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Abstract

This paper studies on-line list colouring of graphs. It is proved that the on-
line choice number of a graph G on n vertices is at most χ(G) ln n + 1, and the

on-line b-choice number of G is at most eχ(G)−1
e−1 (b − 1 + ln n) + b. Suppose G is a

graph with a given χ(G)-colouring of G. Then for any (χ(G) ln n + 1)-assignment
L of G, we give a polynomial time algorithm which constructs an L-colouring of
G. For any (eχ(G)−1

e−1 (b − 1 + ln n) + b)-assignment L of G, we give a polynomial
time algorithm which constructs an (L, b)-colouring of G. We then characterize all
on-line 2-choosable graphs. It is also proved that a complete bipartite graph of the
form K3,q is on-line 3-choosable if and only if it is 3-choosable, but there are graphs
of the form K6,q which are 3-choosable but not on-line 3-choosable. Some open
questions concerning on-line list colouring are posed in the last section.

1 Introduction

Suppose G is a graph, f and g are two functions from V (G) to N (we use the convention
that N = {0, 1, 2, . . .}), with f(v) > g(v) for all v ∈ V (G). An f -assignment of G is
a mapping L which assigns to each vertex v of G a set L(v) of f(v) positive integers as
permissible colours. A g-colouring of G is a mapping S which assigns to each vertex v of G
a set S(v) of g(v) colours such that for any two adjacent vertices u and v, S(v)∩S(u) = ∅.
Given a list assignment L of G, an (L, g)-colouring of G is a g-colouring S of G such
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that for each vertex v, S(v) ⊆ L(v). We say G is (L, g)-colourable if there exists an
(L, g)-colouring of G. We say G is (f, g)-choosable if for every f -assignment L, G is
(L, g)-colourable. Some special cases of (f, g)-choosability have their own names:

• If g ≡ b is a constant function, then (f, g)-choosable is called (f, b)-choosable.

• If f ≡ m, then (f, b)-choosable is called (m, b)-choosable.

• If b = 1, then (f, b)-choosable is called f -choosable.

• If f ≡ m, then f -choosable is called m-choosable.

The choice number ch(G) of G is the minimum m for which G is m-choosable. The
b-choice number chb(G) of G is the minimum m for which G is (m, b)-choosable. List
colouring of graphs was introduced in the 1970s by Vizing [17] and independently by
Erdős, Rubin and Taylor [6]. The subject offers a large number of challenging problems
and has attracted an increasing attention since 1990. Readers are referred to [16] for a
comprehensive survey on results and open problems. In this paper, we consider a variation
of the list colouring problem: on-line list colouring of graphs.

List assignments and colourings of G can be defined alternately as follows: A list
assignment L of a graph G can be given as a sequence (V1, V2, . . . , Vm) of subsets of V (G),
where Vi = {v : i ∈ L(v)}. In other words, v ∈ Vi if i is a permissible colour of v. In the
following, we write a list assignment L as L = (V1, V2, . . . , Vm). Given a list assignment
L = (V1, V2, . . . , Vm), an L-colouring of G is equivalent to a sequence (X1, X2, . . . , Xm)
such that each Xi is an independent set contained in Vi (it is allowed that Xi be empty).
If v ∈ Xi, then we say v is coloured with colour i.

This alternate definition motivates the definition of the on-line list colouring of graphs,
which is defined through a two-person game.

Definition 1 Given a graph G and two mappings f, g : V (G) → N, the on-line (f, g)-
list colouring game on G is a game with two players: Thief and Police. In the ith step,
Thief chooses a non-empty subset Vi of V (G), and Police chooses an independent set Xi

contained in Vi. A vertex v is finished if v is contained in f(v) of the Vj’s. When Thief
chooses the set Vi, it is required that Vi contains only non-finished vertices. If for some
integer m, at the end of the mth step, there is a finished vertex v which is contained in
less than g(v) of Xj’s (for j = 1, 2, . . . , m), then Thief wins the game. Otherwise, at some
step, each vertex v becomes finished and is contained in g(v) of the Xi’s. In this case,
Police wins the game.

Thus in the game, Thief is required to give f(v) permissible colours to vertex v and
Police needs to colour v with g(v) permissible colours, under the restriction that no colour
is assigned to two adjacent vertices. Police wins the game if every vertex v is successfully
coloured with g(v) colours.

Here is a more entertaining explanation of the (f, g)-list colouring game: Each vertex
of G is a thief. Each thief v is planned to commit theft f(v) times. Police is watching
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these thieves. If a thief commit a theft, Police can catch him. However, if two thieves
commit theft at the same time, and these two thieves are joined by an edge in the graph,
then Police can catch at most one of them. If thief v is caught g(v) times, then he will
be put into prison. At each round, Thief decides which thieves go out to commit theft,
and Police, after knowing which thieves are out, decides which thieves to be caught. The
goal of Police is to put all the thieves into prison. If he achieves this goal, then he is the
winner. Otherwise, Thief is the winner.

Definition 2 Suppose f, g : V (G) → N. We say G is on-line (f, g)-choosable if Police
has a winning strategy in the (f, g)-list colouring game on G.

For positive integers m, b, G is on-line (f, b)-choosable means that G is on-line (f, g)-
choosable for the constant function g ≡ b; G is on-line f -choosable means that G is
on-line (f, 1)-choosable; G is on-line m-choosable means that G on-line f -choosable for
the constant function f ≡ m; G is on-line (m, b)-choosable means that G is on-line (f, b)-
choosable for the constant function f ≡ m.

The on-line choice number chOL(G) of G is the minimum m for which G is on-line
m-choosable. The on-line b-choice number chOL

b (G) of G is the minimum m for which G
is on-line (m, b)-choosable.

List colouring of graphs has been studied extensively in the literature. The on-line
list colouring of graphs is recently studied in [11] under a different name: the Paint and
Correct game. It follows from the definition that for any graph G, chOL(G) > ch(G)
and chOL

b (G) > chb(G). However, it is shown in [8, 12, 13, 11] that many upper bounds
for the choice number of a graph remain upper bounds for its on-line choice number.
For example, the on-line choice number of planar graphs is at most 5, the on-line choice
number of the line graph L(G) of a bipartite graph G is ∆(G), and if G has an orientation
in which the number of even eulerian subgraphs differs from the number of odd eulerian
subgraphs and f(x) = d+(x) + 1, then G is on-line f -choosable.

The relation between the choice number, the b-choice number and the chromatic num-
ber of a graph has been studied in the literature. In [1], Alon proved that for any positive
integers m and r > 2, the complete r-partite graph Km⋆r (with each partite set of cardi-
nality m) satisfies

c1r ln m 6 ch(Km⋆r) 6 c2r ln m

where c2 is a sufficiently large constant and c1 is a sufficiently small positive constant.
The upper bound remains true for any complete r-partite graph G, and hence for any
graph G on n vertices,

ch(G) 6 c2χ(G) lnn.

The constant c2 is given explicitly in [7] as 948. For the b-choice number, it is proved in
[7] that for a graph G on n vertices,

chb(G) 6 948χ(G)(b + ln(
n

χ(G)
+ 1)).

The proofs of the results in [1, 7] use the probabilistic method. No explicit algorithm is
given to construct an L-colouring for a given list assignment L.
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In this paper, we are interested in the relation between the on-line choice number, the
on-line b-choice number and the chromatic number of a graph. We prove that if G is a
graph on n vertices, then

ch(G) 6 chOL(G) 6 χ(G) ln n + 1.

For on-line b-list colouring of graphs, we prove that

chb(G) 6 chOL
b (G) 6

eχ(G) − 1

e − 1
(b − 1 + ln n) + b.

Here e is the base of the natural logarithm. The proofs for the upper bounds are
conceptually simpler, and give an algorithm, with running time O(n lnn), that con-
structs, for any (χ(G) ln n + 1)-assignment L of G, an L-colouring of G, and for any
( e

e−1
χ(G)(b − 1 + ln n) + b)-assignment L of G, an (L, b)-colouring of G.

The family of 2-choosable graphs was characterized by Erdős, Rubin and Taylor in [6].
We shall characterize all graphs G with chOL(G) 6 2. It turns out that not all 2-choosable
graphs are on-line 2-choosable.

We also study on-line 3-choosability of complete bipartite graphs. It is proved that
a complete bipartite graph of the form K3,q is on-line 3-choosable if and only if it is 3-
choosable, but there are graphs of the form K6,q which are 3-choosable but not on-line
3-choosable.

For a subset U of V (G), let f |U, g|U be the restrictions of f, g to U . We say G[U ] is
on-line (f, g)-choosable if G[U ] is on-line (f |U, g|U)-choosable. Note that if g(x) = 0, then
no colour needs to be assigned to x and we may ignore this vertex and simply consider
the graph G − x. However, for the sake of notation, it is more convenient to keep the
vertex there.

2 Basic properties

Given a subset X of V , let δX be the characteristic function of X, i.e., δX(x) = 1 if x ∈ X
and δX(x) = 0 otherwise. If U = {x} we write δx instead of δ{x}. In the following, we
frequently difference of two functions, and multiplication of a function by a constant. For
example, for a mapping f : V (G) → N, h = f(x)δx is a mapping from V (G) to N such
that h(x) = f(x) and h(x′) = 0 for x′ 6= x. The mapping f − f(x)δx agrees with f on
every vertex x′ 6= x and vanishes on x.

We use the following conventions:

• When we define a mapping f : V (G) → N, if f(x) is only defined for a subset U of
V (G), then it is assumed that f(x) = 0 for x /∈ U .

• For a subset X of V (G), f(X) =
∑

v∈X f(v).

• For a subset X of V , G[X] is the subgraph of G induced by X and G − X is the
subgraph of G induced by V \ X.
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For a vertex x of G, NG(x) = {y : (x, y) ∈ E(G)} is the set of neighbours of x. Let
NG[x] = NG(x)∪{x}. If there is no confusion, write N(x) for NG(x), and N [x] for NG[x].
If X is a subset of V (G), then N(X) = ∪x∈XN(x) and N [X] = N(X) ∪ X.

Given a graph G and mappings f, g : V (G) → N, on-line (f, g)-choosability of a graph
can be equivalently defined recursively as follows:

• If g(x) = 0 for all vertices x ∈ V (G), then G is on-line (f, g)-choosable.

• Suppose g is not constantly 0. Then G is on-line (f, g)-choosable if and only if the
following hold:

1. f(x) > g(x) for each vertex x.

2. For every non-empty subset U of V (G) with g|U > 1, there is an independent
set X of G contained in U such that G is on-line (f − δU , g − δX)-choosable.

Lemmas 3, 4 and 5 below follow easily from the definition.

Lemma 3 If G is on-line (f, g)-choosable and f ′(x) > f(x) and g′(x) 6 g(x) for all
x ∈ V (G), then G is on-line (f ′, g′)-choosable.

Lemma 4 If G is on-line (f, g)-choosable, then f > g. In case G has no edge, then G is
on-line (f, g)-choosable if and only if f > g.

Lemma 5 If G is on-line (f, g)-choosable and g(x) = 0, then G is on-line (f−f(x)δx, g)-
choosable.

Lemma 5 says that if g(x) = 0, i.e., we do not need to assign any colour to x, then any
permissible colours assigned to x are useless, and hence can be omitted. In the following,
we may assume that f(x) = 0 whenever g(x) = 0.

Lemma 6 Suppose G = (V, E) is a graph and A is a subset of V . Assume f, g, f ′, g′ :
V → N are mappings such that for all x ∈ A, g′(x) > g(x) and

f(x) − g(x) − f ′(x) + g′(x) > g(N(x) \ A). (1)

If G−A is on-line (f, g)-choosable and G[A] is on-line (f ′, g′)-choosable, then G is on-line
(f, g)-choosable.

Proof. We prove this lemma by induction on
∑

x∈V (G) g(x). If g is constant 0 then the

conclusion is true. Assume g is not constant 0. Let U be a non-empty subset of V (G)
with g|U > 1. We need to find an independent set X contained in U such that G is
on-line (f − δU , g − δX)-choosable.

By assumption, G − A is on-line (f, g)-choosable. So there is an independent set X ′

of G contained in U \ A such that G − A is on-line (f − δU , g − δX′)-choosable. Let
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U ′′ = (U ∩ A) \ N(X ′). As g′ > g, we have g′|U ′′ > 1. Since G[A] is on-line (f ′, g′)-
choosable, there is an independent set X ′′ of G contained in U ′′ such that G[A] is on-line
(f ′ − δU ′′ , g′ − δX′′)-choosable. Let X = X ′ ∪ X ′′. Then X is an independent set of G
contained in U . We shall show that G is on-line (f − δU , g− δX)-choosable. By induction
hypothesis, it suffices to show that for any x ∈ A, g′(x) − δX′′(x) > g(x) − δX(x) (which
is true because g′(x) > g(x)) and

(f(x)−δU(x))−(g(x)−δX(x))−(f ′(x)−δU ′′(x))+(g′(x)−δX′′(x)) > (g−δX)(N(x)−A).
(2)

Assume x ∈ A. Since δX(x) = δX′′(x) and (1) holds, to prove (2), it suffices to show that

δU(x) − δU ′′(x) 6 δX(N(x) − A). (3)

For x /∈ U ∩ A − U ′′, the lefthand side of (3) is 0, and hence the inequality holds. For
x ∈ U ∩A−U ′′, (3) also holds trivially because x ∈ N(X ′) and hence δX(N(x)−A) > 1.
This completes the proof of Lemma 6.

In the application of Lemma 6, usually we have g′ = g. This special case can be stated
as follows:

Corollary 7 Suppose G = (V, E) is a graph and A is a subset of V . If G − A is on-line
(f, g)-choosable and G[A] is on-line (f − π, g)-choosable, where π(x) = g(N(x) \A), then
G is on-line (f, g)-choosable.

Corollary 8 If x is a vertex of G and f(x) >
∑

y∈NG[x] g(y), then G is on-line (f, g)-

choosable if and only if G− x is on-line (f, g)-choosable. In particular, if f(x) > (d(x) +
1)b, then G is on-line (f, b)-choosable if and only if G − x is on-line (f, b)-choosable.

Proof. The “only if” part is obvious. The “if” part follows from Corollary 7 by letting
A = {x}.

Lemma 9 Suppose G = (V, E) is a graph, A is a subset of V and B ∪ B′ is a partition
of N(A) \ A. Let s = g(A ∪ B). If G − A is on-line (f, g)-choosable, then G is on-line
(f ′, g)-choosable, where f ′ = f + sδB′∪A.

Proof. We prove the lemma by induction on f ′(V ). Assume U is a subset of V with
g|U > 1. By the recursive definition of on-line choosability of graphs, it suffices to show
that there is an independent set X contained in U such that G is on-line (f ′−δU , g−δX)-
choosable.

If U ∩A = ∅, then since G−A is on-line (f, g)-choosable, there is an independent set
X contained in U such that G − A is on-line (f − δU , g − δX)-choosable.

Let s′ = (g − δX)(A ∪ B). By induction hypothesis, G is on-line (f ′′, g′)-choosable,
where

f ′′ = f − δU + s′δB′∪A

g′ = g − δX .
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Since s′ 6 s, by Lemma 3, G is on-line (f ′ − δU , g − δX)-choosable.
Assume U∩A 6= ∅. Let U ′ = U\(A∪B′). Since G−A is on-line (f, g)-choosable, there is

an independent set X ′ contained in U ′ such that G−A is on-line (f−δU ′ , g−δX′)-choosable.
If X ′∩B = ∅, then let X ′′ be an independent set of U∩A and let X = X ′∪X ′′. Otherwise,
let X = X ′. We shall show that in both cases, G is on-line (f ′−δU , g−δX)-choosable. By
induction hypothesis and by Lemma 3, it suffices to show that for s′ = (g − δX)(A ∪ B),

f − δU ′ + s′δB′∪A 6 f ′ − δU = f + sδB′∪A − δU . (1)

By the choice of X, we know that X∩(A∪B) 6= ∅. Hence s′ 6 s−1. Since δU−δU ′ 6 δA∪B′ ,
we conclude that δU − δU ′ 6 (s − s′)δA∪B′ . Hence inequality (1) holds.

Lemma 10 Suppose G = (V, E) is a graph and A is an independent set such that f |A =
g|A. Let f ′ : V \ A → Z be defined by f ′(u) = f(u) −

∑

v∈N(u)∩A g(v). Then G is on-

line (f, g)-choosable if and only if f ′(u) > 0 for every u ∈ V \ A and G − A is on-line
(f ′, g)-choosable.

Proof. By using induction, it suffices to consider the case that A = {v} and g(v) > 1.
The “if” part follows from Lemma 9 by letting A = {v}, B = ∅ and B′ = N(v). Now
we prove the “only if” part. Assume G is (f, g)-choosable. Let U = N [v]. By the
recursive definition of on-line (f, g)-choosability, there is an independent set X contained
in U such that G is on-line (f − δU , g − δX)-choosable. This implies that (f − δU)(v) >

(g − δX)(v). Since f(v) = g(v), we must have v ∈ X, and hence X = {v}. Therefore
G is on-line (f − δU , g − δv)-choosable. Since (f − δU)(v) = (g − δX)(v), by induction
hypothesis, G − A is on-line (f ′′, g)-choosable, where f ′′ : V − A → Z is defined as
f ′′(u) = f(u) − δU(u) −

∑

v∈N(u)∩A(g(v) − 1) = f ′(u). This completes the proof.

3 Upper bounds for chOL(G) and chOL
b (G)

This section gives an upper bound for chOL(G) and an upper bound for chOL
b (G) in terms

of χ(G) and |V (G)|.

Theorem 11 Suppose G is a graph on n vertices. Then chOL(G) 6 χ(G) lnn + 1.

Proof. Assume χ(G) = r and A1, A2, . . . , Ar are the colour classes. During the game,
Police will keep record of a weight function on the vertices of G. Initially, w(v) = 1 for
every vertex v of G.

Suppose Thief has constructed the set Vi. Choose an index j such that w(Vi ∩ Aj) >

w(Vi ∩ Aj′) for all j′. Let Xi = Vi ∩ Aj.
Now we modify the weight function. For convenience, we denote the weight function

after the modification by wN . However, after the modification is finished, we still use w
to denote the weight function. Let wN(v) = 0 for each vertex v ∈ Xi, and let wN(v) =
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r
r−1

w(v) for each vertex v ∈ Vi \ Xi. There is no change in the weight of other vertices.
The increase of the total weight of all the vertices is equal to

wN(V (G)) − w(V (G)) =
1

r − 1
w(Vi \ Xi) − w(Xi).

By the choice of Xi, w(Vi ∩Aj) > w(Vi ∩Aj′) for all j′. Hence w(Xi) >
1

r−1
w(Vi \Xi). So

the increase of the total weight of the vertices is non-positive. Thus if Police applies this
strategy, then at any time, the total weight of all the vertices is at most n. On the other
hand, if a vertex v is contained in m of the Vi’s and is not contained in any of the Xi’s,
then w(v) = ( r

r−1
)m. Hence ( r

r−1
)m 6 n. Since r

r−1
> e

1

r , we conclude that m 6 r ln n.
Thus if a vertex is contained in r ln n + 1 of the sets Vi, then v must be contained in an
Xi.

Theorem 12 Let G be a graph on n vertices and b is a positive integer. Then chOL
b (G) 6

eχ(G)−1
e−1

(b − 1 + ln n) + b.

Proof. Similarly as in the proof of Theorem 11, assume χ(G) = r and A1, A2, . . . , Ar are
the colour classes. Police will keep record of a weight function on the vertices of G during
the game. Initially, w(v) = 1 for every vertex v of G.

Suppose Thief has constructed the set Vi. Choose an index j such that w(Vi ∩ Aj) >

w(Vi ∩ Aj′) for all j′. Let Xi = Vi ∩ Aj. We modify the weight function as follows: Let
wN(v) = w(v)/e for each vertex v ∈ Xi, and let wN(v) = er−1

e(r−1)
w(v) for each vertex

v ∈ Vi \ Xi, (similarly, wN is the new weight function, which will be written as w again
after the modification is finished). There is no change in the weight of other vertices. The
increase of the total weight of all the vertices is equal to

wN(V (G)) − w(V (G)) =
e − 1

e(r − 1)
w(Vi \ Xi) −

e − 1

e
w(Xi).

By the choice of Xi, w(Vi∩Aj) > w(Vi∩Aj′) for all j′. Hence e−1
e

w(Xi) >
e−1

e(r−1)
w(Vi\Xi).

So the increase of the total weight of the vertices is non-positive. Thus if Police applies
this strategy, then at any time, the total weight of all the vertices is at most n. On the
other hand, if a vertex v is contained in m of the Vi’s and is coloured with t colours, then
w(v) = ( er−1

e(r−1)
)m−t/et 6 n. Assume v is coloured with less than b colours, i.e., t 6 b − 1,

then ( er−1
e(r−1)

)m−t 6 eb−1n. Since er−1
e(r−1)

> e
e−1

er−1 , we conclude that m−t 6
er−1
e−1

(b−1+lnn).

Hence m 6
er−1
e−1

(b−1+ ln n)+ b−1. Thus if a vertex is contained in er−1
e−1

(b−1+ ln n)+ b
of the sets Vi, then v must be coloured with b colours.

Suppose a graph G and a χ(G) colouring of G is given. Let k = χ(G) ln n + 1. Then
for any k-assignment L of G, the proof of Theorem 11 gives a polynomial time algorithm
which constructs an L-colouring of G. We assume that the list of permissible colours for
each vertex is a set of positive integers. For i = 1, 2, . . . ,, Let Vi be the set of vertices
which have colour i in their list. Then we use the method in the proof of Theorem 11 to
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construct colour classes. To accomplish the task, what we need to do is to calculate and
update the weight of vertices. The weight of each vertex is updated at most k-times. So
the running time of the algorithm is O(kn) = O(n lnn). Let m = eχ(G)−1

e−1
(b−1+ lnn)+ b.

Then for any m-assignment L of G, the proof of Theorem 12 gives a polynomial time
algorithm which constructs an (L, b)-colouring of G. The running time of the algorithm
is also O(n lnn).

The following theorem is a generalization of Theorem 12. Its proof is similar (modify
the weight of vertices in the same way as in the proof of Theorem 12) and omitted.

Theorem 13 Let g : V (G) → N be a given function. Let p =
∑

v∈V (G) eg(v)−1. If

f(v) >
eχ(G)−1

e−1
ln p + g(v), then G is on-line (f, g)-choosable.

4 On-line 2-choosable graphs

The class of 2-choosable graphs are characterized in [6]. The core of a connected graph G
is the graph obtained from G by successively deleting vertices of degree 1. The θ-graph
θa,b,c is the graph consisting of two vertices of degree 3 joined by three internally disjoint
paths of respective lengths a, b, c.

Theorem 14 [6] A connected graph G is 2-choosable if and only if the kernel of G is one
of the following graphs: K1, C2n or θ2,2,2n.

In the following, we shall characterize all on-line 2-choosable graphs.

Theorem 15 A connected graph G is on-line 2-choosable if and only if the core of G is
one of the following graphs: K1, C2n or K2,3.

Proof. By Corollary 8, a graph G is on-line 2-choosable if and only if the core of G is
on-line 2-choosable. Now we show that K1, C2n and K2,3 are on-line 2-choosable. The
graph K1 is trivial. For C2n, orient the edges of C2n to form a directed cycle. Then each
subset S of V (C2n) contains a kernel, i.e., an independent set X such that every vertex in
S − X has an out-neighbour in X. Whenever Thief chooses a set Vi, then Police choose
a kernel Xi in Vi. Since each vertex has out-degree 1, if a vertex is contained in two Vi’s,
then it must be chosen by Police. So this is a winning strategy for Police.

The graph K2,3 is small and it can be checked easily that it is on-line 2-choosable.
We just give the first move of Police: Assume the partite sets are A = {a1, a2} and
B = {b1, b2, b3}. If |V1 ∩B| 6 |V1 ∩A|, then let X1 = V1 ∩A. Otherwise, let X1 = V1 ∩B.
It can be easily verified that Police will win the game.

Since every on-line 2-choosable graph is 2-choosable, to prove that all the other graphs
are not on-line 2-choosable, it suffices to show that θ2,2,2n is not on-line 2-choosable for
n > 2.

Let u, v be the two vertices of degree 3, and let the three paths be (u, x1, v), (u, x2, v)
and (u, y1, y2, . . . , y2n−1, v).
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In the first move, Thief let V1 = {y1, y2}. If Police chooses X1 = {y2}, then the
following moves of Police are forced:

V2 = {y1, u} ⇒ X2 = {y1}

V3 = {u, x1, x2} ⇒ X3 = {u}

V4 = {x1, v} ⇒ X4 = {x1}.

Finally, Thief let V5 = {x2, v} and wins the game.
If Police chooses X1 = {y1}, then the following moves of Police are forced:

V2 = {y2, y3} ⇒ X2 = {y2}

V3 = {y3, y4} ⇒ X3 = {y3}

· · · · · ·

V2n−1 = {y2n−1, v} ⇒ X2n−1 = {y2n−1}

V2n = {x1, x2, v} ⇒ X2n = {v}

V2n+1 = {x1, u} ⇒ X2n+1 = {x1}.

Finally, Thief let V2n+2 = {x2, u} and wins the game.

5 On-line 3-choosable complete bipartite graphs

It is easy to verify that the graphs θ2,2,2n are on-line 3-choosable. So if ch(G) 6 2, then
chOL(G) 6 3, and the bound is tight.

One naturally asks whether there is an upper bound on the on-line choice number of
3-choosable graphs. The question seems to be difficult. Unlike for 2-choosable graphs,
there is no simple characterization of 3-choosable graphs. Even the characterization of all
pairs p, q with 3-choosable Kp,q (p 6 q) is not easy. A complete description of all the pairs
(p, q) is obtained by combining the works of Mahadev, Roberts and Santhanakrishnan [9]
(p = 3, q 6 26 and p = 4, q 6 18), Shende and Tesman [14] (p = 5, q 6 12), and O-Donnel
[10] (p = 6, q 6 10).

In the following, we consider on-line 3-choosability of complete bipartite graphs. We
shall frequently use the following observation:

Observation 16 A graph G is on-line f -choosable if and only if for any subset U of
V (G), there is an independent set X contained in U such that G−X is on-line (f − δU)-
choosable.
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When we restrict to complete bipartite graphs, there is a more convenient way of
recording the information. Given a complete bipartite graph G = Kn,m together with a
mapping f : V (G) → N, we represent it by a pair of integer sequences

(f(a1), f(a2), . . . , f(an) ‖ f(b1), f(b2), . . . , f(bm)).

We call such a pair of integer sequences a configuration. For example (3, 3 ‖ 2, 2, 2, 2, 2)
represents the bipartite graph K2,5 with partite sets A = {a1, a2} and B = {b1, b2, . . . , b5},
and f(ai) = 3 for i = 1, 2, f(bi) = 2 for i = 1, 2, 3, 4, 5. Sometimes we write m ⋆ q for
m consecutive q’s. For example, the configuration (3, 3 ‖ 2, 2, 2, 2, 2) can be written as
(2 ⋆ 3 ‖ 5 ⋆ 2) and (2, 2, 3, 3 ‖ 2, 2, 3, 3, 3) can be written as (2 ⋆ 2, 2 ⋆ 3 ‖ 2 ⋆ 2, 3 ⋆ 3).

Given a complete bipartite graph G = Kn,m and a mapping f : V (G) → N, either
Thief has a winning strategy or Police has a winning strategy for the on-line f -colouring
game. We say (f(a1)f(a2) . . . f(an)||f(b1)f(b2) . . . f(bm)) is a Thief winning configura-
tion (or Police winning configuration) if Thief (or Police) has a winning strategy in the
corresponding game.

Now given a configuration (for a complete bipartite graph G = Kn,m with partite sets
A and B, together with a mapping f), we consider one round of the play of the on-line
f -list colouring game. Thief chooses a subset U of A ∪B. Then Police either colours the
vertices in U ∩A or he colours the vertices in U ∩B (we may assume that both U ∩A and
U ∩B are non-empty, for otherwise the move of Police is trivial). After this round of the
play, the game will be played on a new complete bipartite graph G′ with a new mapping
f ′, where G′ is obtained from G by deleting those coloured vertices, and f ′ is obtained
from f by reducing the value of f(x) by 1 for those x ∈ U . Thus given a configuration
and a subset U of A ∪ B, we obtain two new configurations (where U corresponds to a
move of Thief, and the two new configurations corresponds to the two different choices of
Police). We say these two new configurations are induced by U .

For example, take the configuration (3, 3 ‖ 2, 2, 2, 2, 2). Let U = {a1, b1}. Then the two
derived configurations are (3 ‖ 1, 2, 2, 2, 2) and (2, 3 ‖ 2, 2, 2, 2). In the first configuration,
Police coloured a1, so the partite set A has only one vertex left (we shall re-name this
vertex of A by a1.) As b1 is in U , it has consumed 1 colour, and f ′(b1) becomes 1.

With this terminology, by the recursive definition of (f, g)-choosability of graph, we
have the following observation:

Observation 17 A configuration is a Thief winning configuration if there is a subset U
of A ∪ B such that the two induced configurations are both Thief winning configurations.
Conversely, a configuration is a Police winning configuration if for any subset U of A∪B,
one of the two induced configurations is a Police winning configurations.

Using this observation, we can construct more and more complicated Thief winning
configurations (or Police winning configurations) from simple ones.

Here is a list of some simple Thief winning configurations and Police winning config-
urations.

Thief winning: (2⋆3 ‖ 9⋆2), (2, 3 ‖ 6⋆2), (1, 2, 3 ‖ 6⋆3), (3⋆2 ‖ 3⋆2), (2, 2, 3 ‖ 12⋆3).
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Police winning: (2⋆3 ‖ 8⋆2), (2, 3 ‖ 5⋆2), (1, 2, 3 ‖ 5⋆3), (3⋆2 ‖ 2⋆2), (2, 2, 3 ‖ 11⋆3).
To see that (2⋆3 ‖ 9⋆2) is Thief winning, we note that K2,9 is not f -choosable for the

given f (and hence not on-line f -choosable): let L(a1) = {1, 2, 3} and L(a2) = {4, 5, 6},
and let {L(bi) : i = 1, 2, . . . , 9} = L(a1) × L(a2). It is easy to see that K2,9 is not
L-colourable.

To see that (2, 2, 3 ‖ 12 ⋆ 3) is Thief winning, it suffices to note that the two config-
urations induced by U = {a1, b1, . . . , b6} are (2, 3 ‖ 6 ⋆ 2, 6 ⋆ 3) and (1, 2, 3 ‖ 6 ⋆ 3), and
both configurations are Thief winning configurations.

Lemma 18 The complete bipartite graph K3,q is on-line 3-choosable if and only if q 6 26.

Proof. If q > 27, then K3,q is not 3-choosable and hence not on-line 3-choosable. It
remains to show that G = K3,26 is on-line 3-choosable. I.e., (3 ⋆ 3 ‖ 26 ⋆ 3) is a Police
winning configuration. To prove this, we need to show that for each U ⊆ V (G), at least
one of the configuration induced by U is a Police winning configuration.

If |U ∩A| > 2, then Police colours vertices in U ∩A and (3 ‖ 26⋆2) is a Police winning
configuration (by using Lemma 6).

Assume that U ∩ A = {a3}. If |U ∩ B| 6 8, then Police colours the vertex a3 and
(3, 3 ‖ 8 ⋆ 2, 18 ⋆ 3) is a Police winning configuration. (By using Lemma 6, we may delete
those vertices x in B with f(x) = 3, and hence it suffices to show that (3, 3 ‖ 8 ⋆ 2) is a
Police winning configuration, which is easy.)

Assume that |U ∩ B| > 9. Then Police colours vertices in U ∩ B, and we claim that
(2, 3, 3 ‖ 17⋆3) is a Police winning configuration. The proof of this claim is routine check,
but there are some cases and we omit the details.

It follows from Lemma 18 that a complete graph K3,q is on-line 3-choosable if and only
if it is 3-choosable. The next result shows that there are complete graphs of the form K6,q

which are 3-choosable but not on-line 3-choosable, namely K6,9 and K6,10.

Lemma 19 If q > 9, then K6,q is not on-line 3-choosable.

Proof. It suffices to prove that K6,9 is not on-line 3-choosable. Figure 1 below gives a
winning strategy for Thief.

The root is the configuration (6 ⋆ 3 ‖ 9 ⋆ 3). We want to prove that this is a Thief
winning configuration. For this purpose we choose a set U , which is indicated in the figure
by upper bars, i.e., U = {a1, a2, a3, b1, b2, b3, b4}. Now U induces two configurations, which
are the two sons of the root. We need to show that each of these two sons is a Thief winning
configuration. We repeat this process, until we reach the leaves, which are obviously Thief
winning configurations. For example, the left most leaf is labeled by (22233||222). This
graph contains the complete bipartite graph K3,3 as a subgraph, with each vertex having
2 permissible colours. But K3,3 is not 2-choosable. So this is a winning configuration for
Thief. The rightmost leaf is labeled by (22||222233333). This is a winning configuration
for Thief as K2,4 is not 2-choosable. The other leaves are obviously winning configurations
for Thief.
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Figure 1: A winning strategy for Thief

6 Some open questions

The most natural question concerning the on-line choice number is the relation between
the choice number and the on-line choice number of a graph. It follows from the definition
that for any graph G, ch(G) 6 chOL(G). We have seen example graphs G for which
ch(G) < chOL(G).

Question 20 Can the difference chOL(G) − ch(G) be arbitrarily large? If yes, then can

the ratio chOL(G)
ch(G)

be arbitrarily large?

It was shown by Alon [2] that if a graph G has average degree at least 4
(

s4

s

)

log2(2
(

s4

s

)

),
then ch(G) > s. It follows that if ch(G) 6 s, then G has colouring number at most

4
(

s4

s

)

log2(2
(

s4

s

)

) and by Lemma 6, chOL(G) 6 4
(

s4

s

)

log2(2
(

s4

s

)

). So there is an upper

bound of chOL(G) in terms of ch(G). However, this upper bound is exponential. If the
answer to the second question in Question 20 is negative, then chOL(G) is bounded by a
linear function of ch(G). As a weaker question, we may ask:

Question 21 Is chOL(G) bounded by a polynomial function of ch(G)?

We have shown that if ch(G) 6 2, then chOL(G) 6 3.

Question 22 What is the maximum value of chOL(G) for 3-choosable graphs?

It is proved by Alon and Krivelevich [3] that random bipartite graphs Gn,n,p (i.e., each
partite set has n vertices and each edge added to the graph with probability p) almost
surely has choice number (1 + o(1)) log2(np). Alon and Krivelevich [3] also conjectured
that for any bipartite graph G with maximum degree d, ch(G) = O(ln d).
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Question 23 Is it true that chOL(Gn,n,p) is almost surely at most (1 + o(1)) log2(np)? Is
it true that for any bipartite graph G with maximum degree d, chOL(G) = O(ln d)?

It was conjectured by Erdős, Rubin and Taylor [6] that if G is k-choosable, then for
any positive integer b, G is (kb, b)-choosable. The conjecture is still open. The same
question is also interesting for on-line list colouring.

Question 24 Is it true that for any graph G and for any positive integer b, chOL
b (G) 6

bchOL(G)?

The choice ratio of a graph is defined as inf{ chb(G)
b

: b ∈ N}. It is proved in [4] that
the choice ratio of a graph G is equal to its fractional chromatic number. We may define

the on-line choice ratio of G as inf{
chOL

b
(G)

b
: b ∈ N}.

Question 25 Is it true that the on-line choice ratio of any graph equals its fractional
chromatic number?

A famous conjecture of Erdős-Lovasz-Farber [5] says that if G is the edge-disjoint
union of n complete graphs of order n each, then χ(G) = n. Alon (see Page 13 of [16])
further conjectured that such a graph has choice number n.

Question 26 If G is the edge-disjoint union of n complete graphs of order n each, is it
true that chOL(G) = n?

Question 26 is much stronger than the original Erdős-Lovász-Farber Conjecture. So
one might first try to find a counterexample. Basically, any question we ask for the choice
number of graphs is very much likely to be meaningful for the on-line choice number of
graphs. Sometimes we obtain a stronger statement, such as Question 26. Sometimes
the answer to question for the choice number is independent to the answer to the corre-
sponding question for on-line choice number. It is a well-known open question whether
ch(G1 ∪ G2) 6 ch(G1)ch(G2), where G1 ∪ G2 is the edge-disjoint union of two graphs G1

and G2 on the same vertex-set.

Question 27 Suppose G1 and G2 are graphs on the same vertex-set. Is it true that
chOL(G1∪G2) 6 chOL(G1)ch

OL(G2)? As a special case, if G is a bipartite graph and G′ is
obtained from G by substituting each vertex with two nonadjacent vertices, is it true that
chOL(G′) 6 (chOL(G))2?

A positive answer to Question 24 implies a positive answer to Question 27. To prove
this, let a = chOL(G1) and b = chOL(G2). A winning strategy for Police in the on-line
ab-list colouring game for G1 ∪ G2 is as follows: When Thief constructs a set Vi, Police
uses his strategy for the on-line list b-colouring game on G1, obtaining a set Xi which
is an independent set of G1. Then by viewing Xi as a subset of V (G2), Polices uses his
winning strategy on the on-line list colouring game on G2, to an independent set Yi of
G2 contained in Xi. Then Yi is an independent set of G = G1 ∪ G2. If each vertex of G
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is contained in ab of the Vi’s, then each vertex is contained in b of the Xi’s, and hence
contained in at least one of the Yi’s. So this is indeed a winning strategy for Police.

It is proved by Alon [1] that for every fixed edge probability p, ch(Gn,p) = (1 + o(1)) ·
χ(Gn,p) with probability 1 − o(1) as n → ∞.

Question 28 Is it true that for every fixed edge probability p,

chOL(Gn,p) = (1 + o(1)) · χ(Gn,p)

with probability 1 − o(1) as n → ∞?

It is proved by Bollobás that

χ(Gn,p) = (
1

2
+ o(1))(log

1

1 − p
)

n

log n
.

In the Thief-Police game, if Police cannot put all the thieves into prison, a natu-
ral question is how many thieves can be put into prison. This motivates the following
question:

Question 29 Suppose G is on-line k-choosable, and a sequence of subsets V1, V2, . . . , Vm

is given sequentially. If each vertex is contained in k′ < k of the Vi’s, is it possible that
Police can choose the independent sets Xi’s sequentially so that at least k′

k
|V (G)| vertices

are contained in the union of the Xi’s? In other words, in the Thief-Police game, can
Police guarantee that at least k′

k
of the thieves are put into prison?

If k is a multiple of k′, then the non-game version of the question has a positive answer:
If k = ak′ for some positive integer a, G is k-choosable and L is a k′-assignment, then
there is an induced subgraph H of G with at least k′

k
|V (G)| vertices which is L-colourable.

Indeed, one can obtain a k-assignment L′ of G by replacing each colour i in L(v) with
a colours (i, 1), (i, 2), . . . , (i, a). Let f be an L′-colouring of G. For j = 1, 2, . . . , a, let
Hj be the subgraph of G induced by vertices with colour (i, j) for some i. Then there
is an index j for which Hj contains at least |V (G)|/a = k′

k
|V (G)| vertices, and Hj is

L-colourable.
If k is not a multiple of k′, then the non-game version of Question 29 is open. In

particular, Albertson [15] asked the following question: Suppose G is 3-choosable, and
L is a 2-assignment of G. Is it true that there is an induced subgraph H with 2

3
|V (G)|

vertices which is L-colourable?
For general functions f, g, the (f, g)-choosability and the on-line (f, g)-chooosability

of graphs seem difficult even for graphs of very simple structure. The following question
is open.

Question 30 Suppose T is a tree. Characterize those pairs of mappings f, g such that
T is (f, g)-choosable. Characterize those pairs of mappings f, g such that T is on-line
(f, g)-choosable.
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