by d∗(u). Let
b = max {10, ⌈√np⌉}. We group the vertices of U1 to bins of width b, where the bin Bi

contains all the vertices that satisfy d∗(u) + |Su|p ∈ [bi, b(i + 1)). That is, the vertices
are grouped according to their expected final degree. We say that Bi is heavy if |Bi| ≥ b

8
.

Recalling that |U | = n/4 we deduce that there are at least n
8

vertices inside heavy bins.

At the third stage, for every u ∈ U1 and w ∈ Su, we add the edge uw independently
with probability p. The degree of u after this stage (which is also the degree of u in G) is
a random variable Xu = d∗(u) + Yu, where Yu ∼ Bin(|Su|, p) and all the variables {Yu}
are independent.

A set M of disjoint pairs of random variables is a matching if every two variables
within a pair differ by exactly 1. We next claim that the set {Xu} contains a matching
of size at least 2αn with probability at least 1 − e−c(ǫ)n. This will finish the proof as it
proves that there is a large degree matching of the vertices of U1 (and therefore, of the
vertices of V ).

the electronic journal of combinatorics 16 (2009), #N14 4



We first prove that the expected number of matched variables is linear in n. Let
{bj, bj + 1, ..., b(j + 2) − 1} be an interval that corresponds to a heavy bin Bj , and for
bj ≤ k < b(j +2) denote by Tk the number of vertices from Bj with degree exactly k after
the third stage. A degree matching can be constructed by matching vertices of degree
bj + 2r to vertices of degree bj + 2r + 1, and therefore by linearity of expectation the
expected size of a largest matching in Bj is at least

b−1
∑

r=0

E[min {Tbj+2r, Tbj+2r+1}]. (1)

We note that the intervals that correspond to the bins are not disjoint, though the bins
are; we define it so to avoid a problem where most of vertices in some bin Bj have degree

bj + b − 1 and p is very small. Let Aj be
|Bj |ζ

b
, if p ≥ 100

n
, and |Bj| · ξ(ǫ, 100) otherwise,

where ζ and ξ are defined in Claim 6. In both cases it is easy to verify that Aj = Θ
(

|Bj |
b

)

.

Since the final degree of every vertex u in Bj is distributed as d∗(u) + Bin(|Su|, p) and
n/4 ≤ |Su| ≤ 3n/4, the expected value of each Tbj+r, r ∈ {0, . . . , 2b− 1}, is at least Aj by
Claim 6. We consider the following two cases:

Aj ≤ 16. In this case we have |Bj| = Θ(b). The probability that a certain vertex v will
be of a certain degree in the corresponding interval is Θ(1

b
), where this probability may

depend either on the constants ζ or ξ. Also, the degrees of every two vertices from Bj are
independent. It is fairly easy to show that with some positive constant probability (that
depends on either ξ or ζ) both Tbj+2r and Tbj+2r+1 are non-zero. Therefore, the expected
size of a largest matching is linear in b (and hence in |Bj|), as desired.

Aj > 16. For a fixed k, as E[Tk] ≥ Aj we have

E[Tk] − 2
√

E[Tk] ≥ E[Tk]/2 ≥ Aj/2.

Note that since Tk is a sum of independent indicator variables, the standard deviation of
Tk is bounded by

√

E[Tk]. Therefore, by Chebyshev’s Inequality, for every 0 ≤ r < b,
with probability at least 3/4 we have Tbj+r ≥ Aj/2. We conclude that with probability
at least 1/2, a pair of adjacent values Tbj+2r and Tbj+2r+1 are both at least Aj/2, and
therefore by (1) the expected value of the largest matching in Bj is Ω(|Bj|).

To summarize, we proved that the expected size of a largest matching in every heavy
bin Bj is Ω(|Bj|). Denote by Z the maximum size of a degree matching in U1. Since
there are at least n/8 vertices in heavy bins and the expected value of Z is at least the
sum of expectations over all heavy bins, we conclude that E[Z] ≥ c1(ǫ)n, where c1(ǫ) is a
constant that may depend on ǫ.

Next we will prove that the size of the largest matching is concentrated near the
expectation. We use a vertex exposure martingale, where Zi is the expected size of
the largest degree matching after having exposed the first i vertices from U1 and their

the electronic journal of combinatorics 16 (2009), #N14 5



neighbors, and Z = ZU1
is the size of a largest matching. Since exposing the edges of a

certain vertex may change the expected size of a maximum degree matching by at most
1, the martingale satisfies the Lipschitz condition (see, e.g., [1], Chapter 7). By Azuma’s
Inequality, for α = c1(ǫ)/4 and c(ǫ) = 8 · c2

1(ǫ), the size of the matching is at least 2αn
with probability 1 − e−c(ǫ)n, and the lemma follows.

Proof of Corollary 2. Again we consider only p ≤ 1
2
, otherwise the proof will follow

by taking the complement. The case p = Ω( 1
n
) follows easily by taking H to be the empty

graph. For smaller values of p, every graph distributed as G(n, p) asymptotically almost
surely has n − o(n) isolated vertices and is bipartite (see, e.g., [6]). Assuming that the
graph has these properties, we have two sets W1, W2 of vertices that are independent and
contain all non-isolated vertices of G. Next we add the isolated vertices to W1 and W2 and
get an equipartition (V1, V2), such that V1 and V2 are independent and thus the partition
is perfectly balanced, as desired.
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