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Abstract

We study a random even subgraph of a finite graph G with a general edge-weight
p ∈ (0, 1). We demonstrate how it may be obtained from a certain random-cluster
measure on G, and we propose a sampling algorithm based on coupling from the
past. A random even subgraph of a planar lattice undergoes a phase transition at
the parameter-value 1

2pc, where pc is the critical point of the q = 2 random-cluster
model on the dual lattice. The properties of such a graph are discussed, and are
related to Schramm–Löwner evolutions (SLE).

1 Introduction

Our purpose in this paper is to study a random even subgraph of a finite graphG = (V,E),
and to show how to sample such a subgraph. A subset F of E is called even if, for all
x ∈ V , x is incident to an even number of elements of F . We call the subgraph (V, F )
even if F is even, and we write E for the set of all even subsets F of E. It is standard that
every even set F may be decomposed as an edge-disjoint union of cycles. Let p ∈ [0, 1).
The random even subgraph of G with parameter p is that with law

ρp(F ) =
1

ZE
p|F |(1 − p)|E\F |, F ∈ E , (1.1)

where ZE = ZE
G(p) is the appropriate normalizing constant.
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We may express ρp as follows in terms of product measure on E. Let φp be product
measure with density p on the configuration space Ω = {0, 1}E. For ω ∈ Ω and e ∈ E,
we call e ω-open if ω(e) = 1, and ω-closed otherwise. Let ∂ω denote the set of vertices
x ∈ V that are incident to an odd number of ω-open edges. Then

ρp(F ) =
φp(ωF )

φp(∂ω = ∅)
, F ∈ E , (1.2)

where ωF is the edge-configuration whose open edge-set is F . In other words, φp describes
the random subgraph of G obtained by randomly and independently deleting each edge
with probability 1 − p, and ρp is the law of this random subgraph conditioned on being
even.

Random even graphs are closely related to the Ising model and the random-cluster
model on G, and we review these models briefly. Let β ∈ (0,∞) and

p = 1 − e−2β =
2 tanhβ

1 + tanh β
. (1.3)

The Ising model on G has configuration space Σ = {−1,+1}V , and probability measure

πβ(σ) =
1

ZI
exp

{
β

∑

e∈E

σxσy

}
, σ ∈ Σ, (1.4)

where ZI = ZI
G(β) is the partition function that makes πβ a probability measure, and

e = 〈x, y〉 denotes an edge with endpoints x, y. A spin-cluster of a configuration σ ∈ Σ
is a maximal connected subgraph of G each of whose vertices v has the same spin-value
σv. A spin-cluster is termed a k cluster if σv = k for all v belonging to the cluster. An
important quantity associated with the Ising model is the ‘two-point correlation function’

τβ(x, y) = πβ(σx = σy) − 1
2

= 1
2
πβ(σxσy), x, y ∈ V, (1.5)

where P (f) denotes the expectation of a random variable f under the probability measure
P .

The random-cluster measure on G with parameters p ∈ (0, 1) and q = 2 is given as
follows [it may be defined for general q > 0 but we are concerned here only with the case
q = 2]. Let

φp,2(ω) =
1

ZRC

{∏

e∈E

pω(e)(1 − p)1−ω(e)

}
2k(ω)

=
1

ZRC
p|η(ω)|(1 − p)|E\η(ω)|2k(ω), ω ∈ Ω, (1.6)

where k(ω) denotes the number of ω-open components on the vertex-set V , η(ω) = {e ∈
E : ω(e) = 1} is the set of open edges, and ZRC = ZRC

G (p) is the appropriate normalizing
factor.
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The relationship between the Ising and random-cluster models on G is well established,
and hinges on the fact that, in the notation introduced above,

τβ(x, y) = 1
2
φp,2(x↔ y),

where {x ↔ y} is the event that x and y are connected by an open path. See [12] for
an account of the random-cluster model. There is a relationship between the Ising model
and the random even graph also, known misleadingly as the ‘high-temperature expansion’.
This may be stated as follows. For completeness, we include a proof of this standard fact
at the end of the section, see also [3].

Theorem 1.7. Let 2p = 1 − e−2β where p ∈ (0, 1
2
), and consider the Ising model with

inverse temperature β. Then

πβ,2(σxσy) =
φp(∂ω = {x, y})
φp(∂ω = ∅)

, x, y ∈ V, x 6= y.

A corresponding conclusion is valid for the product of σxi
over any even family of

distinct xi ∈ V .
This note is laid out in the following way. In Section 2 we define a random even

subgraph of a finite or infinite graph, and we explain how to sample a uniform even
subgraph. In Section 3 we explain how to sample a non-uniform random even graph,
starting with a sample from a random-cluster measure. An algorithm for exact sampling
is presented in Section 4 based on the method of coupling from the past. The structure
of random even subgraphs of the square and hexagonal lattices is summarized in Section
5.

In a second paper [14], we study the asymptotic properties of a random even subgraph
of the complete graph Kn. Whereas the special relationship with the random-cluster and
Ising models is the main feature of the current work, the analysis of [14] is more analytic,
and extends to random graphs whose vertex degrees are constrained to lie in any given
subsequence of the non-negative integers.

Remark 1.8. The definition (1.1) may be generalized by replacing the single parameter
p by a family p = (pe : e ∈ E), just as sometimes is done for the random-cluster measure
(1.6), see for example [26]; we let

ρp(F ) =
1

Z

∏

e∈F

pe

∏

e/∈F

(1 − pe). (1.9)

For simplicity we will mostly consider the case of a single p.

Proof of Theorem 1.7. For σ ∈ Σ, ω ∈ Ω, let

Zp(σ, ω) =
∏

e=〈v,w〉

{
(1 − p)δω(e),0 + pσvσwδω(e),1

}

= p|η(ω)|(1 − p)|E\η(ω)|
∏

v∈V

σdeg(v,ω)
v , (1.10)
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where deg(v, ω) is the degree of v in the ‘open’ graph (V, η(ω)). Then

∑

ω∈Ω

Zp(σ, ω) =
∏

e=〈v,w〉

(1 − p+ pσvσw) =
∏

e=〈v,w〉

eβ(σvσw−1)

= e−β|E| exp


β

∑

e=〈v,w〉

σvσw


 , σ ∈ Σ. (1.11)

Similarly,

∑

σ∈Σ

Zp(σ, ω) = 2|V |p|η(ω)|(1 − p)|E\η(ω)|1{∂ω=∅}, ω ∈ Ω, (1.12)

and

∑

σ∈Σ

σxσyZp(σ, ω) = 2|V |p|η(ω)|(1 − p)|E\η(ω)|1{∂ω={x,y}}, ω ∈ Ω. (1.13)

By (1.11),

πβ,2(σxσy) =

∑
σ,ω σxσyZp(σ, ω)
∑

σ,ω Zp(σ, ω)
,

and the claim follows by (1.12)–(1.13).

2 Uniform random even subgraphs

2.1 Finite graphs

In the case p = 1
2

in (1.1), every even subgraph has the same probability, so ρ 1

2

describes
a uniform random even subgraph of G. Such a random subgraph can be obtained as
follows.

We identify the family of all spanning subgraphs of G = (V,E) with the family 2E

of all subsets of E. This family can further be identified with {0, 1}E = Z
E
2 , and is

thus a vector space over Z2; the addition is componentwise addition modulo 2 in {0, 1}E,
which translates into taking the symmetric difference of edge-sets: F1 +F2 = F1 △ F2 for
F1, F2 ⊆ E.

The family of even subgraphs of G forms a subspace E of this vector space {0, 1}E,
since F1 + F2 = F1 △ F2 is even if F1 and F2 are even. (In fact, E is the cycle space
Z1 in the Z2-homology of G as a simplicial complex.) In particular, the number of even
subgraphs of G equals 2c(G) where c(G) = dim(E); c(G) is thus the number of independent
cycles in G, and, as is well known,

c(G) = |E| − |V | + k(G). (2.1)
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Proposition 2.2. Let C1, . . . , Cc be a maximal set of independent cycles in G. Let
ξ1, . . . , ξc be independent Be(1

2
) random variables (i.e., the results of fair coin tosses).

Then
∑

i ξiCi is a uniform random even subgraph of G.

Proof. C1, . . . , Cc is a basis of the vector space E over Z2.

One standard way of choosing C1, . . . , Cc is exploited in the next proposition. Another,
for planar graphs, is given by the boundaries of the finite faces; this will be used in Section
5. In the following proposition, we use the term spanning subforest ofG to mean a maximal
forest of G, that is, the union of a spanning tree from each component of G.

Proposition 2.3. Let (V, F ) be a spanning subforest of G. Each subset X of E \F can be
completed by a unique Y ⊆ F to an even edge-set EX = X ∪ Y ∈ E . Choosing a uniform
random subset X ⊆ E \ F thus gives a uniform random even subgraph EX of G.

Proof. It is easy to see, and well known, that each edge ei ∈ E \ F can be completed by
edges in F to a unique cycle Ci; these cycles form a basis of E and the result follows by
Proposition 2.2. (It is also easy to give a direct proof.)

2.2 Infinite graphs

Here, and only here, we consider even subgraphs of infinite graphs. Let G = (V,E) be
a locally finite, infinite graph. We call a set F ⊂ 2E finitary if each edge in E belongs
to only a finite number of elements in F . If G is countable (for example, if G is locally
finite and connected), then any finitary F is necessarily countable. If F ⊂ 2E is finitary,
then the (generally infinite) sum

∑
x∈F x is a well-defined element of 2E , by considering

one coordinate (edge) at a time; if, for simplicity, F = {xi : i ∈ I}, then
∑

i∈I xi includes
a given edge e if and only if e lies in an odd number of the xi.

We can define the even subspace E of 2E as before. (Note that we need G to be locally
finite in order to do so.) If F is a finitary subset of E , then

∑
x∈F x ∈ E .

A finitary basis of E is a finitary subset F ⊂ E such that every element of E is the sum
of a unique subset F ′ ⊆ F ; in other words, if the linear (over Z2) map 2F → E defined by
summation is an isomorphism. (A finitary basis is not a vector-space basis in the usual
algebraic sense since the summations are generally infinite.)

We define an infinite cycle in G to be a subgraph isomorphic to Z, i.e., a doubly infinite
path. (It is natural to regard such a path as a cycle passing through infinity.) Note that,
if F is an even subgraph of G, then every edge e ∈ F belongs to some finite or infinite
cycle in F : if no finite cycle contains e, removal of e would disconnect the component of
F that contains e into two parts; since F is even both parts have to be infinite, so there
exist infinite rays from the endpoints of e, which together with e form an infinite cycle.

Proposition 2.4. The space E has a finitary basis. We may choose such a finitary basis
containing only finite or infinite cycles.
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Proof. It suffices to consider the case when G is connected, and hence countable. We
construct a finitary basis by induction. Order the edges in a fixed but arbitrary way as
e1 < e2 < · · · . Let h1 be the first edge that belongs to an even subgraph of G, and
choose a (finite or infinite) cycle C1 containing h1. Having chosen h1, C1, . . . , hn, Cn,
consider the subspace En of all even subgraphs of G containing none of h1, . . . , hn. If
En = {∅}, we stop, and write F = {C1, C2, . . . , Cn}. Otherwise, let hn+1 be the earliest
edge belonging to some non-trivial even subgraph Fn ∈ En, and choose a cycle Cn+1 ⊂ Fn

containing hn+1. Either this process stops after finitely many steps, with the cycle set
F , or it continues forever, and we write F for the countable set of cycles thus obtained.
Finally, write H = {h1, h2, . . .}. We shall assume that H 6= ∅, since the proposition is
trivial otherwise.

We claim that F is a finitary basis for E . Note that

hn ∈ Cn, hj /∈ Cn for j < n. (2.5)

Let e ∈ E, say e = er. If er = hs for some s, then er lies in only finitely many of the
Cj. If er ∈ E \H and hs < er < hs+1 for some s (or hs < er for all s), then er lies in no
member of Es, so that it lies in only finitely many of the Cj. If er < h1, then er lies in no
Cj. In conclusion, F is finitary.

Next we show that no element F ∈ E has more than one representation in terms
of F . Suppose, on the contrary, that

∑
i ξiCi =

∑
i ψiCi. Then the sum of these two

summations is the empty set. By (2.5), there is no non-trivial linear combination of the
Ci that equals the empty set, and therefore ξi = ψi for every i.

Finally, we show that F spans E , which is to say that the map 2F → E defined by
summation has range E . Let F be the subspace of E spanned by F . For H ′ ⊆ H , there
is a unique element F ′ ∈ F such that F ′ ∩ H = H ′; F ′ is obtained by an inductive
construction that considers the Cj in order of increasing j, and includes a given Cj if:
either hj ∈ H ′ and hj lies in an even number of the Ci already included, or hj /∈ H ′ and
hj lies in an odd number of the Ci already included.

Let F ∈ E . By the above, there is a unique element F ′ ∈ F satisfying F ′∩H = F ∩H .
Thus, F +F ′ is an even subgraph having empty intersection with H . Let er be the earliest
edge in F + F ′, if such an edge exists. Since er ∈ F + F ′, there exists s with hs < er.
With s chosen to be maximal with this property, we have that er lies in no even subgraph
of Es, in contradiction of the properties of F + F ′. Therefore, no such er exists, so that
F + F ′ = ∅, and F = F ′ ∈ F as required.

Given any finitary basis F = {C1, C2, . . . } of E , we may sample a uniform random
even subgraph of G by extending the recipe of Proposition 2.2 to infinite sums: we let
ξ1, ξ2, . . . be independent Be(1

2
) random variables and take

∑
i ξiCi. In other words, we

take the sum of a random subset of the finitary basis F obtained by selecting elements
independently with probability 1

2
each. Denote by ρ the ensuing probability measure on

E .
It turns out that ρ is specified in a natural way by its projections. Let E1 be a finite

subset of E. The natural projection πE1
: {0, 1}E → {0, 1}E1 given by πE1

(ω) = (ωe)e∈E1

maps E onto a subspace EE1
= πE1

(E) of {0, 1}E1.
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Theorem 2.6. Let G be a locally finite, infinite graph. The measure ρ given above is the
unique probability measure on Ω = {0, 1}E such that, for every finite set E1 ⊂ E with
EE1

6= ∅, (ωe)e∈E1
is uniformly distributed on EE1

, i.e.,

ρ(π−1
E1

(A)) = |A ∩ EE1
|/|EE1

|, A ⊆ {0, 1}E1. (2.7)

Proof. We may assume that G is connected since, if not, any ρ satisfying (2.7) is a
product measure over the different components of G. Note that every connected, locally
finite graph is countable.

We show next that there is a unique probability measure satisfying (2.7). This equation
specifies its value on any cylinder event. By the Kolmogorov extension theorem, it suffices
to show that this specification is consistent as E1 varies, which amounts to showing that
if E1 ⊆ E2 ⊂ E with E1, E2 finite, then the projection πE2E1

: {0, 1}E2 → {0, 1}E1 maps
the uniform distribution on EE2

to the uniform distribution on EE1
. This is an immediate

consequence of the fact that πE2E1
is a linear map of EE2

onto EE1
.

Finally we show that ρ satisfies (2.7). Let E1 ⊂ E be finite. Since F is finitary, its
subset F1, containing cycles that intersect E1, is finite. Since ρ is obtained from uniform
product measure on F , its projection onto E1 is uniform (on its range) also.

Diestel [7, Chap. 8] discusses related results for the space of subgraphs spanned by the
finite cycles, and relates them to closed curves in the Freudenthal compactification of G
obtained by adding ends to the graph. It is tempting to guess that there may be similar
results for even subgraphs and the one-point compactification of G (where all ends are
identified to a single point at infinity). We do not explore this here, except to note that
the finite and infinite cycles are exactly those subsets of the one-point compactification
that are homeomorphic to a circle.

3 Random even subgraphs via coupling

We return to the random even subgraph with parameter p ∈ [0, 1) defined by (1.1) for a
finite graph G = (V,E). We show next how to couple the q = 2 random-cluster model
and the random even subgraph of G. Let p ∈ [0, 1

2
], and let ω be a realization of the

random-cluster model on G with parameters 2p and q = 2. Let R = (V, γ) be a uniform
random even subgraph of (V, η(ω)).

Theorem 3.1. Let p ∈ [0, 1
2
]. The graph R = (V, γ) is a random even subgraph of G with

parameter p.

This recipe for random even subgraphs provides a neat method for their simulation,
provided p ≤ 1

2
. One may sample from the random-cluster measure by the method of

coupling from the past (see [21] and Section 4), and then sample a uniform random even
subgraph by either Proposition 2.2 or Proposition 2.3.
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Proof. Let g ⊆ E be even. By the observations in Section 2.1, with c(ω) = c(V, η(ω))
denoting the number of independent cycles in the open subgraph,

P(γ = g | ω) =

{
2−c(ω) if g ⊆ η(ω),

0 otherwise,

so that
P(γ = g) =

∑

ω:g⊆η(ω)

2−c(ω)φ2p,2(ω).

Now c(ω) = |η(ω)| − |V | + k(ω), so that, by (1.6),

P(γ = g) ∝
∑

ω:g⊆η(ω)

(2p)|η(ω)|(1 − 2p)|E\η(ω)|2k(ω) 1

2|η(ω)|−|V |+k(ω)

∝
∑

ω:g⊆η(ω)

p|η(ω)|(1 − 2p)|E\η(ω)|

= [p+ (1 − 2p)]|E\g|p|g|

= p|g|(1 − p)|E\g|, g ⊆ E.

The claim follows.

Let p ∈ (1
2
, 1). If G is even, we can sample from ρp by first sampling a subgraph (V, F̃ )

from ρ1−p and then taking the complement (V,E \ F̃ ), which has the distribution ρp. If
G is not even, we adapt this recipe as follows. For W ⊆ V and H ⊆ E, we say that H
is W -even if each component of (V,H) contains an even number of members of W . Let
W 6= ∅ be the set of vertices of G with odd degree, so that, in particular, E is W -even.
Let ΩW = {ω ∈ Ω : η(ω) is W -even}. For ω ∈ ΩW , we pick disjoint subsets P i = P i

ω,
i = 1, 2, . . . , 1

2
|W |, of η(ω), each of which constitutes an open non-self-intersecting path

with distinct endpoints lying in W , and such that every member of W is the endpoint of
exactly one such path. Write Pω =

⋃
i P

i
ω.

Let r = 2(1 − p), and let φW
r,2 be the random-cluster measure on Ω with parameters

r and q = 2 conditional on the event ΩW . We sample from φW
r,2 to obtain a subgraph

(V, η(ω)), from which we select a uniform random even subgraph (V, γ) by the procedure
of the previous section.

Theorem 3.2. Let p ∈ (1
2
, 1). The graph S = (V,E\(γ △ Pω)) is a random even subgraph

of G with parameter p.

The recipes in Theorems 3.1 and 3.2 can be combined as follows. Consider the gen-
eralized model mentioned in Remark 1.8 with one parameter pe ∈ (0, 1) for each edge
e ∈ E. Let A = {e ∈ E : pe >

1
2
}. Define re = 2pe when e /∈ A and re = 2(1 − pe)

when e ∈ A. (Thus 0 < re ≤ 1.) Let W = WA be the set of vertices that are A-odd, i.e.,
endpoints of an odd number of edges in A. Sample ω from the random-cluster measure
with parameters r = (re : e ∈ E) and q = 2, conditioned on η(ω) being W -even, let Pω be
as above (for W = WA), and sample a uniform random even subgraph (V, γ) of (V, η(ω)).
For a discussion of relevant sampling techniques, see Section 4.
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Theorem 3.3. The graph S = (V, γ △ Pω △ A) is a random even subgraph of G with
the distribution ρp given in (1.9).

Note that Theorems 3.1 and 3.2 are special cases of Theorem 3.3, with A = ∅ and
A = E respectively. We find it more illuminating to present the proof of Theorem 3.2 in
this more general setup.

Proof of Theorem 3.3, and thus of Theorem 3.2. Let F = γ △ Pω △ A be the resulting
edge-set, and note that

η(ω) ⊇ γ △ Pω = F △ A. (3.4)

Furthermore, if F is even, then F △ A has odd degree exactly at vertices in W = WA;
hence (3.4) implies that necessarily ω ∈ ΩW .

Given an even edge-set f ⊆ E, we thus obtain F = f if we first choose ω ∈ ΩW with
η(ω) ⊇ f △ A and then (having chosen Pω) select γ as the even subgraph f △ A △ Pω.
Hence, for every ω ∈ ΩW with η(ω) ⊇ f △ A, we have P(F = f | ω) = 2−c(ω), and
summing over such ω we find

P(F = f) ∝
∑

ω:η(ω)⊇f∆A

2−c(ω)φr,2(ω)

∝
∑

ω:η(ω)⊇f △A

2−c(ω)2k(ω)
∏

e∈E

rω(e)
e (1 − re)

1−ω(e)

∝
∑

ω:η(ω)⊇f △A

2−|η(ω)|
∏

e∈E

rω(e)
e (1 − re)

1−ω(e)

=
∑

ω:η(ω)⊇f △A

∏

e∈E

(re

2

)ω(e)

(1 − re)
1−ω(e)

=
∏

e∈f △A

(re

2

) ∏

e/∈f △A

(
1 − re

2

)
.

With 1e denoting the indicator function of the event {e ∈ f}, this can be rewritten as

P(F = f) ∝
∏

e/∈A

(re/2)1e(1 − re/2)1−1e

∏

e∈A

(re/2)1−1e(1 − re/2)1e

=
∏

e/∈A

p1e

e (1 − pe)
1−1e

∏

e∈A

(1 − pe)
1−1ep1e

e

=
∏

e∈E

p1e

e (1 − pe)
1−1e

∝ ρp(f).

The claim follows.

There is a converse to Theorem 3.1. Take a random even subgraph (V, F ) ofG = (V,E)
with parameter p ≤ 1

2
. To each e /∈ F , we assign an independent random colour, blue

with probability p/(1− p) and red otherwise. Let H be obtained from F by adding in all
blue edges.
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Theorem 3.5. The graph (V,H) has law φ2p,2.

Proof. For h ⊆ E,

P(H = h) ∝
∑

J⊆h, J even

(
p

1 − p

)|J | (
p

1 − p

)|h\J | (
1 − 2p

1 − p

)|E\h|

∝ p|h|(1 − 2p)|E\h|N(h),

where N(h) is the number of even subgraphs of (V, h). As in the above proof, N(h) =
2|h|−|V |+k(h) where k(h) is the number of components of (V, h), and the proof is complete.

An edge e of a graph is called cyclic if it belongs to some cycle of the graph.

Corollary 3.6. For p ∈ [0, 1
2
] and e ∈ E,

ρp(e is open) = 1
2
φ2p,2(e is a cyclic edge of the open graph).

By summing over e ∈ E, we deduce that the mean number of open edges under ρp is
one half of the mean number of cyclic edges under φ2p,2.

Proof. Let ω ∈ Ω and let C be a maximal family of independent cycles of ω. Let R = (V, γ)
be a uniform random even subgraph of (V, η(ω)), constructed using Proposition 2.2 and
C. For e ∈ E, let Me be the number of elements of C that include e. If Me ≥ 1, the
number of these Me cycles of γ that are selected in the construction of γ is equally likely
to be even as odd. Therefore,

P(e ∈ γ | ω) =

{
1
2

if Me ≥ 1,

0 if Me = 0.

The claim follows by Theorem 3.1.

4 Sampling an even subgraph

It was remarked earlier that Theorem 3.1 gives a neat way of sampling an even subgraph
of G according to the probability measure ηp with p ≤ 1

2
. Simply use coupling-from-the-

past (cftp) to sample from the random-cluster measure φ2p,2, and then flip a fair coin once
for each member of some maximal independent set of cycles of G.

The theory of cftp was enunciated in [21] and has received much attention since. We
recall that an implementation of cftp runs for a random length of time T whose tail
is bounded above by a geometric distribution; it terminates with probability 1 with an
exact sample from the target distribution. The random-cluster measure is one of the
main examples treated in [21]. We do not address questions of complexity and runtime in
the current paper, but we remind the reader of the discussion in [21] of the relationship
between the mean runtime of cftp to that of the underlying Gibbs sampler.
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The situation is slightly more complicated when p > 1
2

and G is not itself even, since
the conditioned random-cluster measure used in Theorems 3.2 and 3.3 is neither monotone
nor anti-monotone. We indicate briefly in this section how to adapt the technique of cftp
to such a situation.

Let E be a non-empty finite set, and let µ be a probability measure on the product
space Ω = {0, 1}E. We call µ monotone (respectively, anti-monotone) if µ(1e | ξe) is
non-decreasing (respectively, non-increasing) in ξ ∈ Ω. Here, 1e is the indicator function
that e is open, and ξe is the configuration obtained from ξ on E \ {e}. For e ∈ E, ψ ∈ Ω,
and b = 0, 1, we write ψb

e for the configuration that agrees with ψ off e and takes the value
b on e.

It is standard that cftp may be used to sample from µ if µ is monotone (see [21, 28]),
and it is explained in [15] how to adapt this when µ is anti-monotone. We propose
below a mechanism that results in an exact sample from µ without any assumption of
(anti-)monotonicity. This mechanism may be cast in the more general framework of the
‘bounding chain’ of [18], but, unlike in that work, it makes use of the fact that Ω is
partially ordered. A similar approach was proposed in [19] under the title ‘dominated
CFTP’, in the context of the simulation of point processes.

Write Sµ = {ω ∈ Ω : µ(ω) > 0}, the subset of Ω on which µ is strictly positive, and
assume for simplicity that Sµ is increasing, and that 1 ∈ Sµ, where 1 (respectively, 0)
denotes the configuration of ‘all 1’ (respectively, ‘all 0’). This assumption is valid in the
current setting, but is not necessary for all that follows.

We start with the usual Gibbs sampler for µ. This is a discrete-time Markov chain
G = (Gn : n ≥ 0) on the state space Ω that updates as follows. Suppose Gn = ξ. A
uniformly distributed member of E is chosen, e say, and also a random variable U with
the uniform distribution on [0, 1]. Then Gn+1 = ξ′ where ξ′(f) = ξ(f) for f 6= e, and

ξ′(e) =

{
0 if U > µ(1e | ξe),
1 if U ≤ µ(1e | ξe).

The transition rule is well defined whenever ξ1
e ∈ Sµ. It is convenient to use the device of

[15] to extend this definition to configurations not in Sµ, and to this end we set

µ(1e | ξe) = max
{
µ(1e | ψe) : ψe ≥ ξe, ψ

1
e ∈ Sµ

}
(4.1)

when ξ1
e /∈ Sµ. There is a degree of arbitrariness about this definition, which we follow

for consistency with [15].
Let (en, Un) be an independent sequence as above. Let (An, Bn : n ≥ 0) be a Markov

chain with state space Ω2, and (A0, B0) = (0, 1). Suppose (An, Bn) = (ξ, η) where ξ ≤ η.
We set (An+1, Bn+1) = (ξ′, η′) where ξ′(f) = ξ(f), η′(f) = η(f) for f 6= en+1. At e = en+1

we set

ξ′(e) = 1 if and only if Un+1 ≤ α,

η′(e) = 1 if and only if Un+1 ≤ β,
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where
α = α(ξ, η) = min

{
µ(1e | ψe) : ξe ≤ ψe ≤ ηe

}
,

β = β(ξ, η) = max
{
µ(1e | ψe) : ξe ≤ ψe ≤ ηe

}
.

(4.2)

Since α ≤ β, we have that ξ′ ≤ η′.
We run the chain (A,B) starting at negative times, in the manner prescribed by cftp,

and let T be the coalescence time. More precisely, for m ≥ 0, let (Ak(m), Bk(m) : −m ≤
k ≤ 0) denote the chain beginning with A−m(m) = 0, B−m(m) = 1, using a fixed random
sequence (en, Un)0

−∞ for all m, and set

T = min{m ≥ 0 : A0(m) = B0(m)},

so that A0(T ) = B0(T ).

Theorem 4.3. If Sµ is increasing and 1 ∈ Sµ, then P (T < ∞) = 1, and A0(T ) has law
µ.

Proof. We prove only that P (T < ∞) = 1. The second part is a standard exercise in
cftp, and is easily derived as in [15, Thm 2.2]. By the definition of Sµ and (4.1), there
exists η = η(E, µ) > 0 such that µ(1e | ξe) ≥ η for all e ∈ E and ξ ∈ Ω. In any given
time-interval of length |E|, there is a strictly positive probability that the corresponding
sequence (ei, Ui) satisfies E = {ei} and Ui < η for all i. On this event, the lower process
A takes the value 1 after the interval is past, so that coalescence has taken place. The
corresponding events for distinct time-intervals are independent, whence the tail of T is
no greater than geometric.

The above recipe is exactly that of [21] when µ is monotone, and that of [15] when µ
is anti-monotone.

Let G = (V,E) be a finite graph, and W ⊆ V a non-empty set of vertices with |W |
even. Let r = (re : e ∈ E) be a vector of numbers from (0, 1], and let φr,q be the
random-cluster measure on G with edge-parameters r and q ≥ 1. We write φW

r,q for φr,q

conditioned on the event that the open graph is W -even, and note that φW
r,q is neither

monotone nor anti-monotone. The event Sµ is easily seen to be increasing, and 1 ∈ Sµ.
We may therefore apply Theorem 4.3 to the measure µ = φW

r,q.
Certain natural questions arise over the implementation of the above algorithm, and

we shall not investigate these here. First, it is convenient to have a quick way to calculate
α and β in (4.2). A second problem is to determine the mean runtime of the algorithm,
for which we remind the reader of the arguments of [21, Sect. 5].

5 Random even subgraphs of planar lattices

In this section, we consider random even subgraphs of the square and hexagonal lattices.
We show that properties of the Ising models on these lattices imply properties of the
random even graphs. In so doing, we shall review certain known properties of the Ising
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model, and we include a ‘modern’ proof of the established fact that the Ising model on
the square lattice has a unique Gibbs state at the critical point.

Let G = (V,E) be a planar graph embedded in R
2, with dual graph Gd = (Vd, Ed),

and write ed for the dual edge corresponding to the primal edge e ∈ E. [See [12] for an
account of planar duality in the context of the random-cluster model.] Let p ∈ (0, 1

2
] and

let ω ∈ Ω = {0, 1}E have law φ2p,2. There is a one–one correspondence between Ω and
Ωd = {0, 1}Ed given by ω(e) + ωd(ed) = 1. It is well known that ωd has the law of the
random-cluster model on Gd with parameters (1−2p)/(1−p) and 2, see [12] for example.
For A ⊆ V , the boundary of A is given by ∂A = {v ∈ A : v ∼ w for some w /∈ A}. [A
similar notation was used in a different context in (1.2). Both usages are standard, and
no confusion will arise in this section.]

For ω ∈ Ω, let f0, f1, . . . , fc be the faces of (V, η(ω)), with f0 the infinite face. These
faces are in one–one correspondence with the clusters of (Vd, η(ωd)), which we thus denote
by K0, K1, . . . , Kc, and the boundaries of the finite faces form a basis of E = E(V, η(ω)).
More precisely, the boundary of each finite face fi consists of an ‘outer boundary’ and zero,
one or several ‘inner boundaries’; each of these parts is a cycle (and two parts may have
up to one vertex in common). If we orient the outer boundary cycle counter-clockwise
(positive) and the inner boundary cycles clockwise (negative), the face will always be on
the left side along the boundaries, and the winding numbers of the boundary cycles sum
up to 1 at every point inside the face and to 0 outside the face. It is easy to see that the
outer boundary cycles form a maximal family of independent cycles of (V, η(ω)), and thus
a basis of E ; another basis is obtained by the complete boundaries Ci of the finite faces.
We use the latter basis, and select a random subset of the basis by randomly assigning (by
fair coin tosses) + and − to each cluster in the dual graph (Vd, η(ωd)), or equivalently to
each face fi of (V, η(ω)). We then select the boundaries Ci of the finite faces fi that have
been given a sign different from the sign of the infinite face f0. The union (modulo 2) of
the selected boundaries is by Proposition 2.2 and Theorem 3.1 a random even subgraph
of G with parameter p. On the other hand, this union is exactly the dual boundary of the
+ clusters of Gd, that is, the set of open edges e ∈ E with the property that one endpoint
of the corresponding dual edge ed is labelled + and the other is labelled −. [Such an edge
ed is called a +/− edge.]

It is standard that the +/− configuration on Gd is distributed as the Ising model on
Gd with parameter β satisfying

1 − 2p

1 − p
= 1 − e−2β =

2 tanh β

1 + tanhβ
. (5.1)

In summary, we have the following.

Theorem 5.2. Let G be a finite planar graph with dual Gd. A random even subgraph of
G with parameter p ∈ (0, 1

2
] is dual to the +/− edges of the Ising model on Gd with β

satisfying (5.1).

Much is known about the Ising model on finite subsets of two-dimensional lattices, and
the above fact permits an analysis of random even subgraphs of their dual lattices. The
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situation is much more interesting in the infinite-volume limit, as follows. Let G = (V,E)
be a finite subgraph of Z

2, with boundary ∂V when viewed thus. A boundary condition
on ∂V is a vector in Σ∂V = {−1,+1}∂V . For given η ∈ Σ∂V , one may consider the Ising
measure, denoted πη

V , on G conditioned to agree with η on ∂V . We call any subsequential
weak limit of the family {πη

V : η ∈ Σ∂V , V ⊆ Z
2} a (weak limit) Gibbs state for the Ising

model. It turns out that there exists a critical value of β, denoted βc, such that there is
a unique Gibbs state when β < βc, and more than one Gibbs state when β > βc.

Consider the case when G is a box in the square lattice Z
2. That is, G = Gm,n is the

subgraph of Z
2 induced by the vertex-set [−m,m]× [−n, n], where m,n ∈ Z+ and [a, b] is

to be interpreted as [a, b] ∩ Z. It is a mild inconvenience that Gm,n is not an even graph,
and we adjust the ‘boundary’ to rectify this. For definiteness, we consider the so-called
‘wired boundary condition’ on Gm,n, which is to say that we consider the random-cluster
measure on the graph Gw

m,n obtained from Gm,n by identifying as one the set of vertices
lying in its boundary ∂Gm,n.

It has been known since the work of Onsager that the Ising model on Z
2 with parameter

β is critical when e2β = 1+
√

2, or equivalently when the above random-cluster model on
the dual lattice has parameter satisfying

1 − 2p

1 − p
=

√
2

1 +
√

2
= 2 −

√
2,

that is, p = pc where

pc =
1

2 +
√

2
= 1 − 1√

2
. (5.3)

The Ising model has been studied extensively in the physics literature, and physicists
have a detailed knowledge of the two-dimensional case particularly. There is a host of
‘exact calculations’, rigorous proofs of which can present challenges to mathematicians,
see [3, 20].

We shall use the established facts stated in the following theorem. The continuity of
the magnetization at the critical point contributes to the proof that the re-scaled boundary
of a large spin-cluster of the critical Ising model converges weakly to the Schramm–Löwner
curve SLE3, see [24, 25].

Theorem 5.4. The critical value of the Ising model on the square lattice is βc = βsd

where βsd = 1
2
log(1 +

√
2) is the ‘self-dual point’. The magnetization (and therefore the

corresponding random-cluster percolation-probability also) is a continuous function of β
on [0,∞).

We note the corollary that the wired and free random-cluster measures on Z
2 are

identical for p ∈ [0, 1]; see [12, Thms 5.33, 6.17].

Proof. These facts are ‘classical’ and have received much attention, see [20] for example;
they may be proved as follows using ‘modern’ arguments. Recall first that the magnetiza-
tion equals the percolation probability of the corresponding wired random-cluster model,
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and the two-point correlation function of the Ising model equals the two-point connectiv-
ity function of the random-cluster model (see [12]). We have that βsd ≤ βc, by Theorem
6.17(a) of [12] or otherwise, and similarly the random-cluster model with free boundary
condition has percolation-probability 0 whenever either β ≤ βsd or β < βc.

By the results of [2, 22], the two-point correlation function πβ(σxσy) of the spins at
x and y decays exponentially as |x − y| → ∞ when β < βc, and it follows by the final
statement of [13] or otherwise that βc = βsd.

The continuity of the magnetization at β 6= βc is standard, see for example [12,
Thms 5.16, 6.17(b)]. When β = βc, it suffices to show that the ± boundary-condition
Gibbs states π±

βc
and the free boundary-condition Gibbs state π0

βc
satisfy π+

βc
= π−

βc
= π0

βc
.

Suppose this does not hold, so that π+
βc

6= π−
βc

6= π0
βc

. By the random-cluster representation

or otherwise, the two-point correlation functions π±
βc

(σxσy) are bounded away from 0 for
all pairs x, y of vertices. By the main result of [1, 16] (see also [10]) and the symmetry
of π0

βc
, we have that π0

βc
= 1

2
π+

βc
+ 1

2
π−

βc
, whence π0

βc
(σxσy) is bounded away from 0. By

[12, Thm 5.17], this contradicts the above remark that the percolation-probability of the
free-boundary condition random-cluster measure is 0 at β = βsd = βc.

We consider now the so-called thermodynamic limit of the random even graph on Gw
m,n

as m,n → ∞. It is long established that the (free boundary condition) Ising measure
on Gm,n converges weakly (in the product topology) to an infinite-volume limit measure
denoted πβ . This may be seen as follows using the theory of the corresponding random-
cluster model on Z

2 (see [12]). When β ≤ βc, the existence of the limit follows more or
less as discussed above, using the coupling with the random-cluster measure, and the fact
that the percolation probability of the latter measure is 0 whenever β ≤ βc. We write πβ

for the limit Ising measure as m,n→ ∞.
The thermodynamic limit is slightly more subtle when β > βc, since the infinite-

volume Ising model has a multiplicity of Gibbs states in this case. The (wired) random-
cluster measure on Gw

m,n converges to the wired limit measure. By the uniqueness of
infinite-volume random-cluster measures, the limit Ising measure is obtained by allocating
random spins to the clusters of the infinite-volume random-cluster model (see Section 4.6
of [12]). Once again, we write πβ for the ensuing measure on {−1,+1}Z

2

, and we note that
πβ = 1

2
π+

β + 1
2
π−

β where π±
β denotes the infinite-volume Ising measure with ± boundary

conditions.
It has been shown in [6] (see also [9, Cor. 8.4]) that there exists (with strictly positive

πβ-probability) an infinite spin-cluster in the Ising model if and only if β > βc. More
precisely:

(a) if β ≤ βc, there is πβ-probability 1 that all spin-clusters are finite,

(b) if β > βc, there is πβ-probability 1 that there exists a unique infinite spin-cluster,
which is equally likely to be a + cluster as a − cluster. Furthermore, by the main
theorem of [8] or otherwise, for any given finite set S of vertices, the infinite spin-
cluster contains, πβ-a.s., a cycle containing S in its interior.
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On passing to the dual graph, one finds that the random even subgraph of Gw
m,n with

parameter p ∈ (0, 1
2
] converges weakly as m,n → ∞ to a probability measure ρp that is

concentrated on even subgraphs of Z
2 and satisfies:

(a′) if p ≥ pc, there is ρp-probability 1 that all faces of the graph are bounded,

(b′) if p < pc, there is ρp-probability 1 that the graph is the vertex-disjoint union of
finite clusters.

(Note that (5.1) defines β as a decreasing function of p, so the order relations are reversed.)
We have thus obtained a description of the weak-limit measure ρp when p ≤ 1

2
, and

we note the phase transition at the parameter-value p = pc. When p > 1
2
, a random even

subgraph of Gw
m,n is the complement of a random even subgraph with parameter 1−p. [It

is a convenience at this point that Gw
m,n is an even graph.] Hence the weak-limit measure

ρp exists for all p ∈ [0, 1] and gives meaning to the expression “a random even subgraph on
Z

2 with parameter p”. [It is easily verified that ρ 1

2

equals the measure defined in Theorem

2.6 for Z
2, and thus describes a uniform random even subgraph of Z

2.] There is a sense in
which the random even subgraph on Z

2 has two points of phase transition, corresponding
to the values pc and 1 − pc.

We consider finally the question of the size of a typical face of the random even graph
on Z

2 when pc ≤ p ≤ 1
2
. When p > pc, this amounts to asking about the size of a

(sub)critical Ising spin-cluster. Higuchi [17] has proved an exponential upper bound for
the radius of such a cluster, and this has been extended by van den Berg [4] to the
cluster-volume. Thus, the law of the area of a typical face has an exponential tail.

The picture is quite different when the square lattice is replaced by the hexagonal
lattice H. Any even subgraph of H has vertex degrees 0 and/or 2, and thus comprises
a vertex-disjoint union of cycles, doubly infinite paths, and isolated vertices. The (dual)
Ising model inhabits the (Whitney) dual lattice of H, namely the triangular lattice T.
Once again there exists a critical point pc = pc(T) < 1

2
such that the random even

subgraph of H satisfies (a′) and (b′) above. In particular, the random even subgraph has
a.s. only cycles and isolated vertices but no infinite paths. Recall that site percolation on
T has critical value 1

2
. Therefore, for p = 1

2
, the face Fx of the random even subgraph

containing the dual vertex x corresponds to a critical percolation cluster. It follows that
its volume and radius have polynomially decaying tails, and that the boundary of Fx,
when conditioned to be increasingly large, approaches SLE6. See [23, 24] and [5, 27]. The
spin-clusters of the Ising model on T are ‘critical’ (in a certain sense described below)
for all p ∈ (pc(T), 1

2
], and this suggests the possibility that the boundary of Fx, when

conditioned to be increasingly large, approaches SLE6 for any such p. This is supported
by the belief in the physics community that the so-called universality class of the spin-
clusters of the subcritical Ising model on T is the same as that of critical percolation.

The ‘criticality’ of such Ising spin-clusters (mentioned above) may be obtained as
follows. Note first that, since β < βc, there is a unique Gibbs state πβ for the Ising model.
Therefore, πβ is invariant under the interchange of spin-values −1 ↔ +1. Let Rn be a
rhombus of the lattice with side-lengths n and axes parallel to the horizontal and one of
the diagonal lattice directions, and consider the event An that Rn is traversed from left
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to right by a + path (i.e., a path ν satisfying σy = +1 for all y ∈ ν). It is easily seen that
the complement of An is the event that Rn is crossed from top to bottom by a − path
(see [11, Lemma 11.21] for the analogous case of bond percolation on the square lattice).
Therefore,

πβ(An) = 1
2
, 0 ≤ β < βc. (5.5)

For x ∈ Z
2, let Sx denote the spin-cluster containing x, and define

rad(Sx) = max{|z − x| : z ∈ S},

where |y| is the graph-theoretic distance from 0 to y. By (5.5), there exists a vertex x
such that πβ(rad(Sx) ≥ n) ≥ (2n)−1. By the translation-invariance of πβ,

πβ

(
rad(S0) ≥ n

)
≥ 1

2n
, 0 ≤ β < βc, (5.6)

where 0 denotes the origin of the lattice. The left side of (5.6) tends to 0 as n→ ∞, and
the polynomial lower bound is an indication of the criticality of the model.
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Kotecký, and Senya Shlosman kindly proposed the proof of the continuity at βc of the
Ising magnetization. We thank Jakob Björnberg, Bertrand Duplantier, Federico Camia,
Hans-Otto Georgii, Ben Graham, Alan Sokal, David Wilson, and the referee for their
comments on parts of this work. This research was mainly done during a visit by SJ
to the University of Cambridge, partly funded by Trinity College, and was completed
during a visit by GG to the University of British Columbia. The authors acknowledge
the hospitality of the Isaac Newton Institute.

References

[1] M. Aizenman, Translation invariance and instability of phase coexistence in the two
dimensional Ising system, Communications in Mathematical Physics 73 (1980), 83–
94.

[2] M. Aizenman, D. J. Barsky, and R. Fernández, The phase transition in a general
class of Ising-type models is sharp, Journal of Statistical Physics 47 (1987), 343–374.

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, Lon-
don, 1982.

[4] J. van den Berg, Approximate zero–one laws and sharpness of the percolation tran-
sition in a class of models including two-dimensional Ising percolation, Annals of
Probability 36 (2008), 1880–1903.

the electronic journal of combinatorics 16 (2009), #R46 17



[5] F. Camia and C. M. Newman, Two-dimensional critical percolation: the full scaling
limit, Communications in Mathematical Physics 238 (2006), 1–38.

[6] A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo, Percolation and phase transitions
in the Ising model, Communications in Mathematical Physics 51 (1976), 315–323.

[7] R. Diestel, Graph Theory, 3rd ed., Springer, Berlin, 2005.

[8] A. Gandolfi, M. Keane, and L. Russo, On the uniqueness of the occupied cluster in
dependent two-dimensional site percolation, Annals of Probability 16 (1988), 1147–
1157.
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