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Abstract

Consider the following one-player game. Starting with the empty graph on n

vertices, in every step r new edges are drawn uniformly at random and inserted into

the current graph. These edges have to be colored immediately with r available

colors, subject to the restriction that each color is used for exactly one of these

edges. The player’s goal is to avoid creating a monochromatic copy of some fixed

graph F for as long as possible.

We prove explicit threshold functions for the duration of this game for an arbi-

trary number of colors r and a large class of graphs F . This extends earlier work

for the case r = 2 by Marciniszyn, Mitsche, and Stojaković. We also prove a similar

threshold result for the vertex-coloring analogue of this game.

1 Introduction

Consider the following one-player game. Starting with the empty graph on n vertices,
in every step r new edges are drawn uniformly at random and inserted into the current
graph. These edges have to be colored immediately with r available colors, subject to
the restriction that each color is used for exactly one of these edges. The player’s goal
is to avoid creating a monochromatic copy of some fixed graph F for as long as possible.
We call this game the balanced online F -avoidance edge-coloring game (with r colors).
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For which functions N = N(n) can the player ‘survive’ for N steps a.a.s. (asymptotically
almost surely, with probability tending to 1 as n tends to infinity), i.e., avoid creating a
monochromatic copy in the first N steps? We say that N0 = N0(n) is a threshold function
for this game if on the one hand a.a.s. the player survives for any N = o(N0) steps if she
uses an appropriate strategy, but on the other hand a.a.s. she will not survive for any
N = ω(N0) steps, regardless of her strategy.

Note that in the special case r = 1 this simply asks about the appearance of the
first copy of F in the graph process where edges are drawn uniformly at random and
revealed one by one. This problem dates back to the pioneering work of Erdős and Rényi
[4] and was eventually solved in full generality by Bollobás [2], who proved the following
result. For any graph G, let eG or e(G) denote its number of edges, and similarly vG

or v(G) its number of vertices. Then the threshold for the appearance of a copy of F is
N0(F, n) = n2−1/m(F ), where m(F ) := maxH⊆F eH/vH .

Our interest is in the case r ≥ 2. The game was introduced for the case r = 2
by Marciniszyn, Mitsche, and Stojaković [10], who derived explicit threshold functions
N0(F, n) for graphs F satisfying certain properties. For example, their result covers cycles
of arbitrary size, but is not applicable to cliques of any size larger than 3. We prove a
similar result for the general case when r is an arbitrary fixed integer. Since our methods
are different (in fact, more elementary) from those used in [10], we also obtain a more
general statement for the case r = 2. In order to state our result, we need to introduce
some notation. For any graph F , let

m2(F ) := max
H⊆F

eH − 1

vH − 2
(1)

(in this and similar definitions, we assume that the maximum is taken over appropriate
subgraphs H [here those satisfying vH ≥ 3], and do not worry about graphs with maximum
degree 0 or 1, which are not always covered by our definitions). For any graph F and for
r ≥ 1, let

mr
2b(F ) := max

H⊆F

r(eH − 1) + 1

r(vH − 2) + 2
. (2)

While the parameter m2 is a standard notation and appears in several known results (cf.
the paragraph on related work below), the parameter mr

2b has not been used before. The
overline indicates the online nature of the game (this is in line with [11, 12, 13]), the 2
indicates that the parameter is related to an edge-coloring problem, and the b stands for
‘balanced’.

Note that the fraction on the right hand side of (2) is the ratio of edges to vertices
in a graph formed by r copies of H that intersect in one edge and are pairwise vertex-
disjoint otherwise. It is not hard to see that for F fixed, the parameter mr

2b(F ) is strictly
increasing in r and satisfies

lim
r→∞

mr
2b(F ) = m2(F ).

With these notations, our main result reads as follows.
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Theorem 1 (Main result). Let r ≥ 1 be fixed, and let F be a graph that has a subgraph
F− ⊂ F with eF − 1 edges satisfying

m2(F−) ≤ mr
2b(F ). (3)

Then the threshold for the balanced online F -avoidance edge-coloring game with r colors
is

N0(F, r, n) = n2−1/mr
2b(F ).

The condition (3) is only used in the upper bound proof. In other words, we show that
n2−1/mr

2b
(F ) is a general lower bound that is indeed the threshold of the game provided (3)

is satisfied.
Let us state explicitly what Theorem 1 implies for the two most prominent special

cases. We denote cycles and cliques of size ` by C` and K` respectively. If F is a cycle,
we obtain the following generalization of the main result from [10].

Corollary 2. For all ` ≥ 3 and r ≥ 1, the threshold for the balanced online C`-avoidance
edge-coloring game with r colors is

N0(`, r, n) = n2− r(`−2)+2
r(`−1)+1 .

For the case where F is a clique, Theorem 1 yields only partial results. Perhaps
surprisingly, the desired threshold follows readily if e.g. ` = r = 100, but not in the
seemingly simpler case ` = 4, r = 2. This is due to the fact that for ` fixed, inequality (3)
is only satisfied if we choose r large enough.

Corollary 3. For all ` ≥ 2 and r ≥ `, the threshold for the balanced online K`-avoidance
edge-coloring game with r colors is

N0(`, r, n) = n
2− r(`−2)+2

r((`
2)−1)+1 .

Theorem 1 is not applicable to trees. In fact, it has been shown in [10] that for F = P4

(a path on four edges), the threshold is strictly higher than n2−1/m2
2b(P4) = n6/7.

Related work The main motivation for the game studied here comes from an ‘unbal-
anced’ game in which the edges are presented one by one and can be colored by one of r
available colors without any restriction. Again the goal is to avoid creating a monochro-
matic copy of some fixed graph F for as long as possible. This game was introduced by
Friedgut et al. in [5] for the case where r = 2 and F = K3, and was further investigated
in [12, 13]. There a general result similar to Theorem 1 was proved for the game with
two colors. In particular, the thresholds for the cases where F is a cycle or a clique of
arbitrary size were found. The thresholds given in Corollaries 2 and 3 are strictly lower
than these ‘unbalanced’ thresholds. For example, if F = K3 and r = 2, the threshold is
n4/3 in the unbalanced game and n6/5 in the balanced game.
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A priori, this could be due to the fact that the corresponding offline problems are
not equally hard. However, it turns out that this is not the case: The graph obtained
after N steps of the above unbalanced game is uniformly distributed over all graphs on n
vertices with exactly N edges. Thus the offline problem corresponding to the unbalanced
game is the following: Given a graph drawn uniformly at random from all graphs on n
vertices with N edges, is there an r-edge-coloring avoiding monochromatic copies of F ? A
classical result by Rödl and Ruciński [15, 16] states that for any number of colors r ≥ 2,
the threshold for this property is N0(F, n) = n2−1/m2(F ), unless F is a star forest. (This
is a simplified version of the full result.)

Similarly, the offline problem corresponding to the balanced game considered in this
paper is the following: Given a random graph with rN edges and a random partition of
these edges into sets of size r, is there an r-edge-coloring avoiding monochromatic copies
of F such that every color is used for exactly one edge from each partition class? It can
be shown [8] that for ‘most’ graphs F the threshold for this problem is also N0(F, n) =
n2−1/m2(F ). Thus the difference in the thresholds of the two games is indeed a result of
our online setting and not just inherited from the underlying offline problems.

Another closely related problem was studied first by Krivelevich, Loh, and Sudakov
in [7], and solved completely in [14]. As in our game, in every step the player is presented
r random edges of the complete graph on n vertices. The difference to our scenario is that
she has to keep only one of them and is allowed to discard the remaining r−1 edges. This
is known in the literature as a (generalized) Achlioptas process. Again the question is for
how long she can avoid creating a copy of some fixed graph F . Note that this setup can
be viewed as a relaxation of the balanced Ramsey game studied here, the relaxation being
that the player has only to worry about copies of F in one specific color. The general
threshold found in [14] coincides with the formula in Corollary 3 whenever the corollary
is applicable. It is an interesting open question whether the two problems have in fact the
same threshold for all nonforests F (it is not hard to see that the two thresholds differ if
F is e.g. a star). We hope to address this in future work.

The vertex case We now present our results for the vertex case, which has not been
studied before. As usual, we denote by Gn,p a random graph on n vertices obtained by
including each of the

(
n
2

)
possible edges with probability p independently. The setup is

as follows: The vertices of a random graph Gn,p are revealed to the player r vertices
at a time, along with all edges induced by the vertices revealed so far. The r vertices
revealed in each step have to be colored immediately with r available colors subject to
the restriction that each color is used for exactly one vertex. Again the goal is to avoid
a monochromatic copy of some fixed graph F . We call this game the balanced online F -
avoidance vertex-coloring game. For which densities p = p(n) of the underlying random
graph can the player color all n vertices a.a.s.? We say that p0 = p0(n) is a threshold
function for this game if for p = o(p0) the player succeeds in coloring all vertices a.a.s. if
she uses an appropriate strategy, but for p = ω(p0) she fails to do so a.a.s., regardless of
her strategy.
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We prove the following vertex-coloring analogue to Theorem 1. For any graph F , let

m1(F ) := max
H⊆F

eH

vH − 1
. (4)

For any graph F and for r ≥ 1, let

mr
1b(F ) := max

H⊆F

reH

r(vH − 1) + 1
. (5)

Theorem 4. Let r ≥ 1 be fixed, and let F be a graph that has an induced subgraph F ◦ ⊂ F
on vF − 1 vertices satisfying

m1(F ◦) ≤ mr
1b(F ). (6)

Then the threshold for the balanced online F -avoidance vertex-coloring game with r colors
is

p0(F, r, n) = n−1/mr
1b(F ).

Again the condition (6) is only needed in the upper bound proof. Theorem 4 is
applicable to cycles and cliques of arbitrary size, regardless of the number of colors r.

Corollary 5. For all ` ≥ 3 and r ≥ 1, the threshold for the balanced online C`-avoidance
vertex-coloring game with r colors is

p0(`, r, n) = n−
r(`−1)+1

r` .

Corollary 6. For all ` ≥ 2 and r ≥ 1, the threshold for the balanced online K`-avoidance
vertex-coloring game with r colors is

p0(`, r, n) = n
− r(`−1)+1

r(`
2) .

For the vertex case, the unbalanced game is better understood than for the edge case.
In [11], threshold functions for the game with an arbitrary number of colors and a class
of graphs including cycles and cliques of arbitrary size were proved.

Let us compare the thresholds of the two games for a very special case: Setting F = K2,
we are dealing with proper r-vertex-colorings in the usual sense. While for the balanced
game Corollary 6 yields a threshold of n−1−1/r, the threshold in the unbalanced game is
n−1−1/(2r−1) [11]. Both exponents converge to −1, which is indeed the exponent of the
threshold for proper r-vertex-colorability in an offline setup (see e.g. [1]). Note that the
speed of convergence differs dramatically between the two cases.

The proofs Our lower bound proofs rely on the first moment method. In the edge case,
we apply it to the number of copies of (constant-size) r-matched graphs in the random
r-matched graph Gr

n,m. These notions are elementary generalizations of their well-known
non-matched counterparts and have applications beyond the present paper (e.g. [8]).

Following [10], our upper bound proofs proceed by two-round exposure and apply
counting versions of known offline results to the first round. In the second round we use
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standard second moment calculations which do not require F to satisfy any balancedness
condition (as is needed by the approach pursued in [10]).

For both the edge and vertex case, the extension of the ideas presented in [10] to
more than two colors is an application of Hall’s well-known theorem about matchings in
bipartite graphs (see e.g. [3]).

Organization of this paper For ease of exposition, we settle the somewhat simpler
vertex case first. After giving some general preliminaries in Section 2, we prove Theorem 4
in Section 3 and Theorem 1 in Section 4. Both proofs are preceded by their own case-
specific preliminary section.

2 General preliminaries

All graphs are simple and undirected. We write ∼= to denote graph isomorphism.
We use standard asymptotic notations. We sometimes write f � g for f = o(g), and

similarly f � g for f = ω(g), f <_ g for f = O(g), f >_ g for f = Ω(g), and f � g for
f = Θ(g). This is particularly useful in long chains of asymptotic (in-)equalities.

As already mentioned, by Gn,p we denote a random graph on n vertices obtained by
including each of the

(
n
2

)
possible edges with probability p independently. We denote

the underlying vertex set by {v1, . . . , vn}. By Gn,m we denote a graph drawn uniformly
at random from all graphs on n vertices with m edges. It is well-known that these two
models are asymptotically equivalent if m =

⌊(
n
2

)
p
⌋
� n2p. We will need the following

lemma.

Lemma 7. Let F be a fixed graph. The expected number of copies of F in Gn,p (or Gn,m

with m � 1) is of order nvF peF (where p := mn−2).

Proof. Let Aut(F ) denote the number of automorphisms of F . There are
(

n

vF

)
vF !

Aut(F )
� nvF

possible copies of F in Kn, and each of them is present in Gn,p with probability peF , resp.
in Gn,m with probability

((n
2)−eF

m−eF

)

((n
2)
m

) =
m(m − 1) . . . (m − eF + 1)(

n
2

)
(
(

n
2

)
− 1) . . . (

(
n
2

)
− eF + 1)

� (mn−2)eF .

We state the following proposition for further reference.

Proposition 8. For a, c, C ∈ R and b > d > 0, we have

a

b
≥ C ∧

c

d
≤ C =⇒

a − c

b − d
≥ C.
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3 Proof of Theorem 4

In this section we prove our results for the vertex case. We start by fixing our notation
and stating two results we will need in the upper bound proof.

3.1 Preliminaries

We denote the set of vertices that are revealed in step k, 1 ≤ k ≤ n/r, by Sk :=
{v(k−1)r+1, . . . , vkr}. Furthermore, we let Gk denote the graph that is visible to the player
after step k, i.e., the subgraph of Gn,p induced by ∪1≤i≤kSi := {v1, . . . , vkr}. Thus the
player’s task in step k is to extend the coloring of Gk−1 to a coloring of Gk without creating
a monochromatic copy of F and using each color exactly once.

Janson’s inequality is a very useful tool in probabilistic combinatorics. In many cases,
it yields an exponential bound on lower tails where the second moment method only gives
a bound of o(1). Here we formulate a version tailored to random graphs.

Theorem 9 ([6]). Consider a family (potentially a multi-set) F = {Hi | i ∈ I} of graphs
on the vertex set {v1, . . . , vn}. For each Hi ∈ F , let Xi denote the indicator random
variable for the event Hi ⊆ Gn,p, and for each pair Hi, Hj ∈ F , i 6= j, write Hi ∼ Hj

if Hi and Hj are not edge-disjoint. Let

X =
∑

Hi∈F

Xi,

µ = E[X] =
∑

Hi∈F

pe(Hi),

∆ =
∑

Hi,Hj∈F
Hi∼Hj

E[XiXj] =
∑

Hi,Hj∈F
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj).

Then for all 0 ≤ δ ≤ 1 we have

Pr[X ≤ (1 − δ)µ] ≤ e
− δ2µ2

2(µ+∆) .

In particular, Janson’s inequality yields the following strengthening of a result from [9].
The proof is essentially the one given there.

Theorem 10 ([9]). Let r ≥ 2 and F be a nonempty graph. Then there exist positive
constants C = C(F, r) and a = a(F, r) such that for p(n) ≥ Cn−1/m1(F ), where m1(F ) is
defined as in (4), the random graph Gn,p a.a.s. has the property that in every r-vertex-
coloring there are at least anvF peF monochromatic copies of F .

3.2 Lower Bound

In this section we show that a simple greedy strategy allows the player to color all vertices
without creating a monochromatic copy of F a.a.s. if p � n−1/mr

1b(F ). Throughout this
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section, we fix F and r, and let

H = H(F, r) := arg max
H′⊆F

re(H ′)

r(v(H ′) − 1) + 1
(7)

(cf. (5)). The greedy H-avoidance strategy tries, in every step k > 0, to extend the
coloring of Gk−1 to a coloring of Gk without creating a monochromatic copy of H. Any
balanced coloring of Sk that avoids monochromatic copies of H is acceptable. If no such
coloring exists, the greedy H-avoidance strategy simply gives up (possibly prematurely,
as it might still be able to avoid monochromatic copies of F for some time). Clearly,
if the greedy H-avoidance strategy is successful, it yields a coloring which contains no
monochromatic copy of H and therefore also no monochromatic copy of F .

We now derive a necessary condition for the greedy H-avoidance strategy to fail. This
condition is ‘static’ in the sense that we can decide whether it holds simply by looking at
the random graph Gn,p on which the game is played before the actual game starts. Recall
that Sk := {v(k−1)r+1, . . . , vkr}. For 1 ≤ k ≤ n/r, we define the event Ek as follows:

Ek :={∃H1, H2, . . . , Hr ⊂ Gn,p : H1, H2, . . . , Hr
∼= H

∧ |V (Hi) ∩ Sk| = 1, 1 ≤ i ≤ r

∧ V (Hi) ∩ Sk = V (Hj) ∩ Sk =⇒ |V (Hi) ∩ V (Hj)| = 1, 1 ≤ i < j ≤ r}.

(8)

In words, the event Ek occurs if there are at least r copies of H intersecting with Sk in
exactly one vertex, such that if two of these copies intersect Sk in the same vertex, they
are otherwise disjoint.

Let Xk be the indicator variable for the event Ek, and set X :=
∑

1≤k≤n/r Xk.

Claim 11. If the greedy H-avoidance strategy fails then X > 0.

Proof. The greedy H-avoidance strategy fails if and only if there is an integer 1 ≤ k ≤ n/r
such that in step k the set Sk cannot be colored without creating a monochromatic copy
of H. We shall prove that this implies that the event Ek occurs. For a fixed k, assume
that Gk−1 has already been colored successfully, and consider the bipartite graph Bk with
Sk as one partition class and the set {1, . . . , r} of available colors as the other partition
class, where a vertex v ∈ Sk is connected to a color s ∈ {1, . . . , r} by an edge if and only
if assigning color s to v does not create a monochromatic copy of H. By definition, each
valid coloring of Sk corresponds to a perfect matching in the bipartite graph Bk.

Hall’s Theorem (see e.g. [3]) states that in any bipartite graph G = (V1

.
∪ V2, E),

|V1| = |V2|, a perfect matching exists if and only if the neighborhood of every set C ⊆ V1

has size at least |C|. It follows that the graph Bk does not contain a perfect matching if
and only if there is a set C ⊆ Sk such that more than r − |C| colors are excluded for all
of the vertices in C. That is, each vertex v ∈ C is contained in r−|C|+ 1 different copies
of H, which pairwise intersect only in v since each of these copies is in a different color.
Thus, there are at least |C| · (r − |C|+ 1) many copies of H with the properties specified
in (8). Since |C| · (r − |C|+ 1) ≥ r for 1 ≤ |C| ≤ r, it follows that Ek occurs if the greedy
H-avoidance strategy fails in step k.
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Next, we show that Pr[E1] = o(n−1) if p � n−1/mr
1b

(F ). Once this is established,
Markov’s inequality immediately yields with

E[X] =

n/r∑

k=1

E[Xk] =
n

r
· Pr[E1] = o(1) (9)

that X = 0 a.a.s., which together with Claim 11 implies that the greedy H-avoidance
strategy succeeds a.a.s. This proves the first part of Theorem 4.

Claim 12. For p � n−1/mr
1b(F ) we have Pr[E1] = o(n−1).

Proof. We define the following family of graphs reflecting the definition of E1 (cf. (8)):

T :={T = H1 ∪ H2 ∪ · · · ∪ Hr : H1, H2, . . . , Hr
∼= H

∧ |V (Hi) ∩ S1| = 1, 1 ≤ i ≤ r

∧ V (Hi) ∩ S1 = V (Hj) ∩ S1 =⇒ |V (Hi) ∩ V (Hj)| = 1, 1 ≤ i < j ≤ r}.

Note that this is a family of subgraphs of Kn which in some sense are ‘rooted’ in the
set S1 = {v1, . . . , vr}. Clearly, the event E1 occurs if and only if one of these graphs is
present in Gn,p. For any subgraph G of Kn, we define the set of external vertices of G as
Vext(G) := V (G) \ S1 and let vext(G) := |Vext(G)|.

Consider a fixed graph T = H1 ∪ · · · ∪Hr ∈ T . Here the labeling of the r copies of H
is arbitrary but fixed. For 2 ≤ i ≤ r, let

J ′
i := Hi ∩

( i−1⋃

j=1

Hj

)

denote the intersection of the ith copy of H in T with the preceding i − 1 copies. A
standard inductive argument yields that

vext(T ) =

r∑

i=1

vext(Hi) −
r∑

i=2

vext(J
′
i) = r(vH − 1) −

r∑

i=2

vext(J
′
i) (10)

and analogously

e(T ) = reH −
r∑

i=2

e(J ′
i). (11)

As Hi contains exactly one vertex from S1, it follows that J ′
i contains at most one

vertex from S1. Moreover, if J ′
i indeed contains a vertex v ∈ S1, then v must be isolated

in J ′
i : If {v, v′} is an edge of J ′

i, then it is also an edge of Hj for some j < i. However, by
definition of T , Hi and Hj cannot have both the vertex v ∈ S1 and an external vertex v′

in common. This proves that v is an isolated vertex in the graph J ′
i.
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Consequently, we may define for 2 ≤ i ≤ r the graph Ji := (Vext(J
′
i), E(J ′

i)) obtained
by simply removing the vertex {v} = V (J ′

i) ∩ S1 from J ′
i if it is present. Using that

v(Ji) = vext(J
′
i) and e(Ji) = e(J ′

i), we obtain from (10) and (11) that

vext(T ) = r(vH − 1) −
r∑

i=2

v(Ji) and e(T ) = reH −
r∑

i=2

e(Ji). (12)

By our choice of H in (7), and since each Ji is a subgraph of H, we have for 2 ≤ i ≤ r
with v(Ji) > 0 that

e(Ji)

v(Ji)
≤

re(Ji)

r(v(Ji) − 1) + 1
≤

reH

r(vH − 1) + 1
. (13)

Using (13) and applying Proposition 8 repeatedly, we obtain from (12) that

e(T )

vext(T ) + 1
=

reH −
∑r

i=2 e(Ji)

r(vH − 1) + 1 −
∑r

i=2 v(Ji)
≥

reH

r(vH − 1) + 1
= mr

1b(F ). (14)

Note that (14) holds with equality if all Ji are empty.
We define the following equivalence relation on T : For T1, T2 ∈ T we have T1 ∼ T2 if

and only if there exists a graph isomorphism φ : T1 → T2 such that the restriction of φ
to S1 is the identity. Let T̃ ⊆ T denote a family of representatives for this equivalence
relation. Note that the isomorphism class of a given graph T ∈ T has size Θ(nvext(T )).
Moreover, since any member of T has at most r(vH − 1) external vertices, the number of
isomorphism classes is bounded by a constant only depending on H and r.

Let XT denote the random variable which counts the number of graphs from T oc-
curring in Gn,p. We have

E[XT ] =
∑

T∈T

pe(T ) �
∑

T∈eT

nvext(T )pe(T )

�
∑

T∈eT

nvext(T )−e(T )/mr
1b(F )

(14)

≤
∑

T∈eT

nvext(T )−(vext(T )+1) � n−1,

i.e., E[XT ] = o(n−1). Claim 12 now follows from Markov’s inequality.

As already mentioned, the lower bound in Theorem 4 follows with (9) from Claims 11
and 12.

3.3 Upper Bound

In this section we prove that regardless of her strategy the player will a.a.s. be forced
to create a monochromatic copy of F if p � n−1/mr

1b(F ), provided that there exists an
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induced subgraph F ◦ ⊂ F on vF − 1 vertices satisfying (6). We will need this assumption
in order to apply Theorem 10 to F ◦.

Assume that p � n−1/mr
1b(F ) is given. We employ a two-round approach to prove that

every strategy a.a.s. fails to color all vertices. We partition the vertex set of G = Gn,p

into two sets V1 := {v1, . . . , vn/2} and V2 = {vn/2+1, . . . , vn} (for simplicity we assume
that 2r|n), and relax the problem to a two-round offline problem as follows. In the
first round, we generate the random edges induced by V1 and reveal them all at once.
We allow the player to color these edges offline. (In fact, we do not even require this
coloring to be balanced or free of monochromatic copies of F .) In the second round, the
remaining random edges are generated and revealed, and the vertices of V2 have to be
colored respecting the condition that each of the r colors appears exactly once in each set
Sk = {v(k−1)r+1, . . . , vkr}, n/2r + 1 ≤ k ≤ n/r. Again we allow the player to see the edges
of the second round all at once and color them offline. We will show that a.a.s. the player
will create a monochromatic copy of F in this relaxed two-round game.

Suppose now that some coloring of the vertices V1 has been fixed, and consider the
edges between V1 and V2. For each color s ∈ {1, . . . , r}, this edge set defines a vertex
set Base(s) ⊆ V2 consisting of all vertices in V2 that complete a copy of F in color s.
Obviously, no vertex in Base(s) may be assigned color s when V2 is colored. Consequently,
if one of the sets Sk, n/2r + 1 ≤ k ≤ n/r, is contained entirely in Base(s) for some color
s, it is not possible to extend the coloring of V1 to a coloring of V2. With this observation
at hand, the upper bound in Theorem 4 is an easy consequence of the next claim.

Claim 13. For F as in Theorem 4 and p � n−1/mr
1b(F ) the following holds. A.a.s. the

first round is such that for any fixed coloring of V1, there exists a color s0 ∈ {1, . . . , r}
such that in the second round we have for every vertex v ∈ V2 that

Pr[v ∈ Base(s0)] = ω(n−1/r).

Since for a fixed coloring of V1, the events {u ∈ Base(s0)} and {v ∈ Base(s0)} are
independent for u 6= v ∈ V2, Claim 13 yields that for n/2r + 1 ≤ k ≤ n/r we have

Pr[Sk ⊆ Base(s0)] = ω(n−1/r)r = ω(n−1).

As moreover the n/2r events {Sk ⊆ Base(s0)} are mutually independent, the probability
that at least one of them occurs is 1 − (1 − ω(n−1))n/2r = 1 − e−ω(1) = 1 − o(1). Thus, in
the second round the player will create a monochromatic copy of F a.a.s., and Theorem 4
is proved.

It remains to prove Claim 13.

Proof of Claim 13. We will obtain the desired probability for {v ∈ Base(s0)} by an ap-
plication of Theorem 9 to the random edges between V1 and V2 generated in the second
round. For this calculation to work out we need certain properties to hold for the random
graph on V1 generated in the first round. In the following we specify these properties and
prove that they hold a.a.s.
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For p � n−1/mr
1b

(F ) and any graph J ⊆ F with vJ ≥ 1, we have

nvJ peJ � nvJ−eJ/mr
1b(F ) ≥ n

vJ−eJ
r(vJ−1)+1

reJ = n1−1/r. (15)

Consider a fixed induced subgraph F ◦ ⊂ F on vF − 1 vertices satisfying (6). Let
s0 ∈ {1, . . . , r} denote the color for which the number of monochromatic copies of F ◦ in
G[V1] is largest, and let M denote the number of copies in this color. In the following, we
label these copies by F ◦

i , i = 1, . . . , M . By Theorem 10, we a.a.s. have

M >_ nv(F ◦)pe(F ◦). (16)

For any vertex v ∈ V2 and i = 1, . . . , M , let Tv,i ⊆ V1 ×{v} be a set of potential edges
that connect F ◦

i and v such that they form a copy of F . If there are several such sets,
pick one arbitrarily. Thus |Tv,i| = degF (u) for all v and i, where u denotes the vertex that
was removed from F to obtain F ◦.

For v ∈ V2 and any pair of indices i, j, 1 ≤ i, j ≤ M , let

Jv,ij := (F ◦
i ∪ Tv,i) ∩ (F ◦

j ∪ Tv,j)

denote the graph in which the two potential copies of F intersect. Furthermore, for J ⊆ F
let Mv,J denote the number of pairs i, j, i 6= j, for which Tv,i ∩ Tv,j 6= ∅ and Jv,ij

∼= J .
Note that Mv,J is bounded by a constant times the number of subgraphs in G[V1] formed
by two copies of F ◦ intersecting in a copy of J◦ := J ∩ F ◦. (Here the constant accounts
for the fact that the same subgraph of G[V1] might correspond to different overlapping
pairs of copies of F ◦.) By Lemma 7, the expected number of such subgraphs in G[V1] is
of order

n2v(F ◦)−v(J◦)p2e(F ◦)−e(J◦) =
(
nv(F ◦)pe(F ◦)

)2
n−vJ +1p−eJ+degJ (u)

(15)
�

(
nvF−1pe(F ◦)

)2
n1/rpdegJ (u).

Thus it follows with Markov’s inequality that

Mv,J �
(
nvF −1pe(F ◦)

)2
n1/rpdegJ (u) (17)

a.a.s. Since the number of subgraphs J◦ ⊆ F ◦ is a constant only depending on F , a.a.s.
this bound holds simultaneously for all subgraphs J ⊆ F and all v ∈ V2 after the first
round.

For v ∈ V2, let
Fv := {Tv,1, . . . , Tv,M}.

Note that Fv might be a multiset, since the same set of edges may complement distinct
monochromatic copies of F ◦ in G[V1] to a copy of F . For i = 1, . . . , M , let Xv,i denote
the indicator random variable for the event Tv,i ⊆ Gn,p, and set

Xv :=

M∑

i=1

Xv,i.
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Clearly, the vertex v is contained in Base(s0) if Xv ≥ 1. We apply Theorem 9 to the
family Fv in order to obtain a lower bound on the probability of this event. Conditioning
on the outcome of the first round as specified, i.e., on (16) and (17), we obtain

µ = E[Xv] = M · pdegF (u)
(16)
>_ nvF−1peF

(15)
�n−1/r, (18)

i.e., µ = ω(n−1/r), and

∆ =
M∑

i,j=1
Tv,i∼Tv,j

E[Xv,iXv,j ]

=
∑

J⊆F
u∈V (J)

M∑

i,j=1
Tv,i∼Tv,j ,Jv,ij

∼=J

E[Xv,iXv,j ]

=
∑

J⊆F
u∈V (J)

Mv,J · p2 degF (u)−degJ (u)

(17)
�

(
nvF −1peF

)2
n1/r

(18)
<_ µ2n1/r,

i.e., ∆ = o(µ2n1/r). Therefore, Theorem 9 yields that

Pr[v /∈ Base(s0)] ≤ Pr [Xv = 0] ≤ exp

{
−

µ2

2(µ + ∆)

}
= exp

{
−ω

(
n−1/r

)}
= 1−ω

(
n−1/r

)
.

4 Proof of Theorem 1

In this section we prove our results for the edge case. We start by introducing the notion
of r-matched graphs already mentioned in the introduction, and stating a result we will
need in the upper bound proof.

4.1 Preliminaries

While in the vertex case, the partition into sets of size r is given by the vertex labels and
thus fixed before the game starts, in the edge case it is a random object that emerges over
the course of the game. In order to give a convenient formal description we introduce the
notion of r-matched graphs.

An r-matched graph F ′ = (V,K) consists of a finite set V of vertices and a set K of
pairwise disjoint sets of edges of cardinality r each. We refer to these as r-sets. We use
the notations V (F ′) and K(F ′), and write E(F ′) =

⋃
K∈K(F ′) K to refer to the edge set

of the underlying unmatched graph. The graph process that underlies our game can be
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described by r-matched graphs (G′
k)0≤k≤(n

2)/r, where G′
0 = (V (Kn), ∅) and G′

k is obtained

from G′
k−1 by adding an r-set Ek drawn uniformly at random from all remaining edges.

Thus, G′
k = (V (Kn), {E1, E2, . . . , Ek}), and the player’s task in step k is to extend the

coloring of G′
k−1 to a coloring of G′

k without creating a monochromatic copy of F . Note
that, by symmetry, G′

k is distributed like Gn,m with m = rk if we ignore the partition
into r-sets (and the order in which the edges appear).

By Gr
n,m we denote a random r-matched graph obtained by first generating a normal

random graph Gn,m and then choosing a random partition of its edge set into sets of size
r uniformly at random (w.l.o.g. we assume that m is divisible by r). Again by symmetry,
G′

k is distributed like Gr
n,m with m = rk if we take into account the partition into r-

sets (but ignore the order in which those appear). This allows us to analyze the process
(G′

k)0≤k≤(n
2)/r by studying the ‘static’ object Gr

n,m. We will use the following analogue to

Lemma 7.

Lemma 14. Let r ≥ 1 be a fixed integer, and let F ′ = (V,K) be a fixed r-matched graph.
The expected number of copies of F ′ in Gr

n,m with m � 1 is of order n|V |(mn−2r)|K|.

Proof. Let Aut(F ′) denote the number of automorphisms of F ′. There are

(
n

|V |

)
|V |!

Aut(F ′)
� n|V |

possible copies of F ′ in Kn, and each of them is present in Gr
n,m with probability

((n
2)−|K|r

m−|K|r

)

((n
2)
m

) ·
1(

m−1
r−1

) ·
1(

m−r−1
r−1

) · . . . ·
1(

m−(|K|−1)r−1
r−1

)

=
(
(

n
2

)
− |K|r)!(
n
2

)
!

· (r − 1)!|K| · m(m − r) . . . (m − (|K| − 1)r)

� (n−2)|K|rm|K| = (mn−2r)|K|.

We will use the following edge-coloring analogue of Theorem 10.

Theorem 15 ([16]). Let r ≥ 2 and F be a nonempty graph. Then there exist positive
constants C = C(F, r) and a = a(F, r) such that for m(n) ≥ Cn2−1/m2(F ), where m2(F )
is defined as in (1), the random graph Gn,m a.a.s. has the property that in every r-edge-
coloring there are at least anvF (m/n2)eF monochromatic copies of F .

4.2 Lower Bound

In this section we show that a simple greedy strategy allows the player to survive for any
N � n2−1/mr

2b
(F ) steps without creating a monochromatic copy of F a.a.s. Throughout
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this section, we fix F and r, and let

H = H(F, r) := arg max
H′⊆F

r(e(H ′) − 1) + 1

r(v(H ′) − 2) + 2
(19)

(cf. (2)). Similarly to the vertex case, the greedy H-avoidance strategy tries, in every step
k > 0, to extend the coloring of G′

k−1 to a coloring of G′
k without creating a monochromatic

copy of H. Again it simply gives up if this is not possible. Clearly, if the greedy H-
avoidance strategy is successful, it yields a coloring which contains no monochromatic
copy of H and therefore also no monochromatic copy of F .

As in the vertex case we define a family of objects (which are r-matched graphs in
this case) that represent ‘traces of failure’ for the H-avoidance strategy, and show that
a.a.s. these do not appear in G′

N with N as claimed. This introduces a static view on the
problem in the sense that we abstract from the order in which the r-sets appear and only
look at the r-matched random graph obtained after N steps of the process. Let

T ′
b :={T ′

b = (V,K) : ∃K̃ ∈ K, T = H1 ∪ H2 ∪ · · · ∪ Hr ⊆ E(T ′
b) : H1, H2, . . . , Hr

∼= H

∧ |E(Hi) ∩ K̃| = 1, 1 ≤ i ≤ r

∧ E(Hi) ∩ K̃ = E(Hj) ∩ K̃, 1 ≤ i < j ≤ b

∧ E(Hk) ∩ K̃ 6= E(Hj) ∩ K̃, b + 1 ≤ k ≤ r, j 6= k

∧ |E(Hi) ∩ E(Hj)| = 1, 1 ≤ i < j ≤ b

∧ T ′
b is inclusion minimal with these properties}.

(20)

Every graph T ′
b ∈ T ′

b contains a simple graph T that – similar to the vertex case – consists

of r copies of H that intersect with a distinguished r-set K̃ in exactly one edge. Unlike in
the vertex case however, we specify the position of these r copies quite precisely: There is
one distinguished edge in K̃ that intersects with the first b copies of H (which are otherwise

edge-disjoint), and r − b edges in K̃ that close exactly one copy Hk, b + 1 ≤ k ≤ r. The
minimality condition excludes the addition of r-sets that do not intersect with T . In
particular, it ensures that the class T ′

b is finite.
Let T ′ :=

⋃
1≤b≤r T

′
b , and let X denote the number of copies of r-matched graphs from

T ′ in G′
N .

Claim 16. If the greedy H-avoidance strategy fails within N steps then X > 0.

Proof. Suppose that the H-avoidance strategy gives up when coloring Ek. As in the proof
of Claim 11 it follows from Hall’s Theorem that there exists C ⊆ Ek such that each edge
e ∈ C is contained in r − |C|+ 1 different copies of H which satisfy |E(H)∩Ek| = 1 and
pairwise intersect only in e. Let b := r − |C| + 1. It immediately follows that picking all
b copies of H containing an arbitary fixed edge e′ ∈ C, and one copy of H for each of the
remaining |C| − 1 = r− b edges in C, yields a graph T such that, by definition, the union

of all r-sets intersecting with T forms a graph in T ′
b in which Ek plays the role of K̃.
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We show that E[X] = o(1) provided that N � n2−1/mr
2b

(F ). It then follows with the
first moment method that X = 0 a.a.s. , which implies by Claim 16 that the greedy
H-avoidance strategy succeeds a.a.s. This proves the first part of Theorem 1.

Claim 17. For N � n2−1/mr
2b(F ) we have E[X] = o(1).

Proof. Consider a fixed graph T ′ ∈ T ′. We continue to use the notations introduced
above and assume that the numbering of the copies of H is fixed and as in (20) for some
1 ≤ b ≤ r. For 2 ≤ i ≤ r, we define

Ji := Hi ∩
( i−1⋃

j=1

Hj

)
.

Recall that the first b copies intersect in one specific edge from the central r-set K̃ and
are edge-disjoint otherwise. In particular, we have for 2 ≤ i ≤ b that v(Ji) ≥ 2. It follows
that

|V (T )| = rvH −
r∑

i=2

v(Ji) ≤ rvH − 2(b − 1) −
r∑

i=b+1

v(Ji) (21)

and

|E(T ) \ K̃| = r(eH − 1) −
r∑

i=b+1

e(Ji). (22)

Recall that T ′ is the union of all r-sets intersecting T = H1 ∪ · · · ∪ Hr ⊆ E(T ′). For
K ∈ K(T ′) we define the parameter

y(K) := |K ∩ E(T )|,

which counts the number of edges in which K intersects T . Note that

y(K̃) = 1 + (r − b). (23)

In the simplest case, we have y(K) = 1 for all other r-sets, but in general T may contain
several edges from the same r-set. Setting

D : =
∑

K∈K(T ′)\{ eK}

(y(K) − 1) (24)

= |E(T ) \ K̃| − |K(T ′) \ {K̃}|

(22)
= r(eH − 1) −

r∑

i=b+1

e(Ji) − (|K(T ′)| − 1),
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we obtain that

|K(T ′)| = r(eH − 1) + 1 −
r∑

i=b+1

e(Ji) − D. (25)

This is essentially the analogue of (12), with D playing the role of a correction term. Note

that D = 0 if indeed y(K) = 1 for all K ∈ K(T ′) \ {K̃}.
Next we derive an upper bound on the number of vertices in T ′. In addition to the

vertices from T , T ′ contains vertices that are incident to edges outside T . Since each such
edge contributes at most 2 vertices, this number is bounded by

∑
K∈K(T ′) 2(r − y(K)).

Thus we have

|V (T ′)| ≤ |V (T )| +
∑

K∈K(T ′)

2(r − y(K))

(23)
= |V (T )| + 2(b − 1) + 2

∑

K∈K(T ′)\{ eK}

(
(r − 1) − (y(K) − 1)

)

(24)
= |V (T )| + 2(b − 1) + (|K(T ′)| − 1) · 2(r − 1) − 2D

(21)

≤ r(vH − 2) + 2 −
r∑

i=b+1

v(Ji) + |K(T ′)| · 2(r − 1) − 2D. (26)

For b + 1 ≤ i ≤ r with v(Ji) > 0, we have

e(Ji)

v(Ji)
≤ mr

2b(F ). (27)

This is trivially true if e(Ji)/v(Ji) < 1/2, and follows from our choice of H in (19) and

e(Ji)

v(Ji)

Prop. 8

≤
re(Ji) − (r − 1)

rv(Ji) − 2(r − 1)
=

r(e(Ji) − 1) + 1

r(v(Ji) − 2) + 2
≤

r(eH − 1) + 1

r(vH − 2) + 2
= mr

2b(F ),

otherwise. Using (27) and applying Proposition 8 repeatedly, we obtain from (25) and (26)
that

|K(T ′)|

|V (T ′)| − |K(T ′)| · 2(r − 1)
≥

r(eH − 1) + 1 −
∑r

i=b+1 e(Ji) − D

r(vH − 2) + 2 −
∑r

i=b+1 v(Ji) − 2D

≥
r(eH − 1) + 1

r(vH − 2) + 2
= mr

2b(F ). (28)

for any T ′ ∈ T ′.
We can now estimate the expectation of X. Observing that G′

N is distributed like
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Gr
n,m with m = rN , we obtain with Lemma 14 that

E[X] �
∑

T ′∈T ′

n|V (T ′)|(Nn−2r)|K(T ′)|

=
∑

T ′∈T ′

n|V (T ′)|−|K(T ′)|·2(r−1)(N/n2)|K(T ′)|

�
∑

T ′∈T ′

n|V (T ′)|−|K(T ′)|·2(r−1)−|K(T ′)|/mr
2b(F )

(28)

≤
∑

T ′∈T ′

n|V (T ′)|−|K(T ′)|·2(r−1)−(|V (T ′)|−|K(T ′)|·2(r−1)) � 1,

i.e., E[X] = o(1).

As already mentioned, the lower bound in Theorem 1 follows with the first moment
method from Claims 16 and 17.

4.3 Upper Bound

In this section we prove that regardless of her strategy the player will be forced to close
a monochromatic copy of F within any N � n2−1/mr

2b(F ) steps a.a.s., provided that there
exists a subgraph F− ⊂ F with eF − 1 edges satisfying (3). We will need this assumption
in order to apply Theorem 15 to F−.

As in the vertex case, we employ a two-round approach to prove that every strategy
a.a.s. fails to color N edges. Specifically, we prove an upper bound for the following
relaxed two-round offline problem: In the first round, the first N/2 random edges are
presented all at once and may be colored arbitrarily. In the second round, the remaining
random edges appear partitioned in sets Ek of size r uniformly at random, and have to be
colored respecting the condition that each of the r colors appears exactly once in each set
Ek. Again we allow the player to see these edges all at once. We will show the following:

Claim 18. For F as in Theorem 1 and N � n2−1/mr
2b(F ) the following holds. A.a.s. the

first round is such that for any fixed coloring of its edges, there exists a color s0 ∈ {1, . . . , r}
such that a.a.s. every coloring of the edges of the second round creates a copy of F in color
s0.

Proof. Our proof strategy is similar to the vertex case. We show that a.a.s. the first
round satisfies a set of properties such that, conditioned on these properties, calculating
the variance of a suitably defined random variable in the second round yields the desired
result.

Let N � n2−1/mr
2b(F ) be given. W.l.o.g. we assume that N � n2. In the following we

sometimes use the parameter p = N/n2 � n−1/mr
2b(F ) to improve readability. Note that

for any subgraph J ⊆ F with vJ ≥ 2 we have

nvJ peJ =
(
nr(vJ−2)+2pr(eJ−1)+1 · (n2p)r−1

)1/r (2)
�N (r−1)/r = N1−1/r. (29)
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We write r ·G to refer to the union of r disjoint copies of some graph G. Let F− denote
an arbitrary fixed subgraph with eF −1 edges satisfying (3), and let s0 ∈ {1, . . . , r} denote
the color for which the number of monochromatic copies of r ·F− in the coloring of the first
round is largest. Using that m2(r ·F−) = m2(F−), we obtain from Theorem 15 that a.a.s.
there are Ω(nv(r·F−)pe(r·F−)) many such copies. Moreover, Lemma 7 yields with Markov’s
inequality and p � 1 that a.a.s. all but a negligible fraction of these copies are induced.
In particular, the edges that complete them to copies of F have not yet appeared. Thus,
denoting the number of induced copies of r · F− in color s0 by M we a.a.s. have

M >_ nv(r·F−)pe(r·F−). (30)

For the second round, we condition on this event and label these copies of r · F− by
[r · F−]1, [r · F−]2, . . . , [r · F−]M . By T1, T2, . . . , TM ⊆ E(Kn) we denote edge sets that
complete them to copies of r · F ; i.e., for 1 ≤ i ≤ M we have |Ti| = r and

(
V ([r · F−]i), E([r · F−]i)

.
∪ Ti

)
∼= r · F.

Note that depending on F the Ti’s need not be unique. In such a case we fix one of the
possible sets arbitrarily. Clearly, if one of the sets T1, T2, . . . , TM appears as one of the
sets Ek of the second round, the player is forced to close a copy of F in color s0. In the
following we prove that this will a.a.s. happen.

For each set Ti we introduce an indicator variable Zi for the event that Ti appears as
an edge set Ek of the second round. Note that there might exist i 6= j with Ti = Tj and

thus also Zi ≡ Zj. We set Z :=
∑M

i=1 Zi and use the second moment method to show
that Z > 0 holds a.a.s. Due to our assumption that N � n2, we still have Θ(n2) edges
to choose from in the second round. Since Zi = 1 if and only if the strategy is presented
Ti as one of the N/2 edge sets of the second round, we obtain

Pr[Zi = 1] = N/2 ·

(
Θ(n2)

r

)−1

� Nn−2r (31)

and, conditioning on (30),

E[Z] � M · Nn−2r

(30)
>_ nv(r·F−)pe(r·F−) · Nn−2r (32)

= (nvF peF )r · p−r · Nn−2r

(29)
�N r−1 · (n2/N)r · Nn−2r = 1 ,

i.e., E[Z] = ω(1).
It remains to show that Var[Z] = o(E[Z]2). Since for i, j with Ti ∩ Tj = ∅ the random

variables Zi and Zj are negatively correlated, we have

Var[Z] ≤
M∑

i,j=1
Ti∩Tj 6=∅

(E[ZiZj] − E[Zi]E[Zj]) ≤
M∑

i,j=1
Ti∩Tj 6=∅

E[ZiZj] =
M∑

i,j=1,
Ti=Tj

E[ZiZj]. (33)
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Here the last equation follows from the observation that ZiZj ≡ 0 if Ti and Tj share some
but not all edges, since the r-sets appearing in the second round are pairwise disjoint.

We are thus left to deal with pairs i, j for which Ti = Tj, which immediately implies
Zi ≡ Zj and hence E[ZiZj] = Pr[Zi = 1]. Note that for such pairs we have [r · F−]i ∩
[r · F−]j 6= ∅ since the two copies overlap at least in the 2r endvertices of the edges of
Ti = Tj. We let Ji,j := [r · F−]i ∩ [r · F−]j denote the intersection graph.

For J ⊆ r · F− let MJ denote the number of pairs i, j for which Ti = Tj and Ji,j
∼= J .

Up to a constant factor, MJ counts the number of s0-colored subgraphs consisting of
two copies of r · F− which form identical ‘threats’ and intersect in a copy of J . Note
that J contains the endvertices of the 2r edges that complete r · F− to r · F , i.e., setting
T = E(r · F ) \ E(r · F−) we have V (T ) ⊆ V (J). This allows us to add the edges of T to
J resulting in a graph J+ with v(J+) = v(J) and e(J+) = e(J) + r. Moreover, the graph
J+ can be split into r components J+

1 , J+
2 , . . . , J+

r such that J+
i ⊆ F for all 1 ≤ i ≤ r. By

Lemma 7, the expected number of subgraphs of the considered type formed by the edges
of the first round is of order

n2v(r·F−)−vJ p2e(r·F−)−eJ =
(
nv(r·F−)pe(r·F−)

)2
· n−v(J+)p−e(J+)+r

=
(
nv(r·F−)pe(r·F−)

)2
·

r∏

i=1

(
n−v(J+

i )p−e(J+
i )

)
· pr

(29)
�

(
nv(r·F−)pe(r·F−)

)2
· N−r+1 · (N/n2)r

=
(
nv(r·F−)pe(r·F−)

)2
· Nn−2r.

Thus it follows with Markov’s inequality that

MJ �
(
nv(r·F−)pe(r·F−)

)2
· Nn−2r (34)

a.a.s. Since the number of subgraphs J ⊆ r · F− is a constant only depending on F
and r, this bound holds a.a.s. for all subgraphs J with V (T ) ⊆ V (J) simultaneously.
Conditioning on this being the case, we may continue (33) as follows:

Var[Z] ≤
M∑

i,j=1
Ti=Tj

E[ZiZj]

=
∑

J⊆r·F−

V (T )⊆V (J)

M∑

i,j=1
Ti=Tj ,Ji,j

∼=J

Pr[Zi = 1]

(31)
�

∑

J⊆r·F−

V (T )⊆V (J)

MJ · Nn−2r

(34)
�

(
nv(r·F−)pe(r·F−)

)2
· (Nn−2r)2

(32)
<_ E[Z]2, (35)
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i.e., Var[Z] = o(E[Z]2). Conditioning on the outcome of the first round as specified (i.e.,
M and all MJ satisfying (30) and (34), respectively), it follows with the second moment
method from (32) and (35) that in the second round a.a.s. we have Z > 0. In other
words, a.a.s. at least one of the edge sets T1, T2, . . . , TM appears during the second round,
and the coloring of the edges of the first round can not be extended.
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