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Abstract

In this paper, we study the relationship between the number of n-vertex graphs

in a hereditary class X , also known as the speed of the class X , and boundedness of

the clique-width in this class. We show that if the speed of X is faster than n!cn for

any c, then the clique-width of graphs in X is unbounded, while if the speed does

not exceed the Bell number Bn, then the clique-width is bounded by a constant.

The situation in the range between these two extremes is more complicated. This

area contains both classes of bounded and unbounded clique-width. Moreover, we

show that classes of graphs of unbounded clique-width may have slower speed than

classes where the clique-width is bounded.

Keywords: Clique-width; Hereditary class of graphs; Speed of hereditary classes

1 Introduction

Clique-width is a graph parameter which is of primary importance in algorithmic graph
theory because many problems being NP-hard in general admit polynomial-time solutions
when restricted to a class X of graphs where the clique-width is bounded by a constant
[9]. In the study of clique-width we may assume, without loss of generality, that X is a
hereditary class of graphs, i.e., a class closed under taking induced subgraphs, because
the clique-width of a graph cannot be less than the clique-width of any of its induced
subgraphs.

In a recent line of research, it was shown that the growth of the number Xn of n-vertex
graphs in a hereditary class X , also known as the speed of the class, is far from arbitrary.
Specifically, the rates of growth constitute discrete layers. Alekseev [1] and Scheinerman
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and Zito [20] discovered five lower layers: constant, polynomial, exponential, factorial and
superfactorial. These correspond to classes X whose speeds are respectively constant,
polynomial, bounded above and below by exponential functions of n, bounded above and
below by functions of the form ncn, and of the form Ω(ncn) for every c.

The structure of graphs in the first three layers is rather simple, implying boundedness
of the clique-width in any class from these layers. However the structure of a class X whose
speed is factorial is not so simple. Balogh, Bollobás and Weinreich [3, 5] gave a precise
classification of all the possible speeds, together with the corresponding graph structures,
up to the Bell number Bn; but they were unable to give any such results either for the
remainder of the factorial layer or for the superfactorial graph classes with speeds of the

form 2o((n

2)). Indeed, in [4] they were able to show that some properties with speeds in
these ranges have exceptionally badly behaved speeds.

In the present paper we show that the clique-width is bounded in any hereditary class
whose speed does not exceed the Bell number Bn. On the other hand, we prove that
for much of the remaining factorial layer, and in any superfactorial class of graphs, the
clique-width is unbounded. This perhaps provides some reason why Balogh, Bollobás and
Weinreich were unable to extend their characterisation: the structure of graphs in these
higher speed classes is much more complex.

However there is no ‘boundary speed’ separating classes with bounded and unbounded
clique-width; we exhibit properties of unbounded clique-width whose speeds are strictly
slower than those of various classes of bounded clique-width.

Let T (k) be the hereditary class of graphs with clique-width at most k. We note that
T (1) is the class of disjoint unions of cliques and so has speed equal to the Bell number;
for larger k we will show that

n!





2
k−5

2

k − 2





n

≤ T (k)n ≤ n!
(

(2k2)2k2
)n

.

The organization of the paper is as follows. In Section 2 we give some preliminary
information related to the topic of the paper. In Section 3, we show that the clique-
width is unbounded in any superfactorial class of graphs, and in Section 4, we prove
that the clique-width is bounded in any hereditary class whose speed does not exceed the
Bell number Bn. Section 5 is devoted to graph classes between the two boundaries. In
particular, in Section 5.1 we describe a class of graphs of bounded clique-width whose
speed is faster than the speed of two classes of unbounded clique-width described in
Section 5.2.

2 Preliminaries

Unless specified, all graphs in this paper are undirected, without loops and multiple
edges. For a graph G, we denote by V (G) and E(G) the vertex set and the edges set of G
respectively. The complement of G is denoted G. The neighborhood of v ∈ V (G) is the
set of vertices adjacent to v. For a subset U ⊆ V (G), we denote by G[U ] the subgraph
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of G induced by U , i.e., the graph with vertex set U and two vertices being adjacent in
G[U ] if and only if they are adjacent in G. Given a set of graphs M , we say that G is
M-free if G does not contains induced subgraphs isomorphic to graphs in M . As usual,
we denote by Ck a chordless cycle with k vertices and by Kn,m a complete bipartite graph
with parts of size n and m.

The notion of clique-width of a graph was introduced by Courcelle, Engelfriet and
Rozenberg in [8] and is defined as the minimum number of colours needed to construct
the graph by means of the following graph operations:

• Create a vertex v with colour i: i(v).

• Take the disjoint union of two previously constructed graphs G and H (preserving
the vertex colours): G ⊕ H .

• Put an edge from each vertex of colour i to each vertex of colour j: ηi,j.

• Recolour all vertices of colour i to colour j: ρi→j.

Every graph can be defined by an algebraic expression using the four operations above.
For instance, the graph consisting of two adjacent vertices x and y can be defined by the
expression η1,2(1(x)⊕2(y)), and the cycle C5 on vertices a, b, c, d, e (listed along the cycle)
can be defined by the following expression:

η4,1(η4,3(4(e) ⊕ ρ4→3(ρ3→2(η4,3(4(d) ⊕ η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))).

This example suggests the idea of how to construct any cycle with at most 4 different
colours. Unfortunately, in general, the clique-width can take arbitrarily large values. In
this paper, we study the relationship between boundedness of the clique-width in a certain
class of graphs and the number of n-vertex graphs in this class. To this end, we recall the
following known facts.

In [10], it was shown that the clique-width of a graph cannot be less than the clique-
width of any of its induced subgraphs. More generally, denoting the clique-width of a
graph G by cw(G), we have

Lemma 1 For any graph G,

cw(G) = max{cw(H) | H is a prime induced subgraph of G}.

The notion of prime graph was introduced in the study of modular decomposition. To
define this notion, let us say that a vertex v ∈ V (G) distinguishes a subset U ⊆ V (G)−{v}
if v has both a neighbor and a non-neighbor in U . A module in a graph is a subset of
vertices indistinguishable for the vertices outside the subset. A module M ⊆ V (G) is
trivial if |M | = 1 or M = V (G). A graph G is prime if every module of G is trivial.

Now let us mention several graph operations that do not change the clique-width “too
much”. The following two lemmas can be found in [10] and [15], respectively.
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Lemma 2 For any graph G, cw(G) ≤ 2cw(G)

Lemma 3 If a graph G is obtained from a graph H by deleting k vertices, then

cw(G) ≤ cw(H) ≤ 2k(cw(G) + 1) .

Both these lemmas can be generalized by means of the following two operations.

• Subgraph complementation is the operation of complementing the edges on a subset
of the vertices of a graph G;

• Bipartite subgraph complementation is the operation of complementing the edges
between two disjoint subsets of the vertices of a graph G.

Without giving any specific bound on the size of the change of the clique-width under
these operations, we simply present the following result proved in [13].

Lemma 4 For a class of graphs X and a nonnegative integer k, denote by X(k) the class
of graphs obtained from graphs in X by applying at most k subgraph complementations or
bipartite subgraph complementations. Then the clique-width of graphs in X(k) is bounded
by a constant if and only if it is bounded for graphs in X.

The fact that the clique-width of a graph cannot be less than the clique-width of any
of its induced subgraphs allows us to be restricted to hereditary graph classes. Every
hereditary class (and only hereditary) can be characterized in terms of minimal forbidden
induced subgraphs, i.e., a class X is hereditary if and only if there is a set M such that
every graph in X is M-free.

Clearly, not every graph class is hereditary. For instance, the class of trees is not
hereditary. However, any class X can be extended to a hereditary class by adding to X
all induced subgraphs of graphs that are in X . In this way, the class of trees is extended
to the class of forests, i.e., graphs without cycles.

3 Fast speed implying unbounded clique-width

In this section, we show that hereditary classes with superfactorial speed have unbounded
clique-width. More specifically, we prove that the speed of any class of graphs with
bounded clique-width is at most factorial.

Theorem 1 The number of graphs on n vertices with clique-width at most k is bounded
above by n!Cn for some constant C depending on k.
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Proof. If a graph on n vertices has clique-width at most k, then there is an expression
using k colours that constructs it. We simply bound the number of expressions which could
possibly give different graphs. We insist on a convenient form for these expressions.

Suppose that we are in the process of constructing a graph, and have just taken a
disjoint union of two coloured graphs. We may now apply edge creating or recolouring
operations. We may assume that we perform any edge creation operations first, and then
do any necessary recolouring; the number of edge creation operations immediately follow-
ing a disjoint union operation is thus at most

(

k
2

)

+ k. It is also clear that the recolouring
operation ρi→j does nothing if there are no vertices of colour i, and is redundant if there
are no vertices of colour j (although in many constructions it makes notation simpler to
perform some redundant recolouring): so each recolouring operation decreases the number
of nonempty colour classes by one. Thus at most k − 1 recolouring operations may be
performed between disjoint unions.

Since each disjoint union joins together two graphs of size at least 1, the number of
disjoint union operations is n− 1. Also, it is obvious that the number of vertex creations
is n.

Suppose the vertices were unlabelled. In that case the vertex creation operations
would simply specify a colour i, and the expression would contain the symbols i (for each
1 ≤ i ≤ k), ηi,j (for each 1 ≤ i, j ≤ k), ρi→j (for each 1 ≤ i, j ≤ k) and ⊕, (, ), for a total

of k +
(

k
k

)

+ k + 2
(

k
k

)

+ 3 < 2k2 distinct symbols.

There are at most n + n − 1 + 2(n− 1)(
(

k
k

)

+ k) + 2(n− 1)(k − 1) < 2k2n symbols in
the entire expression; thus the number of unlabelled graph with clique-width at most k is
at most

(2k2)2k2n = Cn

where
C = (2k2)2k2

.

There are not more than a factor of n! more labelled graphs of clique-width k than
unlabelled graphs of clique-width k, hence

T (k)n ≤ n!Cn.

Corollary 1 All superfactorial classes have unbounded clique-width.

Although this is a triviality, it gives one-line proofs of the unboundedness of clique-
width in various important graph classes (in some cases, replacing long direct proofs of
the same fact). We give some examples.

The classes of bipartite, co-bipartite and split graphs are superfactorial and therefore
have unbounded clique-width (proved directly in [18]).

The class Xp of Kp,p-free bipartite graphs satisfies (see e.g. [6, 11]):

c1n
2− 2

p+1 log2 n < log2 Xp
n < c2n

2− 1

p log2 n ,

and thus has unbounded clique-width for each p ≥ 2; in particular, the class X2 of C4-free
bipartite graphs has unbounded clique-width.
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The result for C4-free bipartite graphs has been improved in [17] in the following way.
For each odd k, the authors present an infinite family of n-vertex bipartite graphs of girth

(the length of a smallest cycle) at least k + 5 that have at least 2t−k−2n1+ 1

k−t+1 edges,
where t = ⌊k+2

4
⌋. Consequently, for each odd k ≥ 1, (C4, . . . , Ck+3)-free bipartite graphs

constitute a superfactorial class and hence are not of bounded clique-width.
Finally we note that the important class of chordal bipartite graphs, (i.e., bipartite

graphs containing no induced cycles of length more than four) is superfactorial: Spinrad
has shown in [21] that the number of chordal bipartite graphs is Ω(2Ω(n log2 n)). Thus this
class has unbounded clique-width.

4 Slow speed implying bounded clique-width

Now we turn to graph classes with slow speed. We use some structural results obtained in
[1, 3, 5]. First, we recall the following characterization of graph classes in the exponential
layer that has been presented independently in [1] and [3].

Lemma 5 If H is a hereditary class of graphs with the speed bounded by an exponentially
growing function, then there is a constant c such that the vertex set of any graph in H can
be partitioned into at most c parts such that each part is either a clique or an independent
set and between any two parts either no edge is present or every possible edge is present.

In the factorial layer the situation is much more complicated. Structural results are
available only for classes with relatively slow speed in this layer. In order to describe
these results, let us introduce the following notations. Let K be a graph-with-loops on
the vertex set [k], and Gk be a simple graph on the same vertex set [k]. Let H ′ be the
disjoint union of infinitely many copies of Gk, and for i = 1, . . . , k, let Vi be the subset of
V (H ′) containing vertex i from each copy of Gk. Now we construct from H ′ an infinite
graph H on the same vertex set by connecting two vertices u ∈ Vi and v ∈ Vj if and only
if uv ∈ E(H ′) and ij 6∈ E(K) or uv /∈ E(H ′) and ij ∈ E(K).

The intent is that H contains infinitely many copies of Gk with edges between these
copies dictated by K. For example, suppose K were the two-vertex graph with two loops,
and G2 = K2. Then H ′ is an infinite matching, and H consists of two infinite cliques
between which there is an infinite matching.

Finally, let P(K, Gk) be the hereditary class consisting of all the finite induced sub-
graphs of H . The following result was proved in [3].

Theorem 2 For any hereditary property X with Xn < n(1+o(1))n, there exists

(1) an integer k such that Xn = n(1−1/k+o(1))n and

(2) a constant c such that for all G ∈ X there is a set W ⊆ V (G) of at most c vertices
so that G − W belongs to a property P(K, Gk) for some K and Gk, where k is the
constant defined in (1).
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In [5], it was shown that in the range Xn ≥ n(1+o(1))n the minimal speed coincides with
the Bell number Bn and there are exactly two minimal properties of this speed, namely,
disjoint union of cliques and their complements.

We now prove the following corollary.

Corollary 2 If the speed of a hereditary graph class X is at most Bn for infinitely many
values of n, then there is a constant c = c(X ) such that the clique-width of any graph in
X is at most c.

Proof. If the speed of X is slower than factorial, then according to Lemma 5 there
is a constant c such that any prime graph in X has at most c vertices. Together with
Lemma 1, this proves that the clique-width of graphs in X is at most c.

If Xn < n(1+o(1))n, then according to Theorem 2 there exist constants c and k such
that when we delete no more than c vertices from any graph G ∈ X we obtain a graph
G′ ∈ P(K, Gk) for some K and Gk. From the definition of P(K, Gk) it follows that G′

can be obtained by applying at most k times subgraph complementations and bipartite
subgraph complementations to a graph G′′ which is the disjoint union of graphs each of
which has at most k vertices. Clearly, the clique-width of G′′ is at most k. Therefore, by
Lemma 4, the clique-width is bounded for G′ and hence, by Lemma 3, for G.

Finally, if the speed of X is equal to Bn for infinitely many values of n, then there
is n0 such that it is equal to Bn for all n ≥ n0, and either for n ≥ n0 every n-vertex
graph is a disjoint union of cliques, or for n ≥ n0 every n-vertex graph is the complement
of a disjoint union of cliques. In either case there are no graphs in X with clique-width
exceeding max(n0, 2).

5 Between the boundaries

In this section, we analyze hereditary properties with factorial speed exceeding the Bell
number. This area contains many important properties such as line graphs, forests, per-
mutation graphs, interval graphs, planar graphs and even more generally all minor-closed
graph classes (other than the class of all graphs) [19]. In some of the classes in this area
the clique width is bounded, in some others it is unbounded. The paper [16] contains
complete classification of classes of bipartite graphs defined by a single forbidden induced
subgraph with respect to bounded/unbounded clique-width, and the paper [2] analyzes
the speed of these classes. Comparison of these two papers reveals that for any class of
bounded clique-width in this family the speed is at most nn+o(n), while for classes of un-
bounded clique-width the speed is at least n

3

2
n+o(n). This observation raises the following

interesting question: is there any “boundary speed” with respect to clique-width, i.e., a
speed separating classes of bounded clique-width from those where the clique-width is
unbounded. In this section we answer this question negatively. First, in Section 5.1 we
show that the number of graphs on n vertices with clique-width k + 3 is at least n!cn

where c = 2
k−2
2

k+1
. In particular, the class of graphs of clique-width at most 25 has speed at
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least n!44n. Then in Section 5.2 we exhibit two classes of unbounded clique-width with
speed at most n!28n.

5.1 Fast properties of bounded clique-width

Theorem 3 The number of graphs on n vertices with clique-width k + 3 is at least n!cn

where c = 2
k−2

2

k+1
.

Proof. First observe that using colours 4, 5, . . . , k+3 we may construct any graph we
choose on k vertices, with each vertex given its own unique colour. We may add a special
vertex given colour 1 and put this adjacent to all the other vertices. Now we partition
the set {1, 2, . . . , n} into an ordered sequence of

⌊

n
k+1

⌋

sets of size k + 1 and if necessary
one smaller set. Let G1, . . . , G⌊ n

k+1⌋
be coloured graphs on the sets of k + 1 vertices.

Now we can construct a graph G on vertex set {1, 2, . . . , n} by joining the special
vertices of the Gi into a path, in the given order, by using the standard path construction:

η1,2(ρ1→2(ρ2→3(. . . η1,2((ρ1→2(ρ2→3(η1,2(ρ1→2(G1) ⊕ G2))) ⊕ G3) . . .)) ⊕ G⌊ n
k+1⌋

)

and finally adding as isolated vertices any vertices in the smaller set.
Since a path has only two automorphisms, this process can construct the same labelled

graph G in just two ways: the other being of course to take the ordered partition and the
sequence of graphs in the reversed orders.

It follows that the number of distinct graphs that can be constructed in this way is at
least

(

n

k + 1, . . . , k + 1

)

2(k

2)
n

k+1 >
n!

(k + 1)!
n

k+1

2(k

2)⌊
n

k+1⌋−1 > n!





2
k−2

2

k + 1





n

,

as required.

5.2 Slow properties of unbounded clique-width

5.2.1 Unit interval graphs

A graph G is a unit interval graph if it is possible to choose for each vertex x of G an
interval Ix of unit length on the real line, such that xy is an edge of G if and only if the
intervals Ix and Iy intersect.

Golumbic and Rotics [12] showed that this class has unbounded clique-width (and
Lozin [14] showed that it is an inclusion-minimal hereditary class with unbounded clique-
width). It is clear that if we have a unit interval representation of G, and G′ is an induced
subgraph of G, then taking the unit interval representation of G and removing intervals
corresponding to vertices in V (G) − V (G′) yields a unit interval representation of G′, so
the unit interval graphs form a hereditary class.

Theorem 4 The class of unit interval graphs has speed at most n!4n.
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Proof. Let G be any unit interval graph on vertex set {1, 2, . . . , n}, and fix a unit interval
representation of G. Each interval has a start point and an end point (moving along the
real line), so we can record a string of length 2n consisting of n symbols S and n symbols
E giving the order along the real line in which the starts and ends of intervals occur, and
separately record the permutation σ, where the start point of the interval corresponding
to vertex i is the σ(i)-th start point encountered. Since the intervals are of unit length
the same permutation gives the order in which the end points appear. Although we
cannot reconstruct the unit interval representation from this recorded information, we
can reconstruct the intersections of intervals and hence G.

It follows that there are at most as many unit interval graphs on n vertices as there
are choices of permutations of n and 2n-element strings using two symbols: namely n!22n.

5.2.2 Bipartite permutation graphs

The class of bipartite permutation graphs is another class of unbounded clique-width
[7]. It is known that every bipartite permutation graph G is biconvex, meaning that the
vertices in each part of G can be ordered so that the neighborhood of each vertex v ∈ V (G)
forms an interval in the opposite part, i.e., the neighbors of v appear consecutively in the
order.

Theorem 5 The class of bipartite permutation graphs has speed at most n!28n.

Proof. Given a bipartite permutation graph G with n vertices and a biconvex representa-
tion of G, we record the graph as follows. First, we list the vertices of G in the lower part
in order, then place a separator, and then list the vertices of the upper part of G in order.
This gives us n!n possible records. This information however does not tell us anything
about adjacencies of vertices in different parts. To record this information, for each vertex
v in the lower part we surround its neighborhood in the upper part with two parentheses
indicating the beginning and the end of the interval. The record now consists of a list of
vertices in the lower part, a separator, and a list of vertices in the upper part containing
at most n pairs of parentheses. It is not difficult to see that this record completely defines
the graph. An easy upper bound on the number of such strings is n!n33n, which does not
exceed n!28n for sufficiently large n.

6 Open problems

We leave two open questions.
First, it would be of some interest to determine more exactly the rate of growth of

T (k)n. This problem is likely to be solvable by generating function methods.
Second, we give one further function. Let

f(n) = min{Pn : P is a hereditary property with unbounded clique-width} .
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The intent of this function is to specify exactly where the transition from structurally
simple graph classes to complex ones occurs. We have shown that f(n) ≤ n!4n; but we
do not know how close to the Bell number Bn this function actually is. In fact, we do
not even know that f(n) > Bn is true, though we conjecture that it is. Our difficulties in
proving this stem from essentially the same source as the difficulties Balogh, Bollobás and
Weinreich [5] encounter in attempting to classify minimal hereditary graph classes with
speeds exceeding the Bell number; we reiterate their call for more research in this area.

It would be interesting to know more about the function f(n). There are several open
issues: is there a minimal speed class of unbounded clique-width (whose speed is f(n) for
all sufficiently large n), and if so is it unique? Is f(n) a function of the form n!Θ(1)n or is
it true that 1

n
log n!

f(n)
→ ∞ as n → ∞? Finally, is it possible to extend Balogh, Bollobás

and Weinreich’s classification to classes with speeds up to f(n)?
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