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Abstract

We introduce a pair of natural, equivalent models for randomthreshold graphs and use
these models to deduce a variety of properties of random threshold graphs. Specifically, a
random threshold graphG is generated by choosingn IID values x1, . . . , xn uniformly in
[0, 1]; distinct verticesi, j of G are adjacent exactly whenxi + x j > 1. We examine various
properties of random threshold graphs such as chromatic number, algebraic connectivity,
and the existence of Hamiltonian cycles and perfect matchings.

1 Introduction and Overview of Results

Threshold graphs were introduced by Chvátal and Hammer in [4, 5]; see also [6, 13]. There are
several, logically equivalent ways to define this family of graphs, but the one we choose works
well for developing a model of random graphs. A simple graphG is athreshold graphif we can
assign weights to the vertices such that a pair of distinct vertices is adjacent exactly when the
sum of their assigned weights is or exceeds a specified threshold. Without loss of generality, the
threshold can be taken to be 1 and the weights can be restricted to lie in the interval [0, 1]; see
Definition 2.1. References [2, 9, 16] provide an extensive introduction to this class of graphs.

If we choose the weights for the vertices at random, we inducea probability measure on
the set of threshold graphs and thereby create a notion of a random threshold graph. Given
that we may assume the weights lie in [0, 1] it is natural to take the weights independently
and uniformly in that interval; a careful definition is givenin §3.1. The idea of choosing a
random representation has been explored in other contexts such as random geometric graphs
[18] (choose points in a metric space at random to represent vertices that are adjacent if their
points are within a specified distance) and random interval graphs [19] (choose real intervals at
random to represent vertices that are adjacent if their intervals intersect).

A different approach to random threshold graphs that is based on a recursive description of
their structure (see Theorem 2.7) was presented in [11] whose goal was to use threshold graphs
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to approximate real-world networks (such as social networks). We use the core idea of [11] to
develop a second, alternative model of random threshold graphs (see§3.2).

Our principal result is that these two rather different definitions of random threshold graphs
result in precisely the same probability distribution on graphs; this is presented in§3.4 and
proved in§4. We then exploit this alternative description of random threshold graphs to deduce
various properties of these graphs in§5. In nearly all cases, our results are exact; this stands in
stark contrast to the theory of Erdős-Rényi random graphsin which most results are asymptotic.
In particular we consider the following properties of random threshold graphs:

• degree and connectivity properties, including the algebraic connectivity;

• the clique and chromatic number;

• Hamiltonicity;

• perfect matchings; and

• statistics on small induced subgraphs and vertices of extreme degree.

For example, we prove that the probability a random threshold graph onn vertices has a Hamil-
tonian cycle is exactly

1
2n−1

(

n− 2
⌊(n− 2)/2⌋

)

which is asymptotic to 1/
√

2πn; see Theorem 5.21.

2 Threshold Graphs

Most of the definitions and results presented in this sectionare previously known; see [4] but
especially [2, 9, 16] for a broad overview.

2.1 Definitions

The graphs we consider are simple graphs (undirected and without loops or multiple edges).
Often the vertex set ofG, denotedV(G), is [n] := {1, 2, . . . , n}. The edge set ofG is denoted
E(G).

There are a variety of equivalent ways to define threshold graphs; we choose this one as
particularly convenient for our purposes.

Definition 2.1 (Threshold graph, representation). LetG be a graph. We say thatG is athreshold
graphprovided there is a mappingf : V(G) → R such that for all pairs of distinct verticesu, v
we have

uv ∈ E(G) ⇐⇒ f (u) + f (v) > 1.

The mappingf is called athreshold representationof f . The numberf (v) is called theweight
assigned to vertexv.
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Figure 1 A threshold graph. A representation for this graph isx =
(

1
2,

1
4,

7
8,

15
16,

1
32,

63
64

)

.23 1 45 6
Definition 2.2 (Proper representation). Let G be a threshold graph and letf : V(G) → R+ be a
threshold representation ofG. We say thatf is aproperrepresentation provided:

1. for all verticesv of G, 0< f (v) < 1,

2. for all pairs of distinct verticesu, v of G, f (u) , f (v), and

3. for all pairs of distinct verticesu, v of G, f (u) + f (v) , 1.

The following is well known; see [16].

Proposition 2.3.Let G be a threshold graph. Then G has a proper threshold representation. �

Because the graphs we consider haveV(G) = [n], a threshold representationf : V(G)→ R+
can be identified with a vectorx ∈ Rn in which thei th coordinate ofx, xi, is f (i). A threshold
graph and representation for this graph are shown in Figure 1.

By Proposition 2.3 we may restrict our attention to representing vectors in the following set.

Definition 2.4 (Space of proper representations). Let n be a positive integer. Thespace of
proper representationsis the setPn defined as those vectorsx ∈ Rn such that

1. for all i, 0< xi < 1,

2. for all i , j, xi , xj, and

3. for all i , j, xi + xj , 1.

Givenx ∈ Pn defineΓ(x) to be the threshold graphG with V(G) = [n] so thati 7→ xi is a
threshold representation. That is,i j ∈ E(G) if and only if xi + xj > 1. ThusΓ is a mapping from
Pn onto the set of threshold graphs on vertex set [n].

We denote the set of threshold graphs with vertex setn asTn. ThereforeΓ : Pn→ Tn.
Note that for a threshold graphG with V(G) = [n], Γ−1(G) is the subset ofPn of all proper

representations ofG.
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2.2 Characterization theorems

See [16] for details on these well-known results.
It is easy to check that the property of being a threshold graph is a hereditary property of

graphs. By this we mean

• if G is a threshold graph andH is isomorphic toG, thenH is a threshold graph, and

• if G is a threshold graph andH is an induced subgraph ofG, thenH is a threshold graph.

Therefore, threshold graphs admit a forbidden subgraph characterization; in addition to [16],
see also [2].

Theorem 2.5. [4] Let G be a graph. Then G is a threshold graph if and only if G does not
contain an induced subgraph isomorphic to C4, P4, or 2K2. �

Of greater utility to us is a structural characterization ofthreshold graphs based on extremal
vertices which we define here.

Definition 2.6. Let G be a graph and letv ∈ V(G). We say thatv is extremalprovided it is either
isolated(adjacent to no other vertices ofG) or dominating(adjacent to all other vertices ofG).

Theorem 2.7. Let G be a graph. Then G is a threshold graph if and only if G has an extremal
vertex u and G− u is a threshold graph.

We include a proof of this well-known result because it is central to the notion of creation
sequence developed in section 2.3.

Proof. Suppose first thatG is a threshold graph and letx be a proper threshold representation.
Select verticesa andb such that

xa = min{xv : v ∈ V(G)} and xb = max{xv : v ∈ V(G)}.

Note that ifxa+xb < 1, thenxa+xv < 1 for all verticesv and soa is an isolated vertex. However,
if xa + xb > 1 thenxv + xb > 1 for all vertices and sob is a dominating vertex. HenceG has
an extremal vertexu (eithera or b). Furthermore, any induced subgraph of a threshold graph is
again a threshold graph, soG− u is threshold.

Conversely, supposeu is an extremal vertex ofG and thatG − u is a threshold graph. Letx
be a threshold representation ofG − u. Without loss of generality, we can choosex so that all
weights are strictly between 0 and 1.

Definexu to be 0 ifu is an isolated vertex or to be 1 isu is a dominating vertex. One checks
that so augmented,x is a threshold representation ofG, and thereforeG is a threshold graph.�

Corollary 2.8. A graph G is a threshold graph if and only if its complementG is a threshold
graph. �

As usual,for a vertexv of a graphG we writeN(v) = {w ∈ V(G) : vw ∈ E(G)} for the set of
neighbors ofv andd(v) = |N(v)| for the degree ofv.
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Proposition 2.9. Let v,w be vertices of a threshold graph G. The following are equivalent:

1. d(v) < d(w).

2. In every threshold representation f of G we have f(v) < f (w). �

Proof. (1)⇒ (2): Supposed(v) < d(w) and let f be any representation ofG. For contradiction,
supposef (v) > f (w). Choose any vertexu , v,w. If u ∼ w then f (u)+ f (w) > 1 which implies
f (v) + f (w) > 1 and sou ∼ v. This impliesd(v) > d(w), a contradiction.

(2)⇒ (1): Suppose in every representation off of G we havef (v) < f (w). Then, arguing
as above, for allu , v,w, u ∼ v⇒ u ∼ w. This impliesd(v) 6 d(w). If (for contradiction) we
hadd(v) = d(w), then for allu , v,w, u ∼ v ⇐⇒ u ∼ w. Fix a representationf and define a
new functionf ′ by

f ′(u) =



























f (w) if x = v,

f (v) if x = w, and

f (u) otherwise.

One checks thatf ′ is also a representation ofG but f ′(v) > f ′(w), a contradiction. �

Proposition 2.10.Let G be a threshold graph and let v,w ∈ V(G). The following are equivalent:

1. d(v) = d(w).

2. N(v) − w = N(w) − v.

3. There is an automorphism of G that fixes all vertices other than v and w and that trans-
poses v and w.

4. There is a threshold representation f of G such that f(v) = f (w). �

Proof. The implications (4)⇒ (3) ⇒ (2) ⇒ (1) are straightforward, so we are left to argue
that (1)⇒ (4). By Proposition 2.9, there are representationsf andg of G with f (v) 6 f (w) and
g(v) > g(w). Defineh by h(u) = 1

2[ f (u) + g(u)]. One checks thath is a representation ofG in
whichh(v) = h(w). �

Verticesv,w that satisfy any (and hence all) of the conditions of Proposition 2.10 are called
twins.

2.3 Creation sequences

The concept of a creation sequence was developed in [11]. Ourdefinition is a modest modifica-
tion of their original formulation.

LetG be a threshold graph. Theorem 2.7 implies thatG can be constructed as follows. Begin
with a single vertex. Iteratively add either an isolated vertex (adjacent to none of the previous
vertices) or a dominating vertex (adjacent to all of the previous vertices). We can encode this
construction as a sequence of 0s and 1s where 0 represents theaddition of an isolated vertex
and 1 represents the addition of a dominating vertex.
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Definition 2.11 (Creation sequence). Let G be a threshold graph withn vertices. Itscreation
sequenceseq(G) is ann− 1-long sequence of 0s and 1s recursively defined as follows. Letv be
an extremal vertex ofG. Then seq(G) = seq(G− v) ‖ x (here‖ represents concatenation) where
x = 0 if v is isolated andx = 1 if v is dominating.

For example, consider the threshold graphG in Figure 1. It has a dominating vertex (6)
so the final entry in seq(G) is a 1, i.e., seq(G) = xxxx1. Deleting vertex 6 fromG gives a
graph with an isolated vertex (5), so seq(G) = xxx01. Deleting that vertex leaves vertex 4 as a
dominating vertex. Continuing this way we see seq(G) = 01101.

Note that there is a mild ambiguity in Definition 2.11 in that athreshold graph may have
more than one extremal vertexv. One checks, however, that the same creation sequence is
generated regardless of which extremal vertex is used to determine the last term of seq(G). The
creation sequence ofK1 is the empty sequence.

It is easy to check that for everyn − 1-long sequences of 0s and 1s, there is a threshold
graphG with seq(G) = s. We also have the following.

Proposition 2.12. Let G and H be threshold graphs. Then G� H if and only if seq(G) =
seq(H). �

2.4 Unlabeled graphs

In the sequel we consider both labeled and unlabeled graphs.To deal with these concepts
carefully, we include the following discussion.

For us, there is no distinction between the termsgraphandlabeled graph.
An unlabeled graphis an isomorphism class of graphs, but we define it in a strict way.

Definition 2.13(Unlabeled graph). Let G be a graph onn vertices. Let [G] denote the set of all
graphs on vertex set [n] that are isomorphic toG. We call [G] an unlabeledgraph.

Since there are only finitely many graphs with vertex set [n], unlabeled graphs are finite sets
of (labeled) graphs. Indeed, if the automorphism group ofG has cardinalitya, then [G] is a set
of n!/a graphs.

We typically denote labeled graphs with upper case italic letters,G, and unlabeled graphs
with upper case bold letters,G.

Let G be an unlabeled threshold graph. By Proposition 2.12, for all G,G′ ∈ G, we have
seq(G) = seq(G′). Therefore, we write seq(G) to denote this common sequence.

Proposition 2.14. [17] Let n be a positive integer. There are2n−1 unlabeled threshold graphs
on n vertices.

Proof. Unlabeled threshold graphs onn vertices are in one-to-one correspondence withn− 1-
long sequences of 0s and 1s. �
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Figure 2 The graph from Figure 1 canonically labeled.342 51 6
2.5 Canonical labeling of threshold graphs

Let G be an unlabeled threshold graph. It is useful to have a methodto select a canonical
representativeG ∈ G. We denote the canonical representative ofG by ℓ(G) which we define as
follows.

Definition 2.15(Canonical labeling). Let G be an unlabeled graph. LetG = ℓ(G) be the unique
graph inG with the property that

∀v,w ∈ V(G), dG(v) < dG(w) =⇒ v < w.

In other words, we number sequentially starting with the vertices of lowest degrees working
up to the vertices of largest degree.

The uniqueness ofℓ(G) follows from Propositions 2.9 and 2.10.
Here is an equivalent description ofℓ(G). For a vectorx, let sort(x) be the vector formed

from x by arrangingx’s elements in ascending order. Letx be a proper representation for any
graph inG. Thenℓ(G) = Γ(sort(x)). This observation leads to the following result.

Proposition 2.16.Letx, x′ ∈ Pn and supposeΓ(x) � Γ(x′). Lety = sort(x) and lety′ = sort(x′).
ThenΓ(y) = Γ(y′). �

For example, letG be the graph in Figure 1. One checks thatx =
(

1
2,

1
4,

7
8,

15
16,

1
32,

63
64

)

is a

proper representation forG. Let y = sort(x) =
(

1
32,

1
4,

1
2,

7
8,

15
16,

63
64

)

to produce the graphH = Γ(y)
in Figure 2.

3 Random Models

We now present two models of random threshold graphs. In bothcases, arandom threshold
graphon n vertices is a pair (Tn,P) whereP is a probability measure onTn.

3.1 Random vector model

Let n be a positive integer. A natural way to define a random threshold graph onn vertices is to
pick n random numbers independently and uniformly from [0, 1] and use these as the weights.
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Equivalently, we pickx uniformly at random in [0, 1]n. Note that with probability 1,x ∈ Pn. Let
G be the threshold graphΓ(x). This leads us to the following formal definition.

Definition 3.1 (Random vector threshold graph). Let n be a positive integer. Define the proba-
bility space (Tn,P′) by setting

P′(G) = µ
(

Γ
−1(G)

)

whereG ∈ Tn andµ is Lebesgue measure inRn.

Note: By definitionΓ : Pn → Tn, and soΓ−1(G) is a subset ofPn. Observe thatµ(Pn) = 1.
Definition 3.1 can be rewritten like this:

P′(G) = µ{x ∈ Pn : Γ(x) = G}.

Example 3.2. We calculateP′(G) whereG is the path on three vertices 1∼ 2 ∼ 3. To do this
we need to find

µ {(x, y, z) ∈ P3 : Γ([x, y, z]) = G} = µ
{

(x, y, z) ∈ [0, 1]3 : x+ y > 1, y+ z> 1, x+ z< 1
}

.

We break up this calculation into two cases:x 6 z andx > z to get

P′(G) = 2
∫ 1

2

x=0

∫ 1−x

z=x

∫ 1

y=1−x
dy dz dx=

1
12
.

(The triple integral is based on the casex 6 z.)

We defineT1 to be the set{(Tn,P′) : n > 1}. We callT1 the random vector modelfor
threshold graphs.

3.2 Random creation sequence model

Our second model of random threshold graphs is based on creation sequences. Letn be a
positive integer and letsbe ann−1-long sequence of 0s and 1s. Defineγ(s) to be the unlabeled
threshold graphG with seq(G) = s. In other words,

γ(s) = {G ∈ Tn : seq(G) = s}.

Our second model of random threshold graph can be described informally as follows. Letn be
a positive integer. Choose a randomn− 1-long sequence of 0s and 1ss; each element ofs is an
independent fair coin flip; that is, all 2n−1 sequences are equally likely. Then randomly apply
labels to the unlabeled threshold graphγ(s); that is, select a graph uniformly at random from
γ(s). Here is a formal description.

Definition 3.3 (Random creation sequence threshold graph). Let n be a positive integer. Define
the probability space (Tn,P′′) by setting,

P′′(G) =
1

2n−1 · |[G]|
whereG ∈ Tn.
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One checks that
∑

G∈Tn

P′′(G) = 1.

Example 3.4. We calculateP′′(G) whereG is the path on three vertices 1∼ 2 ∼ 3. Note that
|[G]| = 3!/|Aut(G)| = 3!/2 = 3 and so

P′′(G) =
1

22|[G]|
=

1
12
.

Note that the calculation ofP′′ (Example 3.4) is much easier than the calculation ofP′

(Example 3.2) and gives the same result—a phenomenon that holds in general (Theorem 3.7).

Example 3.5. We calculateP′′ for the graphG in Figure 1. Note that Aut(G) contains exactly
four automorphisms as we can independently exchange vertices 1↔ 2 and 3↔ 4. Therefore

P′′(G) =
1

25|[G]|
=

4
25 · 6!

=
1

5760
.

Let T2 = {(Tn,P′′) : n > 1}. We callT2 the random creation sequence modelfor threshold
graphs.

Note that in this model, the probability that a random threshold graph has a particular cre-
ation sequence is 1/2n−1. Furthermore, all graphs with creation sequences are equally likely in
this model.

3.3 Computing P′′(G)

As suggested by Examples 3.4 and 3.5, the computation ofP′′(G) for a threshold graphG is
easy.

By Definition 3.3, ifG is a threshold graph with vertex set [n], then

P′′(G) =
1

2n−1|[G]|
.

Of course|[G]| = n!/|Aut(G)|, so this can be rewritten

P′′(G) =
|Aut(G)|
n!2n−1

.

For a general graph, the computation of|Aut(G)| is nontrivial. However, for a threshold
graph, it is easy.

Proposition 3.6. Let G be a threshold graph with n vertices. For0 6 i 6 n − 1, let ni be the
number of vertices of degree i in G. Then

|Aut(G)| = n0!n1!n2! · · ·nn−1!.

Proof. By Proposition 2.10 it follows that every degree-preserving permutation of the vertex
set of a threshold graphG is an automorphism ofG. Hence Aut(G) is isomorphic toSn0 ×Sn1 ×
· · · × Snn−1, and the result follows. �
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3.4 Equivalence of models

ModelT1 is an especially natural way to define threshold graphs—it flows comfortably from
the definition of these graphs. ModelT2, however, is more tractable. Fortunately, these two
models are equivalent.

Theorem 3.7.T1 = T2. That is, if G is a threshold graph, then P′(G) = P′′(G).

The proof of this result rests on a geometric analysis (see§4) of the space of proper repre-
sentations,Pn. Before we present the proof, two comments are in order.

Remark 3.8. The choice of the uniform distribution on [0, 1] for the weights in modelT1 is
natural, but other distributions might be considered as well. A close reading of the proof of The-
orem 3.7 reveals that replacing the uniform [0, 1] distribution with any continuous distribution
that is symmetric about12 (such as the normal distributionN(1

2, 1) with mean1
2 and variance 1)

results in the same model of random threshold graphs.

Remark 3.9. We can maintain the uniform [0, 1] distribution for the vertex weights, but change
the threshold for adjacency. Lett be a real number with 0< t < 2 and letx ∈ [0, 1]n. Define
Γt(x) to be the graphG with vertex set [n] in which i j is an edge exactly whenxi + xj > t.
This gives rise to a model of random threshold graphsT t

1 generated by choosing the weights
uniformly at random in [0, 1]. In this model, one can work out that the probability of an edge is

P{i j ∈ E(G)} = p =















1− 1
2t2 for 0 < t 6 1 and

1
2(2− t)2 for 1 6 t < 2.

(1)

In caset = 1, this model reduces toT1.
It is natural to ask if there is an analogue to Theorem 3.7 for the modelT t

1 whent , 1. Let
T p

2 be the random creation sequence model in which the 0s and 1s ofthe creation sequence are
independent coin tosses, but in which the probability of a 1 is p as given in equation (1).

For 0< t < 1, note that the probability ofK3 in T t
1 is 1

4t3 but inT p
2 this graph has probability

(1− p)2
=

1
4t4; these are different for all 0< t < 1. A similar argument, based on the graphK3,

shows thatT t
1 , T

p
2 for 1 < t < 2.

4 DecomposingPn and the Proof of Theorem 3.7

4.1 The regions ofPn

The space of proper representations,Pn, is an open subset of the open cube (0, 1)n. Note thatPn

is dissected into connected regions by slicing the open cubewith the following 2
(

n
2

)

hyperplanes:

• ∀i, j ∈ [n] with i , j, Πi j = {x ∈ (0, 1)n : xi = xj} and

• ∀i, j ∈ [n] with i , j, Π′i j = {x ∈ (0, 1)n : xi + xj = 1}.

Figure 3 illustrates howP3 is dissected by these hyperplanes.
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Figure 3 The regions ofP3. The left portion of the figure shows two of the 24 connected regions
of P3. The right portion shows how these pieces fit together.

Proposition 4.1. Let x, x′ be points in the same connected region ofPn. ThenΓ(x) = Γ(x′).

Proof. Note that for all verticesi , j, we havexi + xj , 1 andx′i + x′j , 1. Therefore, to
establish thatΓ(x) = Γ(x′), is enough to show

∀i , j, xi + xj < 1 ⇐⇒ x′i + x′j < 1.

But if this were false, thenx andx′ would lie on opposite sides of a hyperplane of the form
Π
′
i j . �

Thus the set ofx ∈ Pn that represent a given graphG is a disjoint union of connected regions
of Pn.

4.2 Counting the regions

Theorem 4.2.There are2n−1n! connected regions ofPn. Moreover, there is a bijection between
the set of regions ofPn and the set of ordered pairs(G, π) whereG is an unlabeled threshold
graph on n vertices andπ ∈ Sn, i.e., a permutation of[n].

Forn = 1, 2, 3, 4, . . ., the number of regions is 1, 4, 24, 192, . . .; this is sequence A002866 in
[21].

Proof. We establish a bijection between connected regions ofPn and the set of ordered pairs
(G, π) whereG is an unlabeled threshold graph onn vertices andπ ∈ Sn. The result then follows
from Proposition 2.14.

Let R be a region ofPn and letx ∈ R. First, tox we associate a permutationπ so that

(

xπ(1), xπ(2), . . . , xπ(n)
)

= sort(x).
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Figure 4 The four regions ofP2 corresponding to all ordered pairs (π,G) whereπ ∈ S2 andG
is an unlabeled threshold graph on two vertices.

π = [1, 2]

π = [2, 1]

π = [1, 2] π = [2, 1]

G = 2K1
G = K2

G = 2K1

G = K2

x1

x2

This unambiguously definesπ because no two components ofx are equal. Furthermore, ifx, x′

are distinct points ofR, they determine the same permutation. [Otherwise, we have,sayxi < xj

andx′i > x′j placing the points on opposite sides of the hyperplaneΠi j , a contradiction.] Thus
we may associate this permutation with the entire region andrefer to it asπR.

Next, to a pointx ∈ R we associate the unlabeled graph [Γ(x)]. Furthermore, given two
points x and x′ of R, note thatΓ(x) = Γ(x′). [Otherwise, we have, say,i j ∈ E[Γ(x)] but
i j < E[Γ(x′)]. This givesxi + xj > 1 andx′i + x′j < 1, placing the points on opposite sides of
the hyperplaneΠ′i j .⇒⇐] Thus, all pointsx in Ryield the same graphG anda fortiori, the same
unlabeled graph [Γ(x)]. We call this graphGR.

Hence the mappingR 7→ (GR, πR) is well defined. We claim that this mapping is a bijection.
For example, see Figure 4 for the simple casen = 2.

We first show thatR 7→ (GR, πR) is surjective. LetG be any unlabeled threshold graph onn
vertices and letπ be any permutation inSn.

Choose anyG ∈ G and lety be a proper representation ofG. Rearrange the coordinates ofy
to givex subject to the condition thatxπ(1) < xπ(2) < · · · < xπ(n). LetRbe the region that contains
x. Note thatΓ(x) � Γ(y) and soGR = [Γ(x)] = [Γ(y)] = G. In addition,x was constructed so
that

(

xπ(1), xπ(2), . . . , xπ(n)
)

= sort(x)

and soπR = π.
Finally, we need to show thatR 7→ (GR, πR) is injective. LetR,R′ be distinct regions ofPn,

and choosex ∈ R andx′ ∈ R′. If πR , πR′ then we are done, so supposeπR = πR′ . Sincex and
x′ are from different regions, there existi , j so that (without loss of generality)xi + xj < 1 but
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x′i + x′j > 1. ThereforeΓ(x) , Γ(x′). SinceGR = [Γ(x)] andGR′ = [Γ(x′)] it suffices to show that
Γ(x) 6� Γ(x′).

Suppose, for contradiction, thatΓ(x) � Γ(x′). Then,G = [Γ(x)] = [Γ(x′)]. Let ℓ(G) be
the canonical labeling ofG. By definition, we haveℓ(G) = Γ(sort(x)) = Γ(sort(x′)). Define
y = sort(x) andy′ = sort(x′). BecauseΓ(y) = Γ(y′), we see thatyi + yj > 1 if and only if
y′i + y′j > 1. By our earlier assumption thatπR = πR′, we know thatyi = xπR(i) andy′i = x′

πR(i).
Thus we havexπR(i) + xπR( j) > 1 if and only if x′

πR(i) + x′
πR( j) > 1 implying thatx andx′ admit the

same threshold graph. This is a contradiction. Therefore, we conclude thatΓ(x) 6� Γ(x′) and
R 7→ (GR, πR) is injective. �

Definition 4.3. Let n be a positive integer. LetG be an unlabeled threshold graph and letπ ∈ Sn.
DefineR(G, π) to denote the connected region ofPn corresponding to the ordered pair (G, π)
given by the bijection in the proof of Theorem 4.2.

4.3 Congruence of the regions

We have established thatPn decomposes into 2n−1n! regions, and each regionR is uniquely
associated with an ordered pair (GR, πR). Our next goal is to establish that these regions all have
the same shape, and hence the samen-dimensional volume: 1/(2n−1n!).

Theorem 4.4. All regions ofPn are congruent and therefore have the same n-dimensional vol-
ume.

Proof. To show that then!2n−1 regions ofPn are congruent we perform the following transfor-
mation:

x 7→ x̂ := x − 1
21

where1 is a vector of all ones. This translates the cube whose corners are{0, 1}n to the cube
whose corners are{−1

2,
1
2}

n.
The hyperplanesxi = xj andxi + xj = 1 are transformed as follows:

xi = xj 7→ x̂i +
1
2
= x̂j +

1
2
=⇒ x̂i = x̂j

and

xi + xj = 1 7→
(

x̂i +
1
2

)

+

(

x̂j +
1
2

)

= 1 =⇒ x̂i = −x̂j

Thus the translatedPn now centered at the origin is dissected by the 2
(

n
2

)

hyperplanesxi =

±xj. By symmetry, all the regions have the same shape, and therefore the samen-dimensional
volume. �

Corollary 4.5. Let R be a connected region ofPn. Then

µ(R) =
1

2n−1n!
.

Proof. From Theorem 4.4 we deduce that all regionsR have the samen-dimensional volume.
Since by Theorem 4.2 there are 2n−1n! regions andµ(Pn) = 1, the result follows. �
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4.4 Proof ofT1 = T2

Proof of Theorem 3.7.Let G ∈ Tn be a threshold graph. We must show thatP′(G) = P′′(G).
Recall (Definition 3.1) thatP′(G) is the measure of the set{x ∈ Pn : Γ(x) = G}. This set is

the disjoint union of regions whose points representG (see Proposition 4.1).
LetRG denote the set of regionsR⊂ Pn such thatx ∈ R=⇒ Γ(x) = G. Then

P′(G) =
|RG|

n!2n−1

because every region inRG has the same volume (Corollary 4.5).
Recall (Section 3.3) that

P′′(G) =
|Aut(G)|
n!2n−1

the result follows once we establish|RG| = |Aut(G)|.
Let G = [G] be the unlabeled version ofG.
Claim 1. Let R(G, π) ∈ RG and letσ ∈ Aut(G). Then R(G, π ◦ σ) ∈ RG.

Proof. By Theorem 4.2, there is a bijection between regions,R, and unlabeled
graph and permutation pairs, (G, π). Thus, it follows thatR(G, π ◦ σ) ∈ Pn.

It is clear thatR(G, π) andR(G, π ◦ σ) correspond to isomorphic graphs. By
Proposition 2.16, they have the same canonical labelingℓ(G). To obtain the graph
G = Γ(R(G, π)), we apply the isomorphismπ−1 to ℓ(G). Similarly, to obtain the
graphG′ = Γ(R(G, π ◦ σ)), we apply the isomorphism (π ◦ σ)−1 to ℓ(G).

Becauseσ is an automorphism ofG (and therefore so isσ−1), we obtain the
same graph,G, after applyingσ−1 to G. In other words, by first applyingπ−1 to
ℓ(G) and then applyingσ−1 to the result, we obtain the same graphG as we would
by simply applyingπ−1 to ℓ(G). However, applyingπ−1 and thenσ−1 is equivalent
to applying (π ◦ σ)−1 to ℓ(G) which results inG′ as defined above. Thus,G′ = G
andR(G, π ◦ σ) ∈ RG. �

Claim 2. Let R(G, π),R(G, σ) ∈ RG. Thenπ−1 ◦ σ ∈ Aut(G).

Proof. Let ℓ(G) be the canonical labeling ofG. Notice thatσ is the isomor-
phism that takes us fromΓ(R(G, σ)) to ℓ(G) andπ−1 is the isomorphism that takes
us fromℓ(G) to Γ(R(G, π)). Thus,π−1 ◦ σ is an isomorphism fromΓ(R(G, σ)) to
Γ(R(G, π)). SinceR(G, π),R(G, σ) ∈ RG, we haveG = Γ(R(G, σ)) = Γ(R(G, π)).
Therefore,π−1 ◦ σ is, in fact, an automorphism ofG. �

Let R(G, π) ∈ RG. The claims show that every region ofRG is precisely of the formR(G, π◦
σ) for someσ ∈ Aut(G). Therefore|RG| = |Aut(G)|, completing the proof of Theorem 3.7.�
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5 Properties of Random Threshold Graphs

Having established the equivalence of modelsT1 andT2, we drop the subscripts and simply call
theserandom threshold graphs. Furthermore, we now write Pr(G) to denote the probability of
a graphG in this common model.

The bits of a creation sequences are denoteds1s2 . . . sn−1. If s = s1s2 . . . sn−1, we define
s = s1s2 . . . sn−1 to be thecomplementof s. That is, si = 1 − si. The following is easy to
establish.

Proposition 5.1. Let G be a threshold graph. If s= seq(G), thens = seq(G) whereG is the
complement of G. �

Corollary 5.2. Let G be a threshold graph. Then,Pr{G} = Pr{G}.

Proof. Notice that seq(G) andseq(G) are equally likely to occur. The result follows by Propo-
sition 5.1. �

5.1 Degree and connectivity properties

Proposition 5.3. Let G be an instance of a random threshold graph. Then,

Pr{G is connected} = 1
2
.

Proof. G is connected if and only if the last bit of seq(G) is 1, and that occurs with probability
1
2. �

Proposition 5.4. Let G be an instance of a random threshold graph on n vertices.Then, the
maximum degree of G has the following distribution:

Pr{∆(G) = i} =



























1/2n−1 for i = 0,

1/2n−i for 1 6 i 6 n− 1, and

0 otherwise.

Proof. First, notice that∆(G) = 0 if and only if si = 0 for all 1 6 i 6 n − 1. So, Pr{∆(G) =
0} = 1/2n−1. For 16 i 6 n − 1, ∆(G) = i if and only if si = 1 andsj = 0 for all j > i. Thus,

Pr{∆(G) = i} =
(

1
2

)

·
(

1
2

)n−1−i
=

(

1
2

)n−i
. �

Proposition 5.5. Let G be an instance of a random threshold graph on n vertices.Then, the
expected maximum degree of G is E[∆(G)] = n− 2+ 1

2n−1 .

Proof. Using Proposition 5.4,

E[∆(G)] = 0 · 1
2n−1
+ 1 · 1

2n−1
+ 2 · 1

2n−2
+ · · · + (n− 1) · 1

2

=

n−1
∑

i=1

i
2n−i
= n− 2+

1
2n−1
. �
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Corollary 5.6. Let G be an instance of a random threshold graph on n vertices.Then,

Pr{δ(G) = i} =



























1/2n−1 for i = n− 1,

1/2i+1 for 0 6 i 6 n− 2, and

0 otherwise.

Proof. Recall thatδ(G) = n− 1− ∆(G). Thus,

Pr{δ(G) = i} = Pr{n− 1− ∆(G) = i} = Pr{∆(G) = n− 1− i}.

The result then follows from Proposition 5.4 and Corollary 5.2. �

Corollary 5.7. Let G be an instance of a random threshold graph. Then, E[δ(G)] = 1− 1
2n−1 .

Proof. The result follows from the fact thatδ(G) = n− 1− ∆(G) and Proposition 5.5. �

Let G be a graph withn vertices. TheLaplacianof G, denotedL(G), is ann × n-matrix
defined byL(G) = D(G) − A(G) whereD(G) is the diagonal matrix ofG’s degrees andA(G) is
G’s adjacency matrix. In other words, takingV(G) = [n] we have

D(G)i j =



























d(i) wheni = j,

−1 wheni j ∈ E(G), and

0 otherwise

The matrixL(G) is positive semidefinite and with spectrum

0 = λ1 6 λ2 6 · · · 6 λn.

The second smallest eigenvalue,λ2, is known as the graph’salgebraic connectivity.
Note thatλ2 > 0 if and only if the graph is connected.
There is a beautiful relation between the eigenvalues ofL(G) and the degree sequence of

G for threshold graphs due to Merris [10]. Merris observed that the eigenvalues of a threshold
graph’s Laplacian are all integers. Furthermore, considering the trace ofL(G) gives

n
∑

i=2

λi = tr[L(G)] =
n

∑

j=0

d( j) = 2|E(G)|.

Thus, the eigenvalues ofL(G) and the degrees ofG are partitions of the same integer. Moreover,
Merris proved the following relationship between these partitions.

Theorem 5.8. Let G be a connected threshold graph, let0 < d1 6 d2 6 · · · 6 dn be the
degrees of its vertices and let0 < λ2 6 λ3 6 · · · 6 λn be the nonzero eigenvalues of G’s
Laplacian matrix. Then the sequences(dn, . . . , d1) and (λn, . . . , λ2) are Ferrer’s conjugates of
each other. �
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Figure 5 The degree sequence and the nonzero Laplacian eigenvalues of a threshold graphG are
conjugate partitions of 2|E(G)|. In this example, the degrees of the vertices are (5, 3, 2, 2, 1, 1)
and the nonzero eigenvalues ofL(G) are (6, 4, 2, 1, 1).

63 42
5

1
For example, see the graph in Figure 5. The degrees of the vertices are (5, 3, 2, 2, 1, 1) which

is conjugate to the nonzero eigenvalues of the graph’s Laplacian: (6, 4, 2, 1, 1).

Corollary 5.9. Let G be a threshold graph that is not a complete graph. Then its algebraic
connectivity equals its minimum degree, i.e.,λ2(G) = δ(G).

Note thatλ2(Kn) = n but δ(Kn) = n− 1.

Proof. Let G , Kn be a threshold graph onn vertices and let 0= λ1 6 λ2 6 · · · 6 λn be the
eigenvalues of its Laplacian.

If G is not connected, thenδ(G) = λ2(G) = 0.
Otherwise,G is connected and lets = seq(G). BecauseG is not complete,s contains at

least one zero. The vertex of smallest degree corresponds tothe last zero ins. Its degree is the
number of 1s to its right, which is the number of vertices of maximum degree. Since there are
δ vertices of maximum degree, the last column in the Ferrer’s conjugate hasδ boxes, and so
λ2 = δ. �

Corollary 5.10. Let G be an instance of a random threshold graph on n vertices.Then

Pr{λ2(G) = i} =



























1/2n−1 for i = n,

1/2i+1 for 0 6 i 6 n− 2, and

0 otherwise.

In particular E[λ2] = 1.

Proof. Immediate from Corollaries 5.6 and 5.9 and the fact thatλ2(Kn) = n. �

We can also deduce from Theorem 5.8 that the largest eigenvalue of a threshold graphG
equals|V(G)| − i(G) wherei(G) is the number of isolated vertices inG whose distribution is
given in Proposition 5.26.
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Another degree property that can be readily deduced from thecreation sequence is the num-
ber of distinct degrees in a threshold graph.

Proposition 5.11.Let G be a threshold graph and let s= seq(G) be its creation sequence. The
number of contiguous blocks of1s and0s equals the number of different degrees in G.

Proof. If seq(G) is entirely 0s or 1s, then the graph is either edgeless or complete, respectively.
In either case, all vertices have the same degree.

Otherwises consists of alternating blocks of 0s and 1s. Note that all vertices within a
contiguous run have the same degree. Furthermore, the one vertex that does not correspond to
an entry ins has the same degree as the vertices in the first block. �

Proposition 5.12. Let G be an instance of a random threshold graph on n vertices and let g
denote the number of distinct degrees in G. Then, for1 6 i 6 n− 1 we have

Pr{g = i} = 1
2n−2

(

n− 2
i − 1

)

.

Proof. We count the number of creation sequences thei runs. The first bit can be either zero
or one (2 choices). After that, we selecti − 1 locations from then − 2 “spaces” between the
bits to show where a block of 1s changes to 0s and vice versa. Hence there are 2

(

n−2
i−1

)

creation
sequences withi runs, and the result follows. �

It follows that the expected number of distinct degrees in a random threshold graph onn
vertices is

E[g] =
1

2n−2

n−1
∑

i=1

i

(

n− 2
i − 1

)

=
n
2
.

5.2 Chromatic number

Because threshold graphs are perfect (see, for example, [9]) we can deduce information about
the chromatic number from the clique number which is, in turn, directly available from the
creation sequence.

Proposition 5.13. Let G be an instance of a random threshold graph on n> 1 vertices. Then,
the chromatic number and the clique number of G have the following distribution with support
[n]:

Pr{χ(G) = k} = Pr{ω(G) = k} =
(

n− 1
k− 1

)

/2n−1 for 1 6 k 6 n.

Proof. Threshold graphs are perfect. Therefore, the chromatic number is the size of the maxi-
mum clique of the graph. However, the size of the maximum clique is one more than the number
of 1s in the creation sequence. This implies that for 16 k 6 n, Pr{χ(G) = k} = Pr{ω(G) = k} =
(

n−1
k−1

)

/2n−1. �
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Corollary 5.14. Let G be an instance of a random threshold graph on n> 1 vertices. Then, the
independence number of G has the following distribution with support[n]:

Pr{α(G) = k} =
(

n− 1
k− 1

)

/2n−1 for 1 6 k 6 n.

Proof. This follows from the fact thatα(G) = ω(G). �

Proposition 5.15. Let G be an instance of a random threshold graph. Then, the expected
chromatic number of G, and thus the expected clique number ofG, is n+1

2 .

Proof. By Proposition 5.13,

E[χ(G)] =
1

2n−1

n
∑

k=1

k

(

n− 1
k− 1

)

=
n+ 1

2
. �

Corollary 5.16. Let G be an instance of a random threshold graph. Then, the expected inde-
pendence number of G isn+1

2 .

Proof. Apply Proposition 5.15 and the fact thatα(G) = ω(G). �

5.3 Cycles

Proposition 5.17.Let G be an instance of a random threshold graph on n vertices.Then,

Pr{G is acyclic} = n
2n−1
.

Proof. Let s= seq(G). BecauseG is a threshold graph, then by Theorem 2.5, it cannot contain
C4 as an induced subgraph. Thus,G contains a cycle if and only if it containsK3 as an induced
subgraph. However, this occurs if and only if there are at least two 1s ins.

Thus,

Pr{G is acyclic} = Pr{shas at most one 1} =

(

n−1
0

)

+

(

n−1
1

)

2n−1
=

n
2n−1
. �

Corollary 5.18. Let G be an instance of a random threshold graph on n vertices.Then, the
probability G has a cycle is1− n/2n−1. �

Notice that, asn goes to infinity, the probability thatG has a cycle goes to 1.

Next, we consider the probability that a random threshold graph is Hamiltonian. There is
a nice connection between Hamiltonicity and a threshold graph’s creation sequence. For more
background on Hamiltonian threshold graphs, see [12].

For a sequencesof 1s and 0s, letuk(s) be the number of 1s in the lastk bits andzk(s) be the
number of 0s in the lastk bits.

Definition 5.19. Let G be a graph andc(G) denote the number of connected components ofG.
We say thatG is toughif for every nonempty subsetS ⊆ V(G) we havec(G − S) 6 |S|.
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Figure 6 The (b)⇒(c) case for Theorem 5.20: toughness implies the strict partial Dyck property.
At some pointk, we haveuk(s) 6 zk(s) (illustrated by the dotted box). IfS is the set of vertices
corresponding to the 1s in the box, thenc(G − S) > |S|.

0 1 1 0 0 1 0 1 11 i s o l a t e do t h e r c o m p o n e n t ( s )
Note that a tough graph with three or more vertices must be connected.

Theorem 5.20.Let G be a threshold graph with n> 3 vertices. The following are equivalent:

(a) G is Hamiltonian.

(b) G is tough.

(c) If s= seq(G), then uk(s) > zk(s) for all 1 6 k 6 n− 1.

The conditionuk(s) > zk(s) for all k means that the reversal ofs (i.e.,sn−1sn−2 . . . s1) satisfies
the strict partial Dyck property; see Appendix A.

Proof. (a)⇒ (b): This is well-known.

(b)⇒ (c): SupposeG is tough. Label the vertices ofG by the integers 0 throughn− 1 so that
vertexi (with i > 0) corresponds to thei th bit of s= seq(G).

Suppose, for contradiction, there is an indexk so thatuk(s) 6 zk(s). Let S be the set of those
vertices corresponding to 1s in the lastk bits of s. Note that if we deleteS from G, the resulting
graph has at leastzk(s) + 1 components: the component ofG − S containing vertex 0 and the
zk(s) isolated vertices. This is illustrated in Figure 6. It follows that

c(G − S) > zk(s) + 1 > zk(s) > |S|

contradicting the fact thatG is tough.

(c)⇒ (a): Suppose thats = seq(G) satisfiesuk(s) > zk(s) for all k with 1 6 k 6 n− 1. This
implies that the last two bits ofsare both 1s.

We prove thatG is Hamiltonian by induction on the number of vertices,n.
In casen = 3, then seq(G) = 11 and soG = K3 which is Hamiltonian. In casen = 4, then

seq(G) = 111 or 011. In the first caseG = K4 and in the second caseG = K4 − e, both of which
are Hamiltonian.
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Figure 7 Induction step in (c)⇒(a).
n−1

n−2

j

C

x

We now assume the theorem has been shown for all graphs with fewer thann vertices (where
we may assumen > 5), and letG be a threshold graph withn vertices that satisfies condition
(c).

Without loss of generality, we assume the vertices ofG are numbered from 0 ton − 1
corresponding to their position in the creation sequences = seq(G). If s does not contain any
zeros, thenG = Kn which is Hamiltonian. Otherwise, letj be the index of the last 0 ins; note
that j < n− 2.

Let H be the graph formed by deleting verticesj andn − 1 from G. Observe thatH is a
threshold graph whose creation sequence is formed froms by deleting bitsj andn − 1. One
checks thatH’s creation sequence satisfies property (c) and so, by induction, H is Hamiltonian.

Fix a Hamiltonian cycleC of H and letx be a vertex ofH that is adjacent to vertexn− 2 on
the cycleC. (See Figure 7.) Note that because the last two bits ofs are 1s, verticesn− 2 and
n− 1 are adjacent to bothj andx. Thus, if we delete the edge{x, n− 2} from C and insert the
pathx ∼ n− 1 ∼ j ∼ n− 2 in its stead, we create a Hamiltonian cycle inG. �

Theorem 5.21.Let G be an instance of a random threshold graph with n> 3 vertices. Then

Pr{G is Hamiltonian} = 1
2n−1

(

n− 2
⌊(n− 2)/2⌋

)

∼ 1
√

2πn
.

Proof. The number of sequences of lengthn − 1 that satisfy condition (c) of Theorem 5.20
is

(

n−2
⌊(n−2)/2⌋

)

. This is shown in Proposition A.2. The asymptotic value follows from a routine
application of Stirling’s formula. �

5.4 Perfect matchings

The existence of a perfect matching in a threshold graph is equivalent to a condition that is
similar to that for a Hamiltonian cycle. Recall that for a sequences of 1s and 0s thatuk(s) and
zk(s) denote the number of 1s and 0s, respectively, in the lastk bits of s. We have the following
result that is analogous to Theorem 5.20.

Theorem 5.22.Let G be a threshold graph on n vertices with n even and let s= seq(G). Then
G has a perfect matching if and only if uk(s) > zk(s) for all k.
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Proof. First, suppose that for somek, uk(s) < zk(s). Let S be the set of vertices corresponding
to the 1s in the lastk bits of s, so |S| = uk(s). Note thatG − S containszk(s) isolated vertices
plus (perhaps) other odd components. Therefore, by Tutte’stheoremG does not have a perfect
matching.

Conversely, suppose that for allk, uk(s) > zk(s). We assume that the verticesV(G) are
numbered from 0 ton− 1 with vertexi > 0 corresponding to thei th bit in s. Let

U = {v : sv = 1} ∪ {0} and Z = {v : sv = 0}.

Note thatU is a clique andZ is an independent set.
Claim. G contains a matching M of edges between U and Z that saturatesZ.

Proof of claim. Consider the bipartite graphG′ consisting of all vertices ofG and
all edges ofG with one end inZ and the other inU. LetY ⊆ Z. The set of neighbors
of Y, N(Y) = {u ∈ U : u ∼ y ∃y ∈ Y}, corresponds exactly to the set of all 1s ins to
the right of positiony for y ∈ Y. Sinceuk(s) > zk(s) for all k, we have|N(Y)| > |Y|
for all Y ⊆ Z. Therefore, by Hall’s theorem,G′ has a matchingM that saturates
Z. �

Finally, we can extendM to a perfect matching since all vertices unsaturated byM (which
are necessarily even in number) lie in the cliqueU. �

Theorem 5.23.Let n be an even integer and let G be an instance of a random threshold graph
on n vertices. Then

Pr{G has a perfect matching} = 1
2n−1

(

n− 1
⌊(n− 1)/2⌋

)

∼
√

2
πn
.

Proof. From Theorem 5.22,G has a perfect matching if and only ifs= seq(G) is the reverse of
a partial Dyck sequence of lengthn−1 (see Appendix A). By Proposition A.1 there are

(

n−1
⌊(n−1)/2⌋

)

such sequences. The asymptotic expression follows from Stirling’s formula. �

5.5 Edges and extremal vertices

Proposition 5.24. Let G be an instance of a random threshold graph on n vertices,m denote
the number of edges of G, and Q(k, ℓ) denote the number of partitions of k into distinct parts
whose largest part is less than or equal toℓ. Then, for0 6 i 6

(

n
2

)

, we have thatPr{m = i} =
Q(i, n− 1)/2n−1.

Proof. Let s= seq(G). Then,

m=
n−1
∑

j=1

sj · j. (2)

Thus, a creation sequence results in a graph withi edges wheneveri can be written as the sum
of distinct integers between 1 andn− 1. There areQ(i, n− 1) ways to do this and 2n−1 creation
sequences total. The result follows. �
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Proposition 5.25. Let G be an instance of a random threshold graph. Then, the expected
number of edges of G is E[m] = 1

2

(

n
2

)

. Also, the variance of the number of edges isVar(m) =
n(n−1)(2n−1)

24 .

Proof. Let s= seq(G). Since for alli we haveE[si] = 1
2, equation (2) gives

µ = E[m] = E















n−1
∑

i=1

si · i














=

n−1
∑

i=1

i
2
=

1
2

(

n
2

)

.

Using the independence of thesi and taking the variance of equation (2), we obtain

σ2
= Var[m] = Var















n−1
∑

i=1

si · i














=

n−1
∑

i=1

Var[si] · i2 =
n−1
∑

i=1

i2

4
=

n(n− 1)(2n− 1)
24

. �

It is interesting to note that an Erdős-Rényi random graphwith p = 1
2 has the same expected

number of edges, but the variance of the number of edges is on the order ofn2 while the variance
for a random threshold graph is on the order ofn3.

Later (§5.6) we show that (m− µ)/σ converges to a normal distribution.

Next, we consider the number of isolated and universal vertices of a random threshold graph.
For a graphG, we let i(G) denote the number of isolated vertices ofG and letu(G) denote the
number of universal vertices ofG.

Proposition 5.26. Let G be an instance of a random threshold graph on n vertices.Then, the
number of isolated vertices of G has the following distribution:

Pr{i(G) = j} =



























1/2n−1 for j = n,

1/2 j+1 for 0 6 j 6 n− 2, and

0 otherwise.

Proof. First, notice that it is impossible to haven−1 isolated vertices. So, Pr{i(G) = n−1} = 0.
Now, lets= seq(G). Then,i(G) = n if and only if si = 0 for all i. Therefore, Pr{i(G) = n} = 1

2n−1 .
For 06 j 6 n− 2, we notice thati(G) = j if and only if sn−1− j = 1 and the lastj bits equal 0.
Thus, we have Pr{i(G) = j} = 1

2j+1 . �

Corollary 5.27. Let G be an instance of a random threshold graph on n vertices.Then the
number of universal vertices of G has the following distribution:

Pr{u(G) = j} =



























1/2n−1 for j = n,

1/2 j+1 for 0 6 j 6 n− 2, and

0 otherwise.

Proof. Notice thati(G) = u(G). The result follows from Proposition 5.26. �
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Proposition 5.28.Let G be an instance of a random threshold graph. Then E[i(G)] = E[u(G)] =
1.

Proof. Note thati(G) andu(G) have the same distribution, so it is enough to find the expected
value of just one of them.

E[i(G)] =
n

2n−1
+

n−2
∑

j=1

j · 1
2 j+1
=

n
2n−1
+

(

1− n
2n−1

)

= 1. �

We note that the existence of a common neighbor between two vertices increases the like-
lihood that those vertices are adjacent. This clustering phenomena may be a reason that some
have considered random threshold graphs as a model for social networks [11]. Here is a formal
statement.

Proposition 5.29.Let a, b, c be distinct vertices of a random threshold graph. Then

Pr{a ∼ b | a ∼ c ∼ b} > Pr{a ∼ b}.

Proof. Using Example 3.2, we have

Pr{a ∼ c ∼ b} = Pr{a ∼ c ∼ b anda ∼ b} + Pr{a ∼ c ∼ b anda / b} = 1
4
+

1
12
=

1
3
.

Therefore,

Pr{a ∼ b | a ∼ c ∼ b} = Pr{a ∼ b anda ∼ c ∼ b}
Pr{a ∼ c ∼ b} =

1/4
1/3
=

3
4
>

1
2
= Pr{a ∼ b}. �

5.6 Small induced subgraphs

Let H be a threshold graph. We are interested in determining the number of copies ofH ap-
pearing in a random threshold graphG. Specifically, we wish to understand the behavior of the
random variableNH(G) which we define to be the number of induced copies ofH. This is an
extension of Proposition 5.25 in whichH = K2. Of course, ifH is not a threshold graph, then
NH = 0.

With a modest abuse of notation, we also writeNH(x) to meanNH[Γ(x)], i.e., the number of
copies ofH in the threshold graph represented byx.

Theorem 5.30.Let H be a threshold graph on h vertices and let NH be the number of induced
copies of H in an n-vertex random threshold graph. Then the expected value of NH is E [NH] =
(

n
h

)

/2h−1 and its variance isVar(NH) ∼ cn2h−1 for some constant c> 0.

For example, forH = K2, Proposition 5.25 gives

E(NH) =
1
2

(

n
2

)

and Var(NH) =
n(n− 1)(2n− 1)

24
∼ 1

12
n3.
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Proof. Let A be anh-element subset of [n] and defineXA to be the indicator random variable
thatG[A] (the induced subgraph of the random threshold graphG on vertex setA) is isomorphic
to H, i.e.,XA = 1{G[A] � H}. HenceNH =

∑

XA.
As there areh!/|Aut(H)| different ways in whichH might be realized on a set ofh vertices,

we have

E[XA] = Pr{G[A] � H} = h!
|Aut(H)| Pr{H} = h!

|Aut(H)| ·
|Aut(H)|
2h−1h!

=
1

2h−1
.

It follows thatE[NH] =
(

n
h

)

/2h−1 by linearity of expectation.
It is useful to present a second derivation forE[NH] based on creation sequences. In this

approach, we prepend a “wild card” symbol (∗) to all creation sequences to stand for the first
vertex in the graph. This wild card can be considered either a1 or a 0; it does not matter as it is
the first vertex in the creation list.

Let sH be the creation sequence for the graphH (including the initial wild card) and letS
be a random creation sequence (an initial∗ followed by a random sequence ofn− 1 1s and 0s).
Then the number of induced copies ofH in the random threshold graph generated byS equals
the number ofh-long subsequences ofS that matchsH where the∗ in sH can match any symbol
in S.

Therefore, given a fixed subsetA of h entries inS, the probability that those entries matchsH

is 1/2h−1, and so Pr{XA = 1} = 1/2h−1. As there are
(

n
h

)

such subsets we haveE[NH] =
(

n
h

)

/2h−1.

For the second claim, note that

Var(NH) = Var















∑

A

XA















=

∑

A

∑

B

Cov(XA,XB) =
h

∑

i=0

∑

A,B:
|A∩B|=i

Cov(XA,XB) (3)

where the double sums are over allA, B ⊂ [n] with |A| = |B| = h, but the second is organized by
the size of the intersection ofA andB. Note that the number of summands in which|A∩ B| = i
is

(

n
h

)(

h
i

)(

n− h
h− i

)

= Θ(n2h−i).

Note that whenA andB are disjoint, then Cov(XA,XB) = 0. Wheni > 1, this expression is
o(n2h−1). We therefore concentrate solely on the terms Cov(XA,XB) in (3) for which |A∩B| = 1.

There are
(

n
2h−1

)

ways to choose the elements ofA∪ B for which |A∩ B| = 1. For each such

union, there are
(

2h−1
h

)

h choices for the ordered pair (A, B) and the restricted sum of Cov(XA,XB)
is the same for all possible choices ofA∪ B of size 2h− 1. That is, we have

∑

|A∩B|=1

Cov(XA,XB) =

(

n
2h− 1

)

∑

A∪B=[2h−1]
|A∩B|=1

Cov(XA,XB) (4)

We consider a particular term in the second sum in (4). LetA = {a1 < a2 < · · · < ah} and
B = {b1 < b2 < · · · < bh} whereA∪ B = [2h− 1]. Letα, β be the indices ofA, B [respectively]
of their unique common element; that is,aα = bβ.
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Figure 8 An illustration of the constraint (5). In this exampleh = 4, sH = ∗001,A = {1, 3, 4, 5},
B = {2, 4, 6, 7}, A∩ B = {4}, α = 3, andβ = 2. The five elements ofsmust be as shown in order
for XA = XB = 1. The probability this happens is 2−(2h−3)

= 2−5.

s

α

β

Recall thats is the (random) creation sequence of the graphG andsH is the (fixed) creation
sequence forH. We calculate Cov(XA,XB) in the three cases: (a)α = 1 orβ = 1, (b)α, β > 1 and

sH(α) = sH(β), and (3)α, β > 1 andsH(α) , sH(β). In all casesE(XA)E(XB) =
(

2−(h−1)
)2
= 22−2h.

We also have the following constraint:

XA = XB = 1 =⇒ ∀i > 1, sH(i) = s(ai) and ∀ j > 1, sH( j) = s(b j). (5)

This condition is illustrated in Figure 8.

(a) Claim: If α = 1 or β = 1 thenCov(XA,XB) = 0.

Consider the caseα = 1 (as the caseβ = 1 is the same). Condition (5) imposes 2h − 2
constraints ons, and soE[XAXB] = Pr{XA = XB = 1} = 2−(2h−2) and so Cov(XA,XB) = 0.

(b) Claim: If α, β > 1 and sH(α) = sH(β) thenCov(XA,XB) = 2−(2h−2).

In this case, condition (5) imposes 2h− 3 constraints ons (the constraintssH(ai) = s(ai)
andsH(b j) = s(b j) are redundant). Thus Pr{XA = XB = 1} = 2−(2h−3) and so

Cov(XA,XB) = E[XAXB] − E[XA]E[XB] = 2−2h+3 − 2−2h+2
= 2−2h+2.

(c) Claim: If α, β > 1 and sH(α) , sH(β), thenCov(XA,XB) = −2−(2h−2).

If sH(α) , sH(β) we have the contradictory requirements thats(aα) , s(bβ) even though
aα = bβ. ThusXA = XB = 1 is not possible. Therefore

Cov(XA,XB) = E[XAXB] − E[XA]E[XB] = 0− 2−2h+2.

Thus, the only possible values of Cov(XA,XB) are 0 and±2−(2h−2) and so next we determine
how often each of these cases [(a), (b), or (c)] occur. In particular, we must show that case (b)
occurs more often than case (c) to complete the proof.

the electronic journal of combinatorics 16 (2009), #R130 26



We continue our assumption thatA ∪ B = [2h − 1] andA ∩ B = {aα} = {bβ}. For a fixed
choice ofα, β, the number of pairs (A, B) is

(

α + β − 2
α − 1

)(

2h− α − β
h− α

)

as there areα + β − 2 elements ofA∪ B smaller thanaα = bβ (and we putα − 1 in A and the
others inB) and there are 2h− α − β elements ofA∪ B greater thanaα = bβ.

To calculate the right-hand sum in (4) we use the following handy notation. For 16 i 6 h
put

xi =



























0 for i = 1,

+1 for i > 1 andsH(i) = 0, and

−1 for i > 1 andsH(i) = 1.

Then, the right-hand sum in (4) equals

1
22h−2

∑

α,β

(

α + β − 2
α − 1

)(

2h− α − β
h− α

)

xαxβ (6)

and we want to show that this term is positive.
Note that this double sum in (6) is a quadratic formxT Mx whereM is theh×h matrix whose

α, β-entry is

Mα,β =

(

α + β − 2
α − 1

)(

2h− α − β
h− α

)

. (7)

Note thatM is symmetric. Thus, to show thatxT Mx > 0, we show thatM is positive definite.
Thanks to the representation (7), we note thatM is the Hadamard productM = P◦ P̂ where

P is the Pascal-triangle matrix whosei, j-entry is
(

i+ j−2
i−1

)

and P̂ is formed fromP by reversing

the rows and columns ofP. For example, withh = 5, the matrixM = P ◦ P̂ is








































70 35 15 5 1
35 40 30 16 5
15 30 36 30 15
5 16 30 40 35
1 5 15 35 70









































=









































1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70









































◦









































70 35 15 5 1
35 20 10 4 1
15 10 6 3 1
5 4 3 2 1
1 1 1 1 1









































.

It is known [1, 3] that the Pascal matrixP is positive definite and sincêP is formed fromP
simply by reversing the rows and columns, it is also positivedefinite. Finally, sinceM is the
Hadamard product of positive definite matrices, Schur’s product theorem (see, for example, [15]
Theorem 7.5.3) implies thatM is positive definite. �

As an example, we find the (asymptotic) variance in the numberof copies of a complete
subgraph onh vertices.

Proposition 5.31.Let H = Kh, the complete graph on h> 2 vertices. Then

VarNH ∼
2(h− 1)

(

2h−2
h−2

)

22h−2

(

n
2h− 1

)

.
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Proof. Recall that by equations (3) and (4) we have that

VarNH ∼
(

n
2h− 1

)

∑

A∪B=[2h−1]
|A∩B|=1

Cov(XA,XB)

We count the number of terms in equation (4) that fall under each of the cases in the proof
of Theorem 5.30. Because seq(H) = ∗111· · ·1, the only terms we have are those covered in
claims (a) and (b). Because terms in case (a) contribute zerocovariance, we count the number
of terms in case (b); that is,

A∩ B = {a1 < a2 < · · · < ah} ∩ {b1 < b2 < · · · < bh} = {aα} = {bβ}

whereα, β > 1.
First, notice that the element 1 belongs to exactly one ofA or B; there are 2 choices for

which. Without loss of generality, suppose 1∈ A. Then, there are
(

2h−2
h−2

)

ways to choose the rest
of the setA from [2h− 1]− {1}, not including elementaα where the setsA andB intersect. This
leavesh elements from [2h− 1] all of which are all to be assigned toB and one of which is the
intersection ofA andB. The smallest element ofB cannot be the common element ofA andB
(because we are not in case (a) of the proof of Theorem 5.30). So there areh − 1 choices for
the intersectionaα = bβ. Once the intersection ofA andB has been chosen, the setsA andB are
fully determined. Thus, there are

2(h− 1)

(

2h− 2
h− 2

)

positive terms in equation (4) whereA∪B = [2h−1], each contributing 2−(2h−2) to the variance.
The right hand side of equation (4) becomes

2(h− 1)
22h−2

(

2h− 2
h− 2

)(

n
2h− 1

)

as desired. �

Note that among all threshold graphsH on h vertices, the graphsKh andKh give the largest
value for VarNH because there are no negative covariance terms in (4).

Next we show that when suitably centered and rescaled,NH has an asymptotically normal
distribution. This is a direct consequence of a theorem of Hoeffding [14] (see also [20], Theo-
rem 5.5.1.A) on U-statistics.

We can writeNH as
NH =

∑

16i1<i2<···<ih6n

k(xi1, xi2, . . . , xih) (8)

where

k(y1, . . . , yh) =















1 if Γ(y) � H and

0 otherwise.
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Writing NH as in (8) shows thatNH (or more precisely,NH/
(

n
h

)

is a U-statistic and Hoeffding’s
result enables us to establish asymptotic normality.

One technical condition needs to be checked. Let

k1(x) = E {k(x,X2,X3, . . . ,Xh)}

wherex is a fixed value in [0, 1] and the expected value is computed by integrating over the
remainingh − 1 variables (indicated by capital letters). Note that ifH has a universal vertex,
thenk1(0) = 0 because one vertex would necessarily be isolated. On the other hand,k1(1) =
21−(h−1)

= 22−h. The point is thatk1 is not constant. Put

ζ1 = Vark1

and therefore we haveζ1 > 0. With this notation in place, Hoeffding’s theorem immediately
gives the following result.

Theorem 5.32.Let H be a threshold graph on h vertices and let NH denote the number of
induced copies of H in a random threshold graph on n vertices.Then

√
n

















NH
(

n
h

) − 21−h

















converges in distribution to a normal distribution with mean 0 and variance h2ζ1. �

A Partial Dyck Sequences

The results in this section are known; proofs are included here for convenience. References for
this work include [7, 8].

A Dyck pathis a lattice path from (0, 0) to (n, n) (for some nonnegative integern) that never
goes below the diagonal. Equivalently, aDyck sequenceis a sequence of 2n symbols (say 1s
and 0s) so that (a) there are an equal number of 1s and 0s and (b)in each initial portion of the
sequence the number of 1s is equal to or greater than the number of 0s. It is well known that
the number of Dyck sequences of length 2n is the Catalan numbercn =

1
n+1

(

2n
n

)

with generating
function

C(x) =
∞
∑

n=0

cnxn
=

1−
√

1− 4x
2x

. (9)

By a partial Dyck sequencewe mean an initial portion of a Dyck sequence. That is, a
sequence of 1s and 0s so that each initial portion of the sequence has at least as many 1s as 0s.
In other words, the sequence satisfies condition (b) but not necessarily (a) above.

Let pn denote the number of partial Dyck paths of lengthn. The listp0, p1, p2, . . . is sequence
A001405 in [21] in which the following result is implicitly asserted.
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Proposition A.1. Let pn be the number of partial Dyck sequences of length n. Then for n> 0
we have

pn =

(

n
⌊n/2⌋

)

.

Proof. We begin with the case thenn is even. We claim that

p2m = 22m−
m−1
∑

k=0

ck2
2m−2k−1. (10)

Proof of equation(10). Consider those sequences of length 2m that fail to be partial
Dyck paths. We index these sequences beginning with index 0.

There are 22m length-2m sequences of 1s and 0s. If such a sequence fails to be a
partial Dyck sequence, the first initial subsequence that violates condition (b) does
so at an odd index 2k + 1. [The subsequence from index 0 to index 2k is a Dyck
sequence and then the next symbol is a 0.] The sum in the right hand side of (10)
counts these failures exactly. �

With equation (10) established, we define the generating functions

A(x) =
∞
∑

m=0

p2mxm and

T(x) = 0+ 2x+ 8x2
+ 32x3

+ · · · =
∞
∑

k=1

22k−1xk
=

2x
1− 4x

.

UsingC(x) from (9), we note that the coefficient ofxm in C(x)T(x) is

c02
2m−1
+ c12

2m−3
+ · · · + cm−12

1
+ cm · 0 =

m−1
∑

k=0

ck2
2m−2k−1

which is precisely the sum in (10). Therefore

A(x) =
∞
∑

m=0

p2mxm

=

∞
∑

m=0

22mxm −
∞
∑

m=0















m−1
∑

k=0

ck2
2m−2k−1















xm

=
1

1− 4x
−C(x)T(x) =

1
1− 4x

−












1−
√

1− 4x
2x













(

2x
1− 4x

)

=
1

√
1− 4x

=

∞
∑

m=0

(

2m
m

)

xm

and thereforep2m =

(

2m
m

)

or, equivalently, whenn is even,pn =

(

n
⌊n/2⌋

)

.
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We now turn to the case whenn is odd, say,n = 2m− 1 wherem > 0. Such a sequence
has more 1s than 0s, so it can be extended to a partial Dyck sequence of length 2m by the
addition of a 0 or a 1. Conversely, any partial Dyck sequence of length 2m can be truncated to
a partial Dyck sequence of length 2m− 1 by deleting the last symbol. Hence, there is a 2-to-
1 correspondence between partial Dyck sequences of length 2m with those of length 2m− 1.
Thereforep2m = 2p2m−1.

Thus forn odd

pn = p2m−1 =
1
2

p2m =
1
2

(

2m
m

)

=
1
2

[(

2m− 1
m− 1

)

+

(

2m− 1
m

)]

(Pascal’s identity)

=

(

2m− 1
m− 1

)

=

(

n
⌊n/2⌋

)

as claimed. �

Let us call a partial Dyck sequencestrict if in every initial subsequence the number of 1s is
greaterthan the number of 0s.

Proposition A.2. Let sn denote number of strict partial Dyck sequences of length n. For n > 0
we have

sn =

(

n− 1
⌊(n− 1)/2⌋

)

.

Proof. Every strict partial Dyck sequence of lengthn begins with a 1 followed by a (not nec-
essarily strict) partial Dyck sequence of lengthn − 1. Thereforesn = pn−1 and the result now
follows from Proposition A.1. �
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