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Abstract

We prove that the topological cycle space C(G) of a locally finite graph G is
generated by its geodetic topological circles. We further show that, although the
finite cycles of G generate C(G), its finite geodetic cycles need not generate C(G).

1 Introduction

A finite cycle C in a graph G is called geodetic if, for any two vertices x, y ∈ C, the length
of at least one of the two x–y arcs on C equals the distance between x and y in G. It is
easy to prove (see Section 3.1):

Proposition 1.1. The cycle space of a finite graph is generated by its geodetic cycles.

Our aim is to generalise Proposition 1.1 to the topological cycle space of locally finite
infinite graphs.

The topological cycle space C(G) of a locally finite graph G was introduced by Diestel
and Kühn [10, 11]. It is built not just from finite cycles, but also from infinite circles:
homeomorphic images of the unit circle S1 in the topological space |G| consisting of G,
seen as a 1-complex, together with its ends. (See Section 2 for precise definitions.) This
space C(G) has been shown [2, 3, 4, 5, 10, 15] to be the appropriate notion of the cycle
space for a locally finite graph: it allows generalisations to locally finite graphs of most of
the well-known theorems about the cycle space of finite graphs, theorems which fail for
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infinite graphs if the usual finitary notion of the cycle space is applied. It thus seems that
the topological cycle space is an important object that merits further investigation. (See
[6, 7] for introductions to the subject.)

As in the finite case, one fundamental question is which natural subsets of the topologi-
cal cycle space generate it, and how. It has been shown, for example, that the fundamental
circuits of topological spanning trees do (but not those of arbitrary spanning trees) [10],
or the non-separating induced cycles [2], or that every element of C(G) is a sum of disjoint
circuits [11, 7, 19]—a trivial observation in the finite case, which becomes rather more
difficult for infinite G. (A shorter proof, though still non-trivial, is given in [15].) Another
standard generating set for the cycle space of a finite graph is the set of geodetic cycles
(Proposition 1.1), and it is natural to ask whether these still generate C(G) when G is
infinite.

But what is a geodetic topological circle? One way to define it would be to apply the
standard definition, stated above before Proposition 1.1, to arbitrary circles, taking as
the length of an arc the number of its edges (which may now be infinite). As we shall see,
Proposition 1.1 will fail with this definition, even for locally finite graphs. Indeed, with
hindsight we can see why it should fail: when G is infinite then giving every edge length 1
will result in path lengths that distort rather than reflect the natural geometry of |G|:
edges ‘closer to’ ends must be shorter, if only to give paths between ends finite lengths.

It looks, then, as though the question of whether or not Proposition 1.1 generalises
might depend on how exactly we choose the edge lengths in our graph. However, our main
result is that this is not the case: we shall prove that no matter how we choose the edge
lengths, as long as the resulting arc lengths induce a metric compatible with the topology
of |G|, the geodetic circles in |G| will generate C(G). Note, however, that the question
of which circles are geodetic does depend on our choice of edge lengths, even under the
assumption that a metric compatible with the topology of |G| is induced.

If ℓ : E(G) → R+ is an assignment of edge lengths that has the above property, we
call the pair (|G|, ℓ) a metric representation of G. We then call a circle C ℓ-geodetic if
for any points x, y on C the distance between x and y in C is the same as the distance
between x and y in |G|. See Section 2.2 for precise definitions and more details.

We can now state the main result of this paper more formally:

Theorem 1.2. For every metric representation (|G|, ℓ) of a connected locally finite graph
G, the topological cycle space C(G) of G is generated by the ℓ-geodetic circles in G.

Motivated by the current work, the first author initiated a more systematic study of
topologies on graphs that can be induced by assigning lengths to the edges of the graph.
In this context, it is conjectured that Theorem 1.2 generalises to arbitrary compact metric
spaces if the notion of the topological cycle space is replaced by an analogous homology
[14].

We prove Theorem 1.2 in Section 4, after giving the required definitions and basic
facts in Section 2 and showing that Proposition 1.1 holds for finite graphs but not for
infinite ones in Section 3. Finally, in Section 5 we will discuss some further problems.
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2 Definitions and background

2.1 The topological space |G| and C(G)

Unless otherwise stated, we will be using the terminology of [7] for graph-theoretical
concepts and that of [1] for topological ones. Let G = (V, E) be a locally finite graph —
i.e. every vertex has a finite degree — finite or infinite, fixed throughout this section.

The graph-theoretical distance between two vertices x, y ∈ V , is the minimum n ∈ N

such that there is an x–y path in G comprising n edges. Unlike the frequently used
convention, we will not use the notation d(x, y) to denote the graph-theoretical distance,
as we use it to denote the distance with respect to a metric d on |G|.

A 1-way infinite path is called a ray, a 2-way infinite path is a double ray. A tail of
a ray R is an infinite subpath of R. Two rays R, L in G are equivalent if no finite set of
vertices separates them. The corresponding equivalence classes of rays are the ends of G.
We denote the set of ends of G by Ω = Ω(G), and we define V̂ := V ∪ Ω.

Let G bear the topology of a 1-complex, where the 1-cells are real intervals of arbitrary
lengths1. To extend this topology to Ω, let us define for each end ω ∈ Ω a basis of open
neighbourhoods. Given any finite set S ⊂ V , let C = C(S, ω) denote the component of
G−S that contains some (and hence a tail of every) ray in ω, and let Ω(S, ω) denote the
set of all ends of G with a ray in C(S, ω). As our basis of open neighbourhoods of ω we
now take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E ′(S, ω) (1)

where S ranges over the finite subsets of V and E ′(S, ω) is any union of half-edges (z, y],
one for every S–C edge e = xy of G, with z an inner point of e. Let |G| denote the
topological space of G ∪ Ω endowed with the topology generated by the open sets of the
form (1) together with those of the 1-complex G. It can be proved (see [9]) that in fact
|G| is the Freudenthal compactification [13] of the 1-complex G.

A continuous map σ from the real unit interval [0, 1] to |G| is a topological path in |G|;
the images under σ of 0 and 1 are its endpoints. A homeomorphic image of the real unit
interval in |G| is an arc in |G|. Any set {x} with x ∈ |G| is also called an arc in |G|. A
homeomorphic image of S1, the unit circle in R

2, in |G| is a (topological cycle or) circle
in |G|. Note that any arc, circle, cycle, path, or image of a topological path is closed in
|G|, since it is a continuous image of a compact space in a Hausdorff space.

A subset D of E is a circuit if there is a circle C in |G| such that D = {e ∈ E | e ⊆ C}.
Call a family F = (Di)i∈I of subsets of E thin if no edge lies in Di for infinitely many
indices i. Let the (thin) sum

∑

F of this family be the set of all edges that lie in Di for
an odd number of indices i, and let the topological cycle space C(G) of G be the set of all
sums of thin families of circuits. In order to keep our expressions simple, we will, with a
slight abuse, not stricly distinguish circles, paths and arcs from their edge sets.

1Every edge is homeomorphic to a real closed bounded interval, the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods of a vertex x are the
unions of half-open intervals [x, z), one from every edge [x, y] at x. Note that the topology does not
depend on the lengths of the intervals homeomorphic to edges.
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2.2 Metric representations

Suppose that the lengths of the 1-cells (edges) of the locally finite graph G are given by
a function ℓ : E(G) → R+. Every arc in |G| is either a subinterval of an edge or the
closure of a disjoint union of open edges or half-edges (at most two, one at either end),
and we define its length as the length of this subinterval or as the (finite or infinite) sum
of the lengths of these edges and half-edges, respectively. Given two points x, y ∈ |G|,
write dℓ(x, y) for the infimum of the lengths of all x–y arcs in |G|. It is straightforward
to prove:

Proposition 2.1. If for every two points x, y ∈ |G| there is an x-y arc of finite length,
then dℓ is a metric on |G|.

This metric dℓ will in general not induce the topology of |G|. If it does, we call (|G|, ℓ)
a metric representation of G (other topologies on a graph that can be induced by edge
lengths in a similar way are studied in [14]). We then call a circle C in |G| ℓ-geodetic if,
for every two points x, y ∈ C, one of the two x–y arcs in C has length dℓ(x, y). If C is
ℓ-geodetic, then we also call its circuit ℓ-geodetic.

Metric representations do exist for every locally finite graph G. Indeed, pick a normal
spanning tree T of G with root x ∈ V (G) (its existence is proved in [7, Theorem 8.2.4]),
and define the length ℓ(uv) of any edge uv ∈ E(G) as follows. If uv ∈ E(T ) and v ∈ xTu,
let ℓ(uv) = 1/2|xTu|. If uv /∈ E(T ), let ℓ(uv) =

∑

e∈uTv ℓ(e). It is easy to check that dℓ is
a metric of |G| inducing its topology [8].

2.3 Basic facts

In this section we give some basic properties of |G| and C(G) that we will need later.
One of the most fundamental properties of C(G) is that:

Lemma 2.2 ([11]). For any locally finite graph G, every element of C(G) is an edge-
disjoint sum of circuits.

As already mentioned, |G| is a compactification of the 1-complex G:

Lemma 2.3 ([7, Proposition 8.5.1]). If G is locally finite and connected, then |G| is a
compact Hausdorff space.

The next statement follows at once from Lemma 2.3.

Corollary 2.4. If G is locally finite and connected, then the closure in |G| of an infinite
set of vertices contains an end.

The following basic fact can be found in [16, p. 208].

Lemma 2.5. The image of a topological path with endpoints x, y in a Hausdorff space X
contains an arc in X between x and y.
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As a consequence, being linked by an arc is an equivalence relation on |G|; a set
Y ⊂ |G| is called arc-connected if Y contains an arc between any two points in Y . Every
arc-connected subspace of |G| is connected. Conversely, we have:

Lemma 2.6 ([12]). If G is a locally finite graph, then every closed connected subspace of
|G| is arc-connected.

The following lemma is a standard tool in infinite graph theory.

Lemma 2.7 (König’s Infinity Lemma [17]). Let V0, V1, . . . be an infinite sequence of
disjoint non-empty finite sets, and let G be a graph on their union. Assume that every
vertex v in a set Vn with n > 1 has a neighbour in Vn−1. Then G contains a ray v0v1 · · ·
with vn ∈ Vn for all n.

3 Generating C(G) by geodetic cycles

3.1 Finite graphs

In this section finite graphs, like infinite ones, are considered as 1-complexes where the
1-cells (i.e. the edges) are real intervals of arbitrary lengths. Given a metric representation
(|G|, ℓ) of a finite graph G, we can thus define the length ℓ(X) of a path or cycle X in
G by ℓ(X) =

∑

e∈E(X) ℓ(e). Note that, for finite graphs, any assignment of edge lengths

yields a metric representation. A cycle C in G is ℓ-geodetic, if for any x, y ∈ V (C) there
is no x–y path in G of length strictly less than that of each of the two x–y paths on C.

The following theorem generalises Proposition 1.1.

Theorem 3.1. For every finite graph G and every metric representation (|G|, ℓ) of G,
every cycle C of G can be written as a sum of ℓ-geodetic cycles of length at most ℓ(C).

Proof. Suppose that the assertion is false for some (|G|, ℓ), and let D be a cycle in G of
minimal length among all cycles C that cannot be written as a sum of ℓ-geodetic cycles
of length at most ℓ(C). As D is not ℓ-geodetic, it is easy to see that there is a path P
with both endvertices on D but no inner vertex in D that is shorter than the paths Q1,
Q2 on D between the endvertices of P . Thus D is the sum of the cycles D1 := P ∪Q1 and
D2 := P ∪Q2. As D1 and D2 are shorter than D, they are each a sum of ℓ-geodetic cycles
of length less than ℓ(D), which implies that D itself is such a sum, a contradiction.

By letting all edges have length 1, Theorem 3.1 implies Proposition 1.1.

3.2 Failure in infinite graphs

As already mentioned, Proposition 1.1 does not naively generalise to locally finite graphs:
there are locally finite graphs whose topological cycle space contains a circuit that is not
a thin sum of circuits that are geodetic in the traditional sense, i.e. when every edge has
length 1. Such a counterexample is given in Figure 3.1. The graph H shown there is a
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subdivision of the infinite ladder ; the infinite ladder is a union of two rays Rx = x1x2 · · ·
and Ry = y1y2 · · · plus an edge xnyn for every n ∈ N, called the n-th rung of the ladder.
By subdividing, for every n > 2, the n-th rung into 2n edges, we obtain H . For every
n ∈ N, the (unique) shortest xn–yn path contains the first rung e and has length 2n − 1.
As every circle (finite or infinite) must contain the subdivision of at least one rung, every
geodetic circuit contains e. On the other hand, Figure 3.1 shows an element C of C(H)
that contains infinitely many rungs. As every circle can contain at most two rungs, we
need an infinite family of geodetic circuits to generate C, but since they all have to contain
e the family cannot be thin.

The graph H is however not a counterexample to Theorem 1.2, since the constant
edge lengths 1 do not induce a metric of |H|.

e

Fig. 3.1: A 1-ended graph and an element of its topological cycle space (drawn thick) which is
not the sum of a thin family of geodetic circuits.

4 Generating C(G) by geodetic circles

Let G be an arbitrary connected locally finite graph, finite or infinite, consider a fixed
metric representation (|G|, ℓ) of G and write d = dℓ. We want to assign a length to every
arc or circle, but also to other objects like elements of C(G). To this end, let X be an arc
or circle in |G|, an element of C(G), or the image of a topological path in |G|. It is easy
to see that for every edge e, e ∩ X is the union of at most two subintervals of e and thus
has a natural length which we denote by ℓ(e ∩ X); moreover, X is the closure in |G| of
⋃

e∈G(e ∩ X) (unless X contains less than two points). We can thus define the length of
X as ℓ(X) :=

∑

e∈G ℓ(e ∩ X).
Note that not every such X has finite length (see Section 5). But the length of an

ℓ-geodetic circle C is always finite. Indeed, as |G| is compact, there is an upper bound ε0

such that d(x, y) 6 ε0 for all x, y ∈ |G|. Therefore, C has length at most 2ε0.
For the proof of Theorem 1.2 it does not suffice to prove that every circuit is a sum of

a thin family of ℓ-geodetic circuits. (Moreover, the proof of the latter statement turns out
to be as hard as the proof of Theorem 1.2.) For although every element C of C(G) is a sum
of a thin family of circuits (even of finite circuits, see [7, Corollary 8.5.9]), representations
of all the circles in this family as sums of thin families of ℓ-geodetic circuits will not
necessarily combine to a similar representation for C, because the union of infinitely
many thin families need not be thin.
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In order to prove Theorem 1.2, we will use a sequence Ŝi of finite auxiliary graphs
whose limit is G. Given an element C of C(G) that we want to represent as a sum of
ℓ-geodetic circuits, we will for each i consider an element C|Ŝi of the cycle space of Ŝi

induced by C — in a way that will be made precise below — and find a representation
of C|Ŝi as a sum of geodetic cycles of Ŝi, provided by Theorem 3.1. We will then use the
resulting sequence of representations and compactness to obtain a representation of C as
a sum of ℓ-geodetic circuits.

4.1 Restricting paths and circles

To define the auxiliary graphs mentioned above, pick a vertex w ∈ G, and let, for every
i ∈ N, Si be the set of vertices of G whose graph-theoretical distance from w is at most i;
also let S−1 = ∅. Note that S0 = {w}, every Si is finite, and

⋃

i∈N
Si = V (G). For every

i ∈ N, define S̃i to be the subgraph of G on Si+1, containing those edges of G that are
incident with a vertex in Si. Let Ŝi be the graph obtained from S̃i by joining every two
vertices in Si+1 − Si that lie in the same component of G − Si with an edge; these new
edges are the outer edges of Ŝi. For every i ∈ N, a metric representation (|Ŝi|, ℓi) can be
defined as follows: let every edge e of Ŝi that also lies in S̃i have the same length as in |G|,
and let every outer edge e = uv of Ŝi have length dℓ(u, v). For any two points x, y ∈ |Ŝi|
we will write di(x, y) for dℓi

(x, y) (the latter was defined at the end of Section 2.1). Recall
that in the previous subsection we defined a length ℓi(X) for every path, cycle, element
of the cycle space, or image of a topological path X in |Ŝi|.

If X is an arc with endpoints in V̂ or a circle in |G|, define the restriction X|Ŝi of X
to Ŝi as follows. If X avoids Si, let X|Ŝi = ∅. Otherwise, start with E(X) ∩ E(Ŝi) and
add all outer edges uv of Ŝi such that X contains a u–v arc that meets Ŝi only in u and
v. We defined X|Ŝi to be an edge set, but we will, with a slight abuse, also use the same
term to denote the subgraph of Ŝi spanned by this edge set. Clearly, the restriction of a
circle is a cycle and the restriction of an arc is a path. For a path or cycles X in Ŝj with

j > i, we define the restriction X|Ŝi to Ŝi analogously.
Note that in order to obtain X|Ŝi from X, we deleted a set of edge-disjoint arcs or

paths in X, and for each element of this set we put in X|Ŝi an outer edge with the same
endpoints. As no arc or path is shorter than an outer edge with the same endpoints, we
easily obtain:

Lemma 4.1. Let i ∈ N and let X be an arc or a circle in |G| (respectively, a path or
cycle in Ŝj with j > i). Then ℓi(X|Ŝi) 6 ℓ(X) (resp. ℓi(X|Ŝi) 6 ℓj(X)).

A consequence of this is the following:

Lemma 4.2. If x, y ∈ Si+1 and P is a shortest x–y path in Ŝi with respect to ℓi then
ℓi(P ) = d(x, y).

Proof. Suppose first that ℓi(P ) < d(x, y). Replacing every outer edge uv in P by a u–v arc
of length ℓi(uv)+ε in |G| for a sufficiently small ε, we obtain a topological x–y path in |G|
whose image is shorter than d(x, y). Since, by Lemma 2.5, the image of every topological
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Si

Si+1\Si

X

X|||Ŝi

x

xi

y = yi

Fig. 4.2: The restriction of an x–y arc X to the xi–yi path X|Ŝi.

path contains an arc with the same endpoints, this contradicts the definition of d(x, y).
Next, suppose that ℓi(P ) > d(x, y). In this case, there is by the definition of d(x, y) an
x–y arc Q in |G| with ℓ(Q) < ℓi(P ). Then ℓi(Q|Ŝi) 6 ℓ(Q) < ℓi(P ) by Lemma 4.1,
contradicting the choice of P .

Let C ∈ C(G). For the proof of Theorem 1.2 we will construct a family of ℓ-geodetic
circles in ω steps, choosing finitely many of these at each step. To ensure that the resulting
family will be thin, we will restrict the lengths of those circles: the next two lemmas will
help us bound these lengths from above, using the following amounts εi that vanish as i
grows.

εi := sup{d(x, y) | x, y ∈ |G| and there is an x–y arc in |G| \ G[Si−1]}.

The space |G| \G[Si−1] considered in this definition is the same as the union of |G−Si−1|
and the inner points of all edges from Si−1 to V (G) \ Si−1. Note that as |G| is compact,
each εi is finite.

Lemma 4.3. Let j ∈ N, let C be a cycle in Ŝj, and let i ∈ N be the smallest index such

that C meets Si. Then C can be written as a sum of ℓj-geodetic cycles in Ŝj each of which

has length at most 5εi in Ŝj.

Proof. We will say that a cycle D in Ŝj is a C-sector if there are vertices x, y on D such
that one of the x–y paths on D has length at most εi and the other, called a C-part of
D, is contained in C.

We claim that every C-sector D longer than 5εi can be written as a sum of cycles
shorter than D, so that every cycle in this sum either has length at most 5εi or is another
C-sector. Indeed, let Q be a C-part of D and let x, y be its endvertices. Every edge e of
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Q has length at most 2εi: otherwise the midpoint of e has distance greater than εi from
each endvertex of e, contradicting the definition of εi. As Q is longer than 4εi, there is a
vertex z on Q whose distance, with respect to ℓj , along Q from x is larger than εi but at
most 3εi. Then the distance of z from y along Q is also larger than εi. By the definition
of εi and Lemma 4.2, there is a z–y path P in Ŝj with ℓj(P ) 6 εi.

x y

z

≤ εi

≤ 3εi
> εi

≤ εi

P

Q1

Q2

Fig. 4.3: The paths Q1, Q2, and P in the proof of Lemma 4.3.

Let Q1 = zQy and let Q2 be the other z–y path in D. (See also Figure 4.3.) Note that
Q2 is the concatenation of zQ2x and xQ2y. Since εi < ℓj(zQ2x) 6 3εi and ℓj(xQ2y) 6 εi,
we have εi < ℓj(Q2) 6 4εi. For any two paths R, L, we write R+L as a shorthand for the
symmetric difference of E(R) and E(L). It is easy to check that every vertex is incident
with an even number of edges in Q2 + P , which means that Q2 + P is an element of the
cycle space of Ŝj , so by Lemma 2.2 it can be written as a sum of edge-disjoint cycles in

Ŝj . Since ℓj(Q2 + P ) 6 ℓj(Q2) + ℓj(P ) 6 4εi + εi = 5εi, every such cycle has length at
most 5εi. On the other hand, we claim that Q1 + P can be written as a sum of C-sectors
that are contained in Q1 ∪ P . If this is true then each of those C-sectors will be shorter
than D since

ℓj(Q1 ∪ P ) 6 ℓj(Q1) + ℓj(P ) 6 ℓj(Q1) + εi < ℓj(Q1) + ℓj(Q2) = ℓj(D).

To prove that Q1 + P is a sum of such C-sectors, consider the vertices in X :=
V (Q1) ∩ V (P ) in the order they appear on P (recall that P starts at z and ends at y)
and let v be the last vertex in this order such that Q1v + Pv is the (possibly trivial) sum
of C-sectors contained in Q1 ∪ P (there is such a vertex since z ∈ X and Q1z + Pz = ∅).
Suppose v 6= y and let w be the successor of v in X. The paths vQ1w and vPw have no
vertices in common other than v and w, hence either they are edge-disjoint or they both
consist of the same edge vw. In both cases, Q1w + Pw = (Q1v + Pv) + (vQ1w + vPw) is
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the sum of C-sectors contained in Q1 ∪P , since Q1v +Pv is such a sum and vQ1w + vPw
is either the empty edge-set or a C-sector contained in Q1 ∪P (recall that vQ1w ⊂ C and
ℓj(vPw) 6 εi). This contradicts the choice of v, therefore v = y and Q1 + P is a sum of
C-sectors as required.

Thus every C-sector longer than 5εi is a sum of shorter cycles, either C-sectors or
cycles shorter than 5εi. As Ŝj is finite and C is a C-sector itself, repeated application of
this fact yields that C is a sum of cycles not longer than 5εi. By Proposition 3.1, every
cycle in this sum is a sum of ℓj-geodetic cycles in Ŝj not longer than 5εi; this completes
the proof.

Lemma 4.4. The sequence (εi)i∈N converges to zero.

Proof. The sequence (εi)i∈N converges since it is decreasing. Suppose there is an ε > 0
with εi > ε for all i. Thus, for every i ∈ N, there is a component Ci of |G| \ G[Si] in
which there are two points of distance at least ε. For every i ∈ N, pick a vertex ci ∈ Ci.
By Corollary 2.4, there is an end ω in the closure of the set {c0, c1, . . .} in |G|. Let
Ĉ(Si, ω) denote the component of |G| \ G[Si] that contains ω. It is easy to see that the
sets Ĉ(Si, ω), i ∈ N, form a neigbourhood basis of ω in |G|.

As U := {x ∈ |G| | d(x, ω) < 1
2
ε} is open in |G|, it has to contain Ĉ(Si, ω) for some

i. Furthermore, there is a vertex cj ∈ Ĉ(Si, ω) with j > i, because ω lies in the closure

of {c0, c1, . . . }. As Sj ⊃ Si, the component Cj of |G| \ G[Sj ] is contained in Ĉ(Si, ω) and
thus in U . But any two points in U have distance less than ε, contradicting the choice of
Cj.

This implies in particular that:

Corollary 4.5. Let ε > 0 be given. There is an n ∈ N such that for every i > n, every
outer edge of Ŝi is shorter than ε.

4.2 Limits of paths and cycles

In this section we develop some tools that will help us obtain ℓ-geodetic circles as limits
of sequences of ℓi-geodetic cycles in the Ŝi.

A chain of paths (respectively cycles) is a sequence Xj, Xj+1, . . . of paths (resp. cycles),

such that every Xi with i > j is the restriction of Xi+1 to Ŝi.

Definition 4.6. The limit of a chain Xj , Xj+1, . . . of paths or cycles, is the closure in
|G| of the set

X̃ :=
⋃

j6i<ω

(

Xi ∩ S̃i

)

.

Unfortunately, the limit of a chain of cycles does not have to be a circle, as shown in
Figure 4.4. However, we are able to prove the following lemma.
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Fig. 4.4: A chain X0,X1, . . . of cycles (drawn thick), whose limit X is not a circle (but the
edge-disjoint union of two circles).

Lemma 4.7. The limit of a chain of cycles is a continuous image of S1 in |G|. The limit
of a chain of paths is the image of a topological path in |G|. The corresponding continuous
map can be chosen so that every point in G has at most one preimage, while the preimage
of each end of G is a totally disconnected set.

Proof. Let X0, X1, . . . be a chain of cycles (proceed analogously for a chain Xj , Xj+1, . . . )
and let X be its limit. We define the desired map σ : S1 → X with the help of homeo-
morphisms σi : S1 → Xi for every i ∈ N. Start with some homeomorphism σ0 : S1 → X0.
Now let i > 1 and suppose that σi−1 : S1 → Xi−1 has already been defined. We change
σi−1 to σi by mapping the preimage of any outer edge in Xi−1 to the corresponding path
in Xi. While we do this, we make sure that the preimage of every outer edge in Xi is not
longer than 1

i
.

Now for every x ∈ S1, define σ(x) as follows. If there is an n ∈ N such that σi(x) =
σn(x) for every i > n, then define σ(x) = σn(x). Otherwise, σi(x) lies on an outer
edge uivi for every i ∈ N. By construction, there is exactly one end ω in the closure of
{u0, v0, u1, v1, . . . } in |G|, and we put σ(x) := ω.

It is straightforward to check that σ : S1 → X is continuous, and that X̃ ⊆ σ(S1).
As σ(S1) is a continuous image of the compact space S1 in the Hausdorff space |G|, it
is closed in |G|, thus σ(S1) = X. By construction, only ends can have more than one
preimage under σ. Moreover, as we defined σi so that the preimage of every outer edge
is not longer than 1

i
, any two points x, y ∈ S1 that are mapped by σ to ends are mapped

by σi to distinct outer edges for every sufficiently large i. Therefore, there are points in
S1 between x and y that are mapped to a vertex by σi and hence also by σ, which shows
that the preimage of each end under σ is totally disconnected.

For a chain X0, X1, . . . of paths, the construction is slightly different: As the endpoints
of the paths Xi may change while i increases, we let σi : [0, 1] → X map a short interval
[0, δi] to the first vertex of Xi, and the interval [1−δi, 1] to the last vertex of Xi, where δi is
a sequence of real numbers converging to zero. Except for this difference, the construction
of a continuous map σ : [0, 1] → X imitates that of the previous case.

Recall that a circle is ℓ-geodetic if for every two points x, y ∈ C, one of the two x–
y arcs in C has length d(x, y). Equivalently, a circle C is ℓ-geodetic if it has no shortcut,
that is, an arc in |G| with endpoints x, y ∈ C and length less than both x–y arcs in C.
Indeed, if a circle C has no shortcut, it is easily seen to contain a shortest x–y arc for any
points x, y ∈ C.
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It may seem more natural if a shortcut of C is a C-arc, that is, an arc that meets C
only at its endpoints. The following lemma will allow us to only consider such shortcuts
(in particular, we only have to consider arcs with endpoints in V̂ ).

Lemma 4.8. Every shortcut of a circle C in |G| contains a C-arc which is also a shortcut
of C.

Proof. Let P be a shortcut of C with endpoints x, y. As C is closed, every point in P \C
is contained in a C-arc in P . Suppose no C-arc in P is a shortcut of C. We can find a
family (Wi)i∈N of countably many internally disjoint arcs in P , such that for every i, Wi

is either a C-arc or an arc contained in C, and every edge in P lies in some Wi (there
may, however, exist ends in P that are not contained in any arc Wi). For every i, let xi, yi

be the endpoints of Wi and pick a xi–yi arc Ki as follows. If Wi is contained in C, let
Ki = Wi. Otherwise, Wi is a C-arc and we let Ki be the shortest xi–yi arc on C. Note
that since Wi is not a shortcut of C, Ki is at most as long as Wi.

Let K be the union of all the arcs Ki. Clearly, the closure K of K in |G| is contained
in C, contains x and y, and is at most as long as P . It is easy to see that K is a connected
topological space; indeed, if not, then there are distinct edges e, f on C, so that both
components of C − {e, f} meet K, which cannot be the case by the construction of K.
By Theorem 2.6, K is also arc-connected, and so it contains an x–y arc that is at most
as long as P , contradicting the fact that P is a shortcut of C.

Thus, P contains a C-arc which is also a shortcut of C.

By the following lemma, the restriction of any geodetic circle is also geodetic.

Lemma 4.9. Let i > j and let C be an ℓ-geodetic circle in |G| (respectively, an ℓi-geodetic
cycle in Ŝi). Then Cj := C|Ŝj is an ℓj-geodetic cycle in Ŝj, unless Cj = ∅.

Proof. Suppose for contradiction, that Cj has a shortcut P between the vertices x, y.
Clearly, x, y lie in C, so let Q1, Q2 be the two x–y arcs (resp. x–y paths) in C. We claim
that ℓ(Qk) > d(x, y) (resp. ℓi(Qk) > d(x, y)) for k = 1, 2. Indeed, as P is a shortcut of Cj,

and Qk|Ŝj is a subpath of Cj with endvertices x, y for k = 1, 2, we have ℓj(Qk|Ŝj) > ℓj(P ).

Moreover, by Lemma 4.1 we have ℓ(Qk) > ℓj(Qk|Ŝj) (resp. ℓi(Qk) > ℓj(Qk|Ŝj)), and by
Lemma 4.2 ℓj(P ) > d(x, y), so our claim is proved. But then, by the definition of d(x, y)
(resp. by Lemma 4.2), there is an x–y arc Q in |G| such that ℓ(Q) < ℓ(Qk) (resp. an
x–y path Q in Ŝi such that d(x, y) = ℓi(Q) < ℓi(Qk)) for k = 1, 2, contradicting the fact
that C is ℓ-geodetic (resp. ℓi-geodetic).

As already mentioned, the limit of a chain of cycles does not have to be a circle.
Fortunately, the limit of a chain of geodetic cycles is always a circle, and in fact an
ℓ-geodetic one:

Lemma 4.10. Let C be the limit of a chain C0, C1, . . . of cycles, such that, for every
i ∈ N, Ci is ℓi-geodetic in Ŝi. Then C is an ℓ-geodetic circle.
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Proof. Let σ be the map provided by Lemma 4.7 (with Ci instead of Xi). We claim that
σ is injective.

Indeed, as only ends can have more than one preimage under σ, suppose, for contra-
diction, that ω is an end with two preimages. These preimages subdivide S1 into two
components P1, P2. Choose ε ∈ R+ smaller than the lengths of σ(P1) and σ(P2). (Note
that as the preimage of ω is totally disconnected, both σ(P1) and σ(P2) have to contain
edges of G, so their lengths are positive.) By Corollary 4.5, there is a j such that every
outer edge of Ŝj is shorter than ε. On the other hand, for a sufficiently large i > j, the

restrictions of σ(P1) and σ(P2) to Ŝi are also longer than ε. Thus, the distance along Ci

between the first and the last vertex of σ(P1)|Ŝi is larger than ε. As those vertices lie in
the same component of G−Si (namely, in C(Si, ω)), there is an outer edge of Ŝi between
them. This edge is shorter than ε and thus a shortcut of Ci, contradicting the fact that
Ci is ℓi-geodetic.

Thus, σ is injective. As any bijective, continuous map between a compact space and
a Hausdorff space is a homeomorphism, C is a circle.

Suppose, for contradiction, there is a shortcut P of C between points x, y ∈ C ∩ V̂ .
Choose ε > 0 such that P is shorter by at least 3ε than both x–y arcs on C. Then, there
is an i such that the restrictions Q1, Q2 of the x–y arcs on C to Ŝi are longer by at least
2ε than Pi := P |Ŝi (Q1, Q2 lie in Ci by the definition of σ, but note that they may have
different endpoints). By Corollary 4.5, we may again assume that every outer edge of Ŝi

is shorter than ε. If x does not lie in Ŝi, then the first vertices of Pi and Q1 lie in the
component of G − Si that contains x (or one of its rays if x is an end). The same is true
for y and the last vertices of Pi and Q1. Thus, we may extend Pi to a path P ′

i with the
same endpoints as Q1, by adding to it at most two outer edges of Ŝi. But P ′

i is then
shorter than both Q1 and Q2, in contradiction to the fact that Ci is ℓi-geodetic. Thus
there is no shortcut to C and therefore it is ℓ-geodetic.

4.3 Proof of the generating theorem

Before we are able to prove Theorem 1.2, we need one last lemma.

Lemma 4.11. Let C be a circle in |G| and let i ∈ N be minimal such that C meets Si.
Then, there exists a finite family F , each element of which is an ℓ-geodetic circle in |G| of
length at most 5εi, and such that

∑

F coincides with C in S̃i, that is, (
∑

F)∩S̃i = C∩S̃i.

Proof. For every j > i, choose, among all families H of ℓj-geodetic cycles in Ŝj , the ones
that are minimal with the following properties, and let Vj be their set:

• no cycle in H is longer than 5εi in Ŝj , and

•
∑

H coincides with C in S̃i.

Note that every cycle in such a family H meets Si as otherwise H would not be minimal
with the above properties. By Lemma 4.3, the sets Vj are not empty. As no family in Vj

contains a cycle twice, and Ŝj has only finitely many cycles, every Vj is finite. Our aim is
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to find a family Ci ∈ Vi so that each cycle in Ci can be extended to an ℓ-geodetic circle,
giving us the desired family F .

Given j > i and C ∈ Vj+1, restricting every cycle in C to Ŝj (note that by the minimality
of C, every cycle in C meets Si and hence also its supset Sj) yields, by Lemma 4.9, a family
C− of ℓj-geodetic cycles. Moreover, C− lies in Vj : by Lemma 4.1, no element of C− is longer

than 5εi, and the sum of C− coincides with C in Ŝi, as the performed restrictions do not
affect the edges in S̃i. In addition, C− is minimal with respect to the above properties as
C is.

Now construct an auxiliary graph with vertex set
⋃

j>i Vj , where for every j > i, every
element C of Vj is incident with C−. Applying Lemma 2.7 to this graph, we obtain an
infinite sequence Ci, Ci+1, . . . such that for every j > i, Cj ∈ Vj and Cj = C−

j+1. Therefore,

for every cycle C ∈ Cj there is a unique cycle in Cj+1 whose restriction to Ŝj is C. Hence
for every D ∈ Ci there is a chain (D =)Di, Di+1, . . . of cycles such that Dj ∈ Cj for
every j > i. By Lemma 4.10, the limit XD of this chain is an ℓ-geodetic circle, and
XD is not longer than 5εi, because in that case some Dj would also be longer than 5εi.
Thus, the family F resulting from Ci after replacing each D ∈ Ci with XD has the desired
properties.

Proof of Theorem 1.2. If (Fi)i∈I is a family of families, then let the family
⋃

i∈I Fi be the
disjoint union of the families Fi. Let C be an element of C(G). For i = 0, 1, . . . , we define
finite families Γi of ℓ-geodetic circles that satisfy the following condition:

Ci := C +
∑ ⋃

j6i

Γj does not contain edges of S̃i, (2)

where + denotes the symmetric difference.
By Lemma 2.2, there is a family C of edge-disjoint circles whose sum equals C. Apply-

ing Lemma 4.11 to every circle in C that meets S0 (there are only finitely many), yields
a finite family Γ0 of ℓ-geodetic circles that satisfies condition (2).

Now recursively, for i = 0, 1, . . ., suppose that Γ0, . . . , Γi are already defined finite
families of ℓ-geodetic circles satisfying condition (2), and write Ci as a sum of a family C
of edge-disjoint circles, supplied by Lemma 2.2. Note that only finitely many members of
C meet Si+1, and they all avoid Si as Ci does. Therefore, for every member D of C that
meets Si+1, Lemma 4.11 yields a finite family FD of ℓ-geodetic circles of length at most
5εi+1 such that (

∑

FD) ∩ S̃i+1 = D ∩ S̃i+1. Let

Γi+1 :=
⋃

D∈C

D∩Si+1 6=∅

FD.

By the definition of Ci and Γi+1, we have

Ci+1 = C +
∑ ⋃

j6i+1

Γj = C +
∑ ⋃

j6i

Γj +
∑

Γi+1 = Ci +
∑

Γi+1.

the electronic journal of combinatorics 16 (2009), #R144 14



By the definition of Γi+1, condition (2) is satisfied by Ci+1 as it is satisfied by Ci. Finally,
let

Γ :=
⋃

i<ω

Γi.

Our aim is to prove that
∑

Γ = C, so let us first show that Γ is thin.
We claim that for every edge e ∈ E(G), there is an i ∈ N, such that for every j > i

no circle in Γj contains e. Indeed, there is an i ∈ N, such that εj is smaller than 1
5
ℓ(e) for

every j > i. Thus, by the definition of the families Γj , for every j > i, every circle in Γj

is shorter than ℓ(e), and therefore too short to contain e. This proves our claim, which,
as every Γi is finite, implies that Γ is thin.

Thus,
∑

Γ is well defined; it remains to show that it equals C. To this end, let e be
any edge of G. By (2) and the claim above, there is an i, such that e is contained neither
in Ci nor in a circle in

⋃

j>i Γi. Thus, we have

e /∈ Ci +
∑ ⋃

j>i

Γj = C +
∑

Γ.

As this holds for every edge e, we deduce that C +
∑

Γ = ∅, so C is the sum of the family
Γ of ℓ-geodetic circles.

5 Further problems

It is known that the finite circles (i.e. those containing only finitely many edges) of a
locally finite graph G generate C(G) (see [7, Corollary 8.5.9]). In the light of this result
and Theorem 1.2, it is natural to pose the following question:

Problem 1. Let G be a locally finite graph, and consider a metric representation (|G|, ℓ)
of G. Do the finite ℓ-geodetic circles generate C(G)?

The answer to Problem 1 is negative: Figure 5.5 shows a graph with a metric repre-
sentation where no geodetic circle is finite.

In Section 2 we did not define dℓ(x, y) as the length of a shortest x–y arc, because we
could not guarantee that such an arc exists. But does it? The following result asserts
that it does.

Proposition 5.1. Let a metric representation (|G|, ℓ) of a locally finite graph G be given
and write d = dℓ. For any two distinct points x, y ∈ V̂ , there exists an x–y arc in |G| of
length d(x, y).

Proof. Let P = P0, P1, . . . be a sequence of x–y arcs in |G| such that (ℓ(Pj))j∈N converges

to d(x, y). Choose a j ∈ N such that every arc in P meets Sj, where Sj , S̃j, and Ŝj are
defined as before. Such a j always exists; if for example x, y ∈ Ω, then pick j so that Sj

separates a ray in x from a ray in y.
As Ŝj is finite, there is a path Xj in Ŝj and a subsequence Pj of P such that Xj is

the restriction of any arc in Pj to Ŝj . Similarly, for every i > j, we can recursively find a
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path Xi in Ŝi and a subsequence Pi of Pi−1 such that Xi is the restriction of any arc in
Pi to Ŝi.

By construction, Xj, Xj+1, . . . is a chain of paths. The limit X of this chain contains
x and y as it is closed, and ℓ(X) 6 d(x, y); for if ℓ(X) > d(x, y), then there is an i such
that ℓ(Xi ∩ S̃i) > d(x, y), and as ℓ(Xk ∩ S̃k) > ℓ(Xi ∩ S̃i) for k > i, this contradicts the
fact that (ℓ(Pj))j∈N converges to d(x, y). By Lemma 4.7, X is the image of a topological
path and thus, by Lemma 2.5, contains an x–y arc P . Since P is at most as long as X,
it has length d(x, y) (thus as ℓ(X) 6 d(x, y), we have P = X.)

Our next problem raises the question of whether it is possible, given x, y ∈ V (G), to
approximate d(x, y) by finite x–y paths:

Problem 2. Let G be a locally finite graph, consider a metric representation (|G|, ℓ) of
G and write d = dℓ. Given x, y ∈ V (G) and ǫ ∈ R+, is it always possible to find a finite
x–y path P such that ℓ(P ) − d(x, y) < ǫ?

Surprisingly, the answer to this problem is also negative. The graph of Figure 5.5 with
the indicated metric representation is again a counterexample.
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Fig. 5.5: A 1-ended graph G with a metric representation. Every ℓ-geodetic circle is easily seen
to contain infinitely many edges. Moreover, every (graph-theoretical) x–y path has length at
least 4, although d(x, y) = 2.

As noted in Section 4, every ℓ-geodetic circle has finite length. But what about other
circles? Is it possible to choose a metric representation such that there are circles of infinite
length? Yes it is, Figure 5.5 shows such a metric representation. It is even possible to have
every infinite circle have infinite length: Let G be the infinite ladder, let the edges of the
upper ray have lengths 1

2
, 1

4
, 1

8
, . . ., let the edges of the lower ray have lengths 1

2
, 1

3
, 1

4
, . . .,

and let the rungs have lengths 1
2
, 1

4
, 1

8
, . . .. This clearly yields a metric representation, and

as any infinite circle contains a tail of the lower ray, it has infinite length. This means
that in this example all ℓ-geodetic circles are finite, contrary to the metric representation
in Figure 5.5, where every ℓ-geodetic circle is infinite.
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Theorems 3.1 and 1.2 could be applied in order to prove that the cycle space of a
graph is generated by certain subsets of its, by choosing an appropriate length function,
as indicated by our next problem. Call a cycle in a finite graph peripheral, if it is induced
and non-separating.

Problem 3. If G is a 3-connected finite graph, is there an assignment of lengths ℓ to the
edges of G, such that every ℓ-geodetic cycle is peripheral?

We were not able to give an answer to this problem. A positive answer would imply,
by Theorem 3.1, a classic theorem of Tutte [18], asserting that the peripheral cycles of a
3-connected finite graph generate its cycle space. Problem 3 can also be posed for infinite
graphs, using the infinite counterparts of the concepts involved2.
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[9] R. Diestel and D. Kühn. Graph-theoretical versus topological ends of graphs. J. Com-
bin. Theory (Series B), 87:197–206, 2003.

2Tutte’s theorem has already been extended to locally finite graphs by Bruhn [2]

the electronic journal of combinatorics 16 (2009), #R144 17
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