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Abstract

The fixing number of a graph G is the smallest cardinality of a set of vertices

S such that only the trivial automorphism of G fixes every vertex in S. The fixing

set of a group Γ is the set of all fixing numbers of finite graphs with automorphism

group Γ. Several authors have studied the distinguishing number of a graph, the

smallest number of labels needed to label G so that the automorphism group of the

labeled graph is trivial. The fixing number can be thought of as a variation of the

distinguishing number in which every label may be used only once, and not every

vertex need be labeled. We characterize the fixing sets of finite abelian groups, and

investigate the fixing sets of symmetric groups.

1 Introduction

In this paper we investigate breaking the symmetries of a finite graph G by labeling
its vertices. There are two standard techniques to do this. The first is to label all
of the vertices of G with k distinct labels. A labeling is distinguishing if no non-
trivial automorphism of G preserves the vertex labels. The distinguishing number

of G is the minimum number of labels used in any distinguishing labeling [1, 13]. The
distinguishing chromatic number of G is the minimum number of labels used in any
distinguishing labeling which is also a proper coloring of G [6].

The second technique is to label a subset of k vertices of G with k distinct labels. The
remaining labels can be thought of as having the null label. We say that a labeling of G
is fixing if no non-trivial automorphism of G preserves the vertex labels, and the fixing

number of G is the minimum number of labels used in any fixing labeling.

the electronic journal of combinatorics 16 (2009), #R39 1



2 Fixing Graphs

More formally, suppose that G is a finite graph and v is a vertex of G. The stabilizer of
v, stab(v), is the set of group elements {g ∈ Aut(G) | g(v) = v}. The (vertex ) stabilizer

of a set of vertices S ⊆ V (G) is stab(S) = {g ∈ Aut(G) | g(v) = v for all v ∈ S}. A vertex
v is fixed by a group element g ∈ Aut(G) if g ∈ stab(v). A set of vertices S ⊆ V (G) is
a fixing set of G if stab(S) is trivial. In this case we say that S fixes G. The fixing

number fix(G) of a graph G is the smallest cardinality of a fixing set of G [3, 5, 9].
Equivalently, S is a fixing set of the graph G if whenever g ∈ Aut(G) fixes every vertex

in S, g is the identity automorphism. A set of vertices S is a determining set of G if
whenever two automorphisms g, h ∈ Aut(G) agree on S, then they agree on G, i.e., they
are the same automorphism [3]. The following lemma shows that these two definitions
are equivalent.

Lemma 1. A set of vertices is a fixing set if and only if it is a determining set.

Proof. Suppose that S is a determining set. Since the identity automorphism e fixes every
vertex in S, then by the definition of a determining set, every other element g ∈ Aut(G)
that fixes every vertex in S must be the identity. Therefore S is a fixing set. Conversely,
suppose that S is a fixing set. Let g and h agree on S. Then g−1h must fix every element
in S. Hence by the definition of a fixing set, g−1h = e, so g = h. Therefore S is a
determining set.

Suppose G is a graph with n vertices. Since fixing all but one vertex of G necessarily
fixes the remaining vertex, we must have fix(G) ≤ n− 1. In fact, suppose that any n − 2
vertices have been fixed in G, yet G still has a non-trivial automorphism. Then this
automorphism must be the transposition of the remaining two vertices. This implies that
the only graphs which have fix(G) = n−1 are the complete graphs and the empty graphs.
On the other hand, the graphs with fix(G) = 0 are the rigid graphs [1], which have
trivial automorphism group. In fact, almost all graphs are rigid [2], so most graphs have
fixing number 0.

The orbit of a vertex v, orb(v), is defined to be the set of vertices {w ∈ V (G) | g(v) =
w for some g ∈ Aut(G)}. The Orbit-Stabilizer Theorem says that for any vertex v in G,
|Aut(G)| = | stab(v)|| orb(v)| [12]. So when we are building a minimal fixing set of G,
heuristically it makes sense to choose vertices with orbits as large as possible. This leads
us to consider the following algorithm for determining the fixing number of a finite graph
G:

The Greedy Fixing Algorithm.

1. Find a vertex v ∈ G with | stab(v)| as small as possible (equivalently, with | orb(v)|
as large as possible).

2. Fix v and repeat.

3. Stop when the stabilizer of the fixed vertices is trivial.
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The set of vertices fixed by the greedy fixing algorithm must be a fixing set. We define
the greedy fixing number fixgreedy(G) of the graph G to be the number of vertices fixed
by the greedy fixing algorithm.

Open Question. Is fixgreedy(G) well-defined for every finite graph G? In other words, is

there a finite graph for which two different choices in Step 1 of the greedy fixing algorithm

produce two different fixing sets of different sizes?

If fixgreedy(G) is well-defined, we must have fix(G) ≤ fixgreedy(G). We use this same
technique to derive upper bounds on the fixing sets of groups in the next section.

Open Question. Assuming fixgreedy(G) is well-defined, is there a graph G for which

fix(G) 6= fixgreedy(G)?

3 Fixing Sets of Groups

Following Albertson and Collins’ exposition of distinguishing sets of groups [1], we define
the fixing set of a finite group Γ to be fix(Γ) = {fix(G) |G is a finite graph with Aut(G) ∼=
Γ}. Our goal for the remainder of the paper is to find the fixing sets of a few well-known
finite groups. We begin by describing two procedures that can be used to generate specific
examples.

For every graph G, the natural representation of the elements of Aut(G) as permu-
tations of the vertices of G is a group action of the group Aut(G) on the set V (G).
Furthermore, Aut(G) acts faithfully on G, i.e., the only element of Aut(G) that fixes
every vertex in G is the identity element. A group action of Γ on a graph G is vertex-

transitive if, given any two vertices u, v ∈ V (G), there is an element of Γ that sends u
to v. The following theorem appears in [7].

Theorem 2. Let Γ be a finite group. The set of vertex-transitive actions of Γ on all

possible sets of vertices V is in one-to-one correspondence with the conjugacy classes of

subgroups of Γ. Specifically, if v is any vertex in V , the action of Γ on V is determined

by the conjugacy class of stab(v).

Suppose that Γ is the automorphism group of a graph G. Then Γ acts transitively
on each orbit of the vertices of G under Γ. Hence given a group Γ, to find a graph G
with automorphism group Γ, we choose a set of subgroups of Γ and generate the orbits of
vertices of G corresponding to these subgroups using Theorem 2. There are two aspects
of this construction which make the procedure difficult. First, the action of Γ on the
entire graph G must be faithful for Γ to be a valid automorphism group. Second, after
we construct orbits of vertices, we must construct the edges of G so that the set of
permutations of vertices in Γ is exactly the set of edge-preserving permutations of G.
However, this is not always possible.

An alternative approach uses the Orbit-Stabilizer Theorem. Given a graph G and a
fixing set S of G, we order the elements of S as, say, v1, . . . , vk, and we consider the chain
of subgroups e = stab({v1, . . . , vk}) ≤ stab({v1, . . . , vk−1}) ≤ . . . ≤ stab(v1) ≤ Aut(G).
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If o(vi) is the number of vertices in orb(vi) under the action of stab({v1, . . . , vi−1}), then
| stab({v1, . . . , vi−1})| = o(vi)| stab({v1, . . . , vi})|. So |Aut(G)| = Π1≤i≤ko(vi). Hence
given a finite group Γ, to find a graph G with automorphism group Γ and fixing number
k, we choose a sequence of orbit sizes (o(v1), . . . , o(vk)) whose product is |Γ| and look for
a graph with these orbit sizes. Both of these procedures were used to generate examples
given below.

We now prove a few theorems valid for the fixing set of any finite group. Let Γ be a
group generated by the set of elements G = {g1, g2, . . . gk}. The Cayley graph C(Γ,G)
of Γ with respect to the generating set G is a directed, edge-labeled multigraph with a
vertex for each element of Γ, and a directed edge from the group element h1 to the group
element h2 labeled with the generator g ∈ G if and only if gh1 = h2.

We obtain an undirected, edge-unlabeled graph F (Γ,G) from the Cayley graph C(Γ,G)
by replacing each directed, labeled edge of C(Γ,G) with a “graph gadget” so that F (Γ,G)
has the same automorphisms as C(Γ,G). This technique is due to Frucht [10, 11] and is
outlined in greater detail in [2]. An example is shown in Figure 1. We call F (Γ,G) the
Frucht Graph of Γ with respect to the generating set G. The following lemma is easy
to prove and also follows from the exposition in [2].
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Figure 1: The Frucht graph F (D3, {r, f}).

Lemma 3. For any group Γ and any generating set G of Γ, Aut(C(Γ,G)) = Γ and

Aut(F (Γ,G)) = Γ. Furthermore, for two elements g, h ∈ Γ, the automorphism g takes the

vertex h to the vertex gh in both C(Γ,G) and F (Γ,G).

Corollary 4. If G is a Cayley graph or a Frucht graph of a non-trivial group, then

fix(G) = 1.

Proof. Suppose G = F (Γ,G) for some group Γ (the argument for Cayley graphs is com-
pletely analogous). Since Aut(G) = Γ by Lemma 3, and Γ is not trivial by hypothesis,
fix(G) > 0. Now let h be an element of Γ (and so also a vertex in G). For any non-identity
element g ∈ Γ, by Lemma 3, g(h) = gh 6= h. Thus stab(h) is trivial, and the single-vertex
set {h} is a fixing set of G.
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In fact, the proof of Corollary 4 implies that every vertex of a Cayley graph is a fixing
set, and every non-gadget vertex of a Frucht graph is a fixing set.

Corollary 5. For any non-trivial finite group Γ, 1 ∈ fix(Γ).

The length l(Γ) of a finite group Γ is the maximum number of subgroups in a chain
of subgroups e < Γ1 < Γ2 < . . . < Γl(Γ) = Γ [4].

Proposition 6. For any finite group, max(fix(Γ)) ≤ l(Γ).

Proof. If Γ is trivial, it has length 0 and fixing set {0}. Now suppose Γ is non-trivial,
and let G be a graph with Aut(G) = Γ. We fix a vertex v1 in G with orbit larger than
one. By the Orbit-Stabilizer Theorem, stab(v1) is a proper subgroup of Γ. If we can find
a different vertex v2 with orbit greater than one under the action of stab(v1), we fix v2.
We continue in this way until we have fixed G. Since at each stage, stab({v1, . . . , vi}) is
a proper subgroup of stab({v1, . . . , vi−1}), we cannot have fixed more than the length of
the group.

Corollary 7. Let k be the number of primes in the prime factorization of |Γ|, counting

multiplicities. Then max(fix(Γ)) ≤ k.

Example 8. The graph C6 has automorphism group D6 and fixing number 2. The graph

C3 ∪ P2 has automorphism group D6 and fixing number 3. On the other hand, |D6| =
12 = 2 · 2 · 3. Hence fix(D6) = {1, 2, 3} by Corollaries 5 and 7.

Example 9. The graph shown in Figure 2 has automorphism group A4 and fixing number

2. On the other hand, |A4| = 12 = 2 · 2 · 3. So {1, 2} ⊆ fix(A4) ⊆ {1, 2, 3}, again by

Corollaries 5 and 7. Lemma 10 shows that 3 6∈ fix(A4), so in fact fix(A4) = {1, 2}.

Lemma 10. There is no graph G with fix(G) = 3 and Aut(G) = A4.

Proof. Suppose by way of contradiction that G is a graph with fix(G) = 3 and Aut(G) =
A4. Let S = {v1, v2, v3} be a minimum size fixing set of G. Note that stab(v1), stab(v2),
and stab(v3) are all proper subgroups of A4. Therefore they must be isomorphic to Z2,
Z2 × Z2, or Z3. But if any of them have order less than 4, fixing that vertex and one
other will fix G, and fix(G) = 2. So stab(v1) ∼= stab(v2) ∼= stab(v3) ∼= Z2 × Z2. But there
is only one copy of Z2 × Z2 in A4, so stab(v1) = stab(v2) = stab(v3), and this subgroup
must therefore also equal stab({v1, v2, v3}). So {v1, v2, v3} is not a fixing set of G, which
is a contradiction.

Lemma 11. Suppose G is a graph, Γ = Aut(G) is a finite non-trivial group, and g ∈ Γ
is an element of order pk, for p prime and k a positive integer. Then there exists a set

of pk vertices v1, . . . , vpk in G such that, as a permutation of the vertices of G, g contains

the cycle (v1 . . . vpk).

Proof. Since g has order pk, the cycle decomposition of g must include a cycle of length
pk. Label these vertices v1, . . . , vpk.
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Figure 2: A graph G with Aut(G) = A4 and fix(G) = 2.

Recall that the cartesian product of two groups Γ1 and Γ2 is the group Γ1 × Γ2 =
{(g, h) | g ∈ Γ1, h ∈ Γ2} with group operation defined by (g1, h1)(g2, h2) = (g1g2, h1h2).
Recall also that the sum of two sets S and T is S + T = {s + t | s ∈ S, t ∈ T}.

Lemma 12. If Γ1 and Γ2 are finite non-trivial groups, then fix(Γ1)+fix(Γ2) ⊆ fix(Γ1×Γ2).

Proof. Let a ∈ fix(Γ1) and b ∈ fix(Γ2). Then there exist graphs G1 and G2 with Aut(G1) =
Γ1, Aut(G2) = Γ2, fix(G1) = a, and fix(G2) = b. Let G′

2 be the graph obtained from G2

by attaching the graph Yk shown in Figure 3 for some large value of k (for example,
|G1| + |G2|) to each vertex of G2 at the vertex a. Now consider the graph H = G1 ∪ G′

2,
the disjoint union of the graphs G1 and G′

2. This graph has no automorphisms that
exchange vertices between G1 and G2, so we must have Aut(H) ∼= Aut(G1)×Aut(G′

2)
∼=

Aut(G1)×Aut(G2) ∼= Γ1 ×Γ2. Furthermore, H is fixed if and only if both G1 and G2 are
fixed, so fix(H) = a + b. Therefore a + b ∈ fix(Γ1 × Γ2).

...
a k

...
a k

Figure 3: The graph Yk in the proof of Lemma 12 is shown on the left, and the graph Ak

in the proof of Theorem 14 is shown on the right.

Note that for two finite non-trivial groups Γ1 and Γ2, 1 ∈ fix(Γ1 × Γ2) but 1 6∈ fix(Γ1) +
fix(Γ2).

Open Question. Is it true that for all finite non-trivial groups Γ1 and Γ2, fix(Γ1) +
fix(Γ2) = fix(Γ1 × Γ2) \ {1}?
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3.1 Abelian groups

Lemma 13. If p is prime and k is a positive integer, then fix(Zpk) = {1}.

Proof. By Corollary 5, 1 ∈ fix(Zpk). Conversely, suppose that there exists a graph G such
that Aut(G) = Zpk . By Lemma 11, there exists a vertex in G with orbit size pk. By the
Orbit-Stabilizer Theorem, fixing this vertex must fix the graph.

Let Γ be a finite abelian group with order n, and let n = pi1
1 · · ·pik

k be the prime
factorization of n. Recall that there is a unique factorization Γ = Λ1 × · · · × Λk, where
|Λj| = p

ij
j , Λj = Zp

α1

j
× · · · ×Zp

αt
j

, and α1 + . . . + αt = ij . The numbers pαr

j are called the

elementary divisors of Γ [8].

Theorem 14. Let Γ be a finite abelian group, and let k be the number of elementary

divisors of Γ. Then fix(Γ) = {1, . . . , k}.

Proof. Let Γ = Γ1 × . . . × Γk be the elementary divisor decomposition of Γ. For every
1 ≤ i ≤ k, let Hi = F (Γi × . . . × Γk,G) be any Frucht graph of Γi × . . . × Γk. There
are an infinite number of finite graphs with automorphism group Zn and fixing number
1; for example, every graph in the family of graphs shown in Figure 4 has automorphism
group Z5 and fixing number 1. We may therefore let G1, . . . , Gk be distinct graphs, not
isomorphic to Hi for any i, with automorphism groups Γ1, . . . , Γk, respectively, and fixing
number 1. Let G be the disjoint union (

⋃i−1
j=1 Gj)∪Hi. We also choose G1, . . . , Gk so that

no automorphism of G moves a vertex from one Gj to another, or from any Gj to Hi,
or vice versa. The graphs shown in Figure 4 are examples of graphs Gj which have this
property.

Then G has automorphism group Γ. Furthermore, every fixing set of G must include
at least one vertex from each subgraph Gj and at least one vertex from Hi, and any set
with exactly one vertex moved by an automorphism from each Gj and from Hi is a fixing
set of G. Therefore fix(G) = i. Since we have constructed a graph G with Aut(G) = Γ
and fix(G) = i for any 1 ≤ i ≤ k, {1, . . . , k} ⊆ fix(Γ).

Figure 4: An infinite family of graphs with automorphism group Z5 and fixing number 1.

We prove the reverse inclusion by induction. Suppose Γ is a finite abelian group and
G is a finite graph with Aut(G) = Γ. If Γ has one elementary divisor, then the result
follows from Lemma 13. Suppose that Γ has k > 1 elementary divisors. We choose an
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elementary divisor pm of Γ. Then Γ = Zpm × Γ′ for a smaller finite abelian group Γ′. Let
g be a generator of the subgroup Zpm of Γ. By Lemma 11, there exists a set of pm vertices
v1, . . . , vpm in G such that, as a permutation of the vertices of G, g contains the cycle
(v1 . . . vpm).

Let H be the connected component of G containing v1. If H is a tree, let G′ be the
graph obtained from G by attaching the graph A|G| shown in Figure 3 to G by identifying
the vertex a in A|G| with the vertex v1 in G. Otherwise, let G′ be the graph obtained
from G by attaching the graph Y|G| shown in Figure 3 to G by identifying the vertex a
in Y|G| with the vertex v1 in G. Denote the subgraph A|G| or Y|G| in G′ by H ′. We claim
that Aut(G′) is a subgroup of Γ′. First, we show that G′ does not have any additional
automorphisms that G does not have. Suppose h is an automorphism of G′ and not G.
So h must move some vertex of H ′. Since H ′ has no automorphisms itself, h must move
all of its vertices. Furthermore, since H ′ has more vertices than G, h must send a vertex
of H ′ to another vertex of H ′. This means that as a permutation of the vertices of the
component H ∪ H ′, h is completely determined: h must be a flip of H ∪ H ′ about some
vertex of H ′. This cannot happen, since by construction H ′ contains a cycle if and only
if H does not.

Second, v1 has larger degree in G′ than in G, so there are no automorphisms of G′

mapping v1 to any other vertex v2, . . ., vpm. Since g maps v1 to v2, g does not extend to
any automorphism of G′.

Hence by induction G′ has fixing number at most k − 1. If S is a fixing set of G′ with
|S| ≤ k − 1, then S ′ = S ∪ {v1} is a fixing set of G with |S ′| ≤ k. Therefore G has fixing
number at most k, and fix(Γ) = {1, . . . , k}.

3.2 Symmetric groups

The inflation of a graph G, Inf(G), is a graph with a vertex for each ordered pair (v, e),
where v and e are a vertex and an edge of G, and v and e are incident. Inf(G) has an
edge between (v1, e1) and (v2, e2) if v1 = v2 or e1 = e2. We denote the k-fold inflation of
the graph G by Infk(G).

For a positive integer n, let Gk be the graph with a vertex for each sequence (x1, . . .,
xk+1) of k+1 integers from the set {1, . . . , n} with x1 different from the remaining integers
in the sequence. Vertices u = (u1, ..., uk+1) and v = (v1, ..., vk+1) are adjacent if and only
if there exists some index i such that uj = vj for all j < i, ui 6= vi, and uj = vi and vj = ui

for all j > i.

Lemma 15. The graphs Gk and Infk(Kn) are isomorphic.

Proof. We define an isomorphism ϕ : Infk(Kn) → Gk inductively. For the base case, note
that Inf 0(Kn) ∼= G0

∼= Kn. Now assume ϕ′ : Infk−1(Kn) → Gk−1 is an isomorphism,
and suppose that v is a vertex in Infk(Kn). By the definition of the inflation, v = (v′, e′),
where v′ is a vertex in Infk−1(Kn) and e′ is an edge in Infk−1(Kn). So ϕ′(v′) = (a1, . . . , ak)
and e′ = {v′, u′} where ϕ′(u′) = (b1, . . . , bk), for two vertices (a1, . . . , ak) and (b1, . . . , bk)
in Gk−1. Since v′ ∼ u′, by the definition of Gk−1, there exists an index 1 ≤ i ≤ k such
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(3,2,4)

Figure 5: The graph K4 and its first and second inflations.

that aj = bj for all 1 ≤ j < i, ai 6= bi, and aj = bi and bj = ai for all i < j ≤ k. We define
ϕ(v) = (a1, . . . , ak, bi). Note that since ϕ′ is a bijection by induction, it is easy to see that
ϕ is a bijection as well.

We now prove that ϕ is an isomorphism. First suppose that v and u are adjacent
vertices of Infk(Kn). By the definition of inflation, v = (v′, e′) and u = (u′, d′) for two
vertices v′ and u′ in Infk−1(Kn) and two edges e′ and d′ in Infk−1(Kn) incident to v′ and
u′, respectively. By the definition of adjacency in Infk(Kn), either v′ = u′ or e′ = d′.
Case 1. v′ = u′. In this case, ϕ′(v′) = ϕ′(u′) = (a1, . . . , ak), so ϕ(v) and ϕ(u) differ only
in their last coordinate. Therefore ϕ(v) ∼ ϕ(u) by the definition of adjacency in Gk.
Case 2. e′ = d′. Since e′ is incident to v′ and d′ is incident to u′, e′ = d′ must be the edge
between the vertices v′ and u′. So ϕ′(v′) ∼ ϕ′(u′), hence ϕ′(v′) and ϕ′(u′) must satisfy the
definition of adjacency in Gk−1. By the definition of ϕ, ϕ(v) and ϕ(u) are still adjacent
in Gk.

Now suppose that v and u are non-adjacent vertices of Infk(Kn), and again let v =
(v′, e′) and u = (u′, d′). By the definition of adjacency in Infk(Kn), v′ 6= u′ and e′ 6= d′.
Case 1. v′ is not adjacent to u′. So ϕ′(v′) 6∼ ϕ′(u′), so the sequences ϕ′(v′) and ϕ′(u′)
do not satisfy the definition of adjacency in Gk−1. Since ϕ(v) and ϕ(u) are formed from
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ϕ′(v′) and ϕ′(u′) by appending an extra number to their sequences, the new sequences
ϕ(v) and ϕ(u) still do not satisfy the definition of adjacency in Gk.
Case 2. v′ is adjacent to u′. Since v′ 6= u′, ϕ′(v′) and ϕ′(u′) differ in their kth
coordinate. But since e′ 6= d′, either the (k + 1)st coordinate of ϕ(v) differs from the kth
coordinate of ϕ(v), or the (k + 1)st coordinate of ϕ(u) differs from the kth coordinate of
ϕ(u). Therefore ϕ(v) is not adjacent to ϕ(u) in Gk.

By Lemma 15, we may label the vertices of Infk(Kn) using the vertices of Gk, and
follow the rule for adjacency of vertices in Infk(Kn) given by the definition of Gk. We do
this for the remainder of this section.

Theorem 16. For n > 3 and k ≥ 0, Aut(Infk(Kn)) = Sn and fix(Infk(Kn)) = ⌈n−1
k+1

⌉.

Proof. The statement is clear for k = 0, so assume k > 0. Since each vertex of Infk(Kn)
is labeled with a sequence of the numbers {1, . . . , n} of length k + 1 by Lemma 15, every
permutation g in Sn induces a natural permutation of the vertices of Infk(Kn). Again by
Lemma 15, it is easy to see that these permutations are all automorphisms of Infk(Kn).
So Sn < Aut(Infk(Kn)).

Now suppose that g ∈ Aut(Infk(Kn)). We show that g is determined as a permutation
of the numbers 1 through n in the labeling sequences of the vertices of Infk(Kn), and
therefore g ∈ Sn. Suppose v = (a1, . . . , ak+1) and w = (b1, . . . , bk+1) are two vertices in
Infk(Kn). By the definition of adjacency in Gk, if ai = bi for 1 ≤ i ≤ k, then v and w are
adjacent. Therefore if we partition Infk(Kn) into blocks of vertices with the same first k
elements in their labeling sequence, each block forms a maximal clique of Infk(Kn). The
graph formed by contracting each of these maximal cliques to a single vertex is Infk−1(Kn).
Since maximal cliques are preserved under automorphisms, the automorphism g induces a
natural automorphism g′ on Infk−1(Kn). By induction, g′ is determined as a permutation
p of the numbers 1 through n in the labeling sequences of the vertices of Infk−1(Kn).
Now g is determined by the same permutation p, since the action of p on (a1, . . . , ak)
determines which maximal clique contains g(v), and the action of p on ak+1 determines
g(v) within that maximal clique.

By the definition of the correspondence between an element g of Aut(Infk(Kn)) and its
corresponding permutation p in Sn, for any vertex v = (a1, . . . , ak+1) of Infk(Kn), g(v) = v
if and only if p(ai) = ai for all 1 ≤ i ≤ k + 1. Therefore stab(v) = stab({a1, . . . , ak+1}).
This means that any set of vertices whose vertex labels include the set {1, . . . , n − 1} is
a fixing set of Infk(Kn). One such set is {(1, . . . , k + 1), (k + 2, . . . , 2k + 1), . . . , (mk +
m + 1, . . . , mk + m + k + 1), (n − k − 1, . . . , n − 1)}, where m = ⌊n−1

k+1
⌋. This set has

⌈n−1
k+1

⌉ vertices. Conversely, any set S of vertices whose vertex labels do not include any
two of the numbers 1 through n, say i and j, cannot be a fixing set, since the element of
Aut(Infk(Kn)) corresponding to the transposition (i, j) is a non-identity element of the
stabilizer of S. This clearly requires at least ⌈n−1

k+1
⌉ vertices, so fix(Infk(Kn)) = ⌈n−1

k+1
⌉.

It seems likely that the proof of Theorem 16 could extend to inflations of graphs other
than Kn. However, since Infk(Cn) = C2kn, fix(Infk(Cn)) = 2 for all k ≥ 0 and n ≥ 3.
This motivates the following question.
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Open Question. For which graphs G is it true that fix(Infk(G)) = ⌈fix(G)
k+1

⌉?

Figure 6: The Petersen graph with a fixing set shown as square vertices, and the Petersen
graph with one vertex deleted.

Proposition 17. The Petersen graph P has automorphism group S5 and fixing number

3.

Proof. Many proofs that Aut(P ) = S5 appear in the literature; one can be found in [2].
A fixing set of P with 3 vertices is shown in Figure 6. It remains to show that any fixing
set of P has at least 3 vertices. Suppose that S = {v1, . . . , vk} is a fixing set of P . Since
P is vertex-transitive [2], we may choose v1 to be any vertex of P . Since automorphisms
in stab(v1) preserve distance from v1, any element of stab(v1) must permute the three
vertices adjacent to v1 among themselves, and the six vertices that are distance two from
v1 among themselves. Since automorphisms of P − v1 also have this property, fixing the
rest of P is equivalent to fixing the graph P −v1. This graph is shown in Figure 6, and has
fixing number 2 since its automorphisms are the same as the automorphisms of C6.

Lemma 18. For any positive integer n, if i is a prime power dividing n!, and j is the

number of prime factors of n!/i, counting multiplicities, then max(fix(Sn)) ≤ j + 1.

Proof. Let G be a graph with Aut(G) = Sn. Let g be an element of Sn with order i. Since
i is a prime power, by Lemma 11, as a permutation of the vertices of G, g contains a cycle
of order i. Let v be a vertex in this cycle, and fix v. Since g is not an element of stab(v),
| stab(v)| ≤ n!/i. Hence G can be fixed with j additional vertices by Lemma 7.

We conjecture that this lemma can be improved by fixing more than one vertex.
However, one cannot use induction since the group stab(v) in the proof of Lemma 18 may
not be symmetric.

We also have an upper bound on max(fix(Sn)) given by the following lemma, which
appears in [4].

Lemma 19. l(Sn) = ⌈3n/2⌉ − b(n) − 1, where b(n) is the number of ones in the binary

representation of n.

The following table gives lower and upper bounds on the set fix(Sn), given by Propo-
sitions 6, 16, 17, 18, and 19. Note that Lemma 18 is the better upper bound for n ≤ 8,
and Lemmas 6 and 19 are better for n ≥ 10.
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group lower bound upper bound
S2 {1} {1}
S3 {1,2} {1,2}
S4 {1,2,3} {1,2,3}
S5 {1,2,3,4} {1,2,3,4}
S6 {1,2,3,5} {1,2,3,4,5,6}
S7 {1,2,3,6} {1,2,3,4,5,6,7}
S8 {1,2,3,4,7} {1,2,3,4,5,6,7,8,9}
S9 {1,2,3,4,8} {1,2,3,4,5,6,7,8,9,10,11}
S10 {1,2,3,5,9} {1,2,3,4,5,6,7,8,9,10,11,12}

Motivated by the first four rows of the table, we make the following conjecture.

Conjecture 20. fix(Sn) = {1, . . . , n − 1}.

Of particular interest is the potential gap which occurs first in fix(S6). More generally,
all known examples of fixing sets of non-trivial finite groups are of the form {1, . . . , k}
for some k. If the fixing set of every non-trivial finite group is of this form, then the
computation of a fixing set becomes much easier: we need only to find the largest value
in the set, which we may then call the fixing number of the group.

Open Question. For every non-trivial finite group Γ, does there exist a positive integer

k such that fix(Γ) = {1, . . . , k}?
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