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Abstract

The famous Erdős-Heilbronn conjecture (first proved by Dias da Silva and Hami-
doune in 1994) asserts that if A is a subset of Z/pZ, the cyclic group of the integers
modulo a prime p, then |A +̂ A| > min{2 |A| − 3, p}. The bound is sharp, as is
shown by choosing A to be an arithmetic progression. A natural inverse result
was proven by Karolyi in 2005: if A ⊂ Z/pZ contains at least 5 elements and
|A +̂ A| 6 2 |A| − 3 < p, then A must be an arithmetic progression.

We consider a large prime p and investigate the following more general question:
what is the structure of sets A ⊂ Z/pZ such that |A +̂ A| 6 (2 + ǫ) |A|?

Our main result is an asymptotically complete answer to this question: there
exists a function δ(p) = o(1) such that if 200 < |A| 6 (1 − ǫ′)p/2 and if |A +̂ A| 6

(2 + ǫ) |A|, where ǫ′ − ǫ > δ > 0, then A is contained in an arithmetic progression
of length |A +̂ A| − |A| + 3.

With the extra assumption that |A| 6 (1
2 − 1

logc p)p, our main result has Dias da
Silva and Hamidoune’s theorem and Karolyi’s theorem as corollaries, and thus, our
main result provides purely combinatorial proofs for the Erdős-Heilbronn conjecture
and an inverse Erdős-Heilbronn theorem.

1 Introduction

For A a subset of an abelian group, we define the sumset of A to be the set of all sums of
two elements in A, namely,

A + A := {a + b : a, b ∈ A};

∗V. Vu is supported by NSF grant DMS-0901216 and DOD grant AFOSAR-FA-9550-09-1-0167.

the electronic journal of combinatorics 16 (2009), #R100 1



and we define the restricted sumset of A to be the set of all sums of two distinct elements
of A, namely,

A +̂ A := {a + b : a, b ∈ A and a 6= b}.

Sumsets in a general abelian group have been extensively studied (see [31] for a survey),
and we will focus on sumsets of Z/pZ, the integers modulo p, where p is a prime (see [29]
for a survey). For variations on restricted sumset addition, see [25], [26], and [27].

Cauchy [8] and Davenport [9] proved independently that for every A ⊂ Z/pZ we have
|A + A| > min{p, 2 |A| − 1}. The problem of finding a lower bound for the cardinality
of restricted sumsets in Z/pZ is much harder. Erdős and Heilbronn made the following
conjecture in 1964, which was proved by Dias da Silva and Hamidoune [10] thirty years
later.

Theorem 1.1. [10] For every A ⊂ Z/pZ, we have |A +̂ A| > min{p, 2 |A| − 3}.

The 2 |A|−1 term in the Cauchy-Davenport theorem and the 2 |A|−3 term in the Dias
da Silva-Hamidoune theorem come from the extremal case when A is an arithmetic pro-
gression. For unrestricted sumsets, Vosper [40, 39] showed that an arithmetic progression
is indeed the only extremal example:

Theorem 1.2. [40, 39] For A ⊂ Z/pZ, if |A + A| = 2 |A|−1 < p, then A is an arithmetic
progression.

Though the situation with restricted sumsets is much more difficult, in 2005, Gyula
Károlyi [24] proved a theorem that is just as strong as Vosper’s:

Theorem 1.3. [24] For A ⊂ Z/pZ, if |A +̂ A| = 2 |A| − 3 < p and 5 6 |A|, then A is an
arithmetic progression.

Theorem 1.3 is notable in that Károlyi [24] succeeds in using an algebraic approach to
prove a structural result, which has the added benefit that using ideas in [21, 22], Károlyi
is able extend Theorem 1.3 to an arbitrary abelian group (see [24]).

Our goal is to investigate the following more general question:

Question 1.4. For a constant 0 6 c 6 1, classify all subsets A ⊂ Z/pZ for which
|A| < p/(2 + c) and |A +̂ A| 6 (2 + c) |A|.

The c = 1 case of Question 1.4 is similar to a conjectural result suggested by Lev [25,
page 29] (see Remark 5.1 for a comparison).

Partial answers for Question 1.4 were given by Bilu, Lev, and Ruzsa [5], by Freiman,
Low, and Pitman [13], by Lev [25], and by Schoen [33]. To the best of our knowledge, the
most current result is the following from [33]:

Theorem 1.5. [33] For every ǫ > 0, there exists a constant n0 = n0(ǫ) such that every
set A ⊂ Z/pZ satisfying n0 6 |A| 6 p/35 and satisfying

|A +̂ A| 6 (2.4 − ǫ) |A|

is contained in an arithmetic progression in Z/pZ of at most |A +̂ A| − |A| + 3 terms.
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Our main result is the following:

Theorem 1.6 (main theorem). There exist absolute constants p0 > 294 and c > 0 such

that the following holds for all p > p0 and all 0 6 ǫ < ǫ′ 6 10−4 satisfying ǫ′−ǫ >
c(log log p)2

(log p)2/3
.

If 200 6 |A| 6
p−3

2(1+ǫ′)
and if

|A +̂ A| 6 (2 + ǫ) |A| ,

then A is contained in an arithmetic progression of at most |A +̂ A| − |A| + 3 terms.

When |A| > (p + 3)/2, it is trivial that A +̂ A is all of Z/pZ. Thus, Theorem 1.6
provides an asymptotically complete answer to Question 1.4 for small c via combinatorial
methods. As corollaries to Theorem 1.6, it is easy to derive asymptotically complete
versions of Theorem 1.1 and Theorem 1.3, thus providing alternate proofs for the Erdős-
Heilbronn conjecture and an inverse Erdős-Heilbronn theorem, except for those A such
that (1 − δ)p/2 < |A| 6 (p + 1)/2 or |A| < 200, where δ goes to zero as p increases.

2 A combinatorial approach

There are two previous approaches to proving of the Erdős-Heilbronn conjecture. Dias
da Silva and Hamidoune [10] used representation theory of the symmetric group, Young
tableau, and exterior algebras in their proof. Later, Alon, Nathanson, and Ruzsa [3, 4]
found another proof using the powerful Combinatorial Nullstellensatz (see [1, 2, 23] for
surveys). Both proofs have a strong algebraic flavor, and in a remarkable step forward,
Károlyi [24] used the Combinatorial Nullstellensatz and careful algebraic analysis to prove
Theorem 1.3 ([24] also gives an alternate proof of Theorem 1.2).

A more combinatorial approach to the Erdős-Heilbronn conjecture (Theorem 1.1) is
the rectification method, introduced by Freiman [12]. To apply the rectification method,
one shows that if |A +̂ A| is sufficiently small then A can be viewed as a set of integers,
and then one appeals to a version of Theorem 1.1 for subsets of integers (which is not
hard to prove). The rectification method was used by Freiman, Low, and Pitman [13] in
1999 to prove Theorem 1.1 with the additional assumption that 60 6 |A| 6 p/50.

To prove our main result (Theorem 1.6), we will combine ideas from the rectification
method with a strong new result due to Serra and Zémor [36] (see Subsection 4.2 for a
discussion of the Serra-Zémor result). The first step in our proof, which we will carry out
in the next section, is to reduce the study of restricted sumsets to non-restricted sumsets.
This approach was first applied to the inverse Erdős-Heilbronn problem by Schoen [33] in
2002.

3 Translating between A + A and A +̂ A

Lemma 3.1. There exists an absolute constant c0 such that if p is sufficiently large and
A ⊂ Z/pZ, then

|A +̂ A| > |A + A| − p

(
c0(log log p)2

(log p)2/3

)
.
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Proof. We proceed by bounding the cardinality of the set E := {z ∈ A : z + z /∈ A +̂ A}.
Note that by the definition of sumset and restricted sumset, |A + A| = |A +̂ A| + |E|. If

|E| > p

(
c0(log log p)2

(log p)2/3

)

for a particular constant c0, then by [7] and the fact that p is sufficiently large, we have
that the set E contains a non-trivial three-term arithmetic progression, say a, b, c ∈ E
such that a 6= c and a + c = 2b. But then b + b = 2b = a + c ∈ A +̂ A, a contradiction of
the definition of the set E. Thus, we must have that

|E| < p

(
c0(log log p)2

(log p)2/3

)
.

Hence

|A + A| = |A +̂ A| + |E| < |A +̂ A| + p

(
c0(log log p)2

(log p)2/3

)
,

which is the desired inequality.

Later, we found out that Schoen [33] proved a similar result to the above, using a
different argument. Both arguments use results of Bourgain [6, 7] on integer sets contain-
ing no arithmetic progressions, and in the case when |A|/p is bounded from below by a
constant, our bound compares favorably to [33].

4 Background Results

4.1 Rectification

The rectification approach to sumset problems is to show that a subset A ⊂ Z/pZ must
behave the same way as a subset B ⊂ Z, and then to appeal to a sumset result for the
integers. For example, Schoen [33] proved Theorem 1.5 by passing to the integers and
then applying a corollary of the following result, which is due to Lev (see [25, Theorem 1]).

Theorem 4.1. [25] Let B be a set of n > 3 non-negative integers such that gcd(B) = 1
and 0 ∈ B. Then,

∣∣B +̂ B
∣∣ >

{
max(B) + |B| − 2 if max(B) 6 2 |B| − 5,

2.61 |B| − 6 if max(B) > 2 |B| − 4.

The rectification method was used by Freiman, Low, and Pitman [13, Theorem 2] to
give the first partial answer to Question 1.4, and Lev [25] improved on their result to get
the following theorem.

Theorem 4.2. [25] Let A be a subset of Z/pZ where 200 6 |A| 6 p/50. If

|A +̂ A| 6 2.18 |A| − 6,

then A is contained in an arithmetic progression of at most |A +̂ A| − |A| + 3 terms.
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We will use Theorem 4.2 to prove our main theorem (Theorem 1.6) in the case where
A has cardinality 200 6 |A| 6 p/50.

4.2 The isoperimetric method

The isoperimetric method is an alternative to the rectification method, and it is used to
indirectly show that a subset A ⊂ Z/pZ behaves like a subset of the integers, typically by
studying an extremal set that is constructed using the original set A. The isoperimetric
method was introduced by Hamidoune [14] and was developed by the same author [15, 16]
along with Serra and Zémor as coauthors [18, 19]. For a survey of the isoperimetric
method, see [34].

The following is the main result from the isoperimetric method that we will use, and
it was proven by Serra and Zémor [36, Theorem 3].

Theorem 4.3. [36] There exist positive numbers p0 and ǫ′ such that for all primes p > p0,
any subset A of Z/pZ such that

(i) |A + A| < (2 + ǫ′) |A| and

(ii) m = |A + A| − 2 |A| satisfies m 6 min{|A| − 4, p − |A + A| − 3}

is contained in an arithmetic progression of at most |A|+m+1 terms. Furthermore, one
can take ǫ′ = 10−4 and p0 = 294.

Previous inverse theorems for sumsets focused on making the value of ǫ′ as large as
possible, even at the expense of requiring |A| to be small. Serra and Zémor [36], on the
other hand, proved the above result allowing |A| to be as large as possible, at the expense
of requiring ǫ′ to be small.

5 Proof of the main theorem (Theorem 1.6)

By Theorem 4.2, we may assume that |A| > p/50. By hypothesis |A +̂ A| 6 (2 + ǫ) |A|,
and so by Lemma 3.1,

(2 + ǫ) |A| > |A +̂ A| > |A + A| − p

(
c0(log log p)2

(log p)2/3

)

> |A + A|

(
1 −

c′(log log p)2

(log p)2/3

)
,

where, say, c′ = 50c0.
It is straightforward to verify condition (ii) of Theorem 4.3, and so we need to verify

condition (i) by showing
2 + ǫ

1 −
(

c′(log log p)2

(log p)2/3

) 6 2 + ǫ′. (1)
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Setting c = (2 + 10−4)c′, we see that Inequality (1) is true if c(log log p)2

(log p)2/3
6 ǫ′ − ǫ, which

holds by assumption.
Thus, we can apply Theorem 4.3 to show that A is contained in an arithmetic progres-

sion with at most |A + A|−|A|+1 6 (1+ǫ′) |A|+1 6 (p−1)/2 terms. The next step is to
show that A is Freiman isomorphic of order 2 to a set integers satisfying the hypotheses
of Theorem 4.1, which will allow us to conclude the result (see [38, Chapter 5.3] for a
discussion of Freiman isomorphisms).

Let L := {a0+id mod p : 0 6 i 6 (1+ǫ′) |A|} be an arithmetic progression containing
A, where i, a0, and d are integers. Note that L is Freiman isomorphic or order 2 to the
set of integers M = {0, 1, 2, . . . , ⌊(1 + ǫ′) |A|⌋} and that A is Freiman isomorphic of order
2 to the set of integers B = {i ∈ M : a0 + id mod p ∈ A}. We may assume (by shifting L
if necessary) that a0 mod p ∈ A, so that 0 ∈ B and B consists of non-negative integers.
Since B is sufficiently dense in the interval M (recall, M contains at most (1 + ǫ′) |B|+ 1
elements), we know that there exist two elements of B that differ by exactly 1, and so
gcd(B) = 1. Finally, we have

∣∣B +̂ B
∣∣ = |A +̂ A| 6 (2 + ǫ) |A| = (2 + ǫ) |B|, and so by

Theorem 4.1, we have that

max(B) 6
∣∣B +̂ B

∣∣ − |B| + 2 = |A +̂ A| − |A| + 2.

Thus, B is contained in M ′ := {0, 1, 2, . . . , |A +̂ A| − |A| + 2}, and so A is contained in
L′ := {a0 + id mod p : 0 6 i 6 |A +̂ A| − |A| + 2}. We have thus shown that A is
contained in an arithmetic progression of at most |A +̂ A| − |A| + 3 terms. �

Remark 5.1. It has been conjectured (see [25, page 29]) that a structure theorem along
the lines of Theorem 1.6 may hold for a subset A ⊂ Z/pZ satisfying |A +̂ A| 6 3 |A| − 7
and |A| 6 (p−C)/2, for some relatively small absolute constant C. However, it is possible
to randomly construct sets A such that |A| is slightly larger than p/3 and such that A has
no arithmetic structure. Such a set A automatically satisfies |A +̂ A| 6 3 |A| − 7 (since
3 |A| > p + 7) and therefore violates the conjecture. In general, by the same random
construction, any structure result derived from the hypothesis |A +̂ A| 6 (2 + c) |A|,
where 0 6 c 6 1 is a constant, must also include the hypothesis |A| 6 p/(2 + c). For this
reason, we include the hypothesis |A| < p/(2 + c) in Question 1.4.
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Nombres Bordeaux 17 (2005), no. 1, 181–193.

[29] Øystein J. Rødseth, Sumsets mod p, Skr. K. Nor. Vidensk. Selsk. (2006), no. 4, 1–10.

[30] I. Z. Ruzsa, Arithmetical progressions and the number of sums, Period. Math. Hungar.
25 (1992), no. 1, 105–111.

[31] Imre Z. Ruzsa, Sumsets, European Congress of Mathematics, Eur. Math. Soc.,
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