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Abstract

For any finite, real reflection group W , we construct a geometric basis for the
homology of the corresponding non-crossing partition lattice. We relate this to
the basis for the homology of the corresponding intersection lattice introduced by
Björner and Wachs in [4] using a general construction of a generic affine hyperplane
for the central hyperplane arrangement defined by W .

1 Introduction

Let W be a finite, real reflection group acting effectively on Rn. In [4] Björner and Wachs
construct a geometric basis for the homology of the intersection lattice associated to W .
There is another lattice associated to W called the non-crossing partition lattice. In [2],
Athanasiadis, Brady and Watt prove that the non-crossing partition lattice is shellable
for any finite Coxeter group W . Zoque constructs a basis for the top homology of the
non-crossing partition lattice for the An case in [11] where the basis elements are in bi-
jection with binary trees.

A geometric model X(c) of the non-crossing partition lattice is constructed in [7].
In this paper, we use X(c) to construct a geometric basis for the homology of the non-
crossing partition lattice that corresponds to W . We construct the basis by defining a
homotopy equivalence between the proper part of the non-crossing partition lattice and
the (n − 2)-skeleton of X(c). We exhibit an explicit embedding of the homology of the
non-crossing partition lattice in the homology of the intersection lattice, using the general
construction of a generic affine hyperplane H

v
.
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2 Preliminaries

We refer the reader to [5] and [8] for standard facts and notation about finite reflection
groups. As in [7] we fix a fundamental chamber C for the W -action with inward unit
normals α1, . . . , αn and let r1, . . . , rn be the corresponding reflections. We order the inward
normals so that for some s with 1 ≤ s ≤ n, the sets {α1, . . . , αs} and {αs+1, . . . , αn} are
orthonormal. We fix a Coxeter element c for W where c = r1r2 . . . rn. As in [7] we define
a total order on roots by ρi = r1 . . . ri−1αi where the α’s and r’s are defined cyclically mod
n. The positive roots relative to the fundamental chamber are {ρ1, ρ2, . . . , ρnh/2} where h
is the order of c in W [10]. Let T denote the reflection set of W . This consists of the set
of reflections r(ρi) where ρi is a positive root and r(ρi) is the reflection in the hyperplane
orthogonal to ρi. For w ∈ W , let ℓ(w) denote the smallest k such that w can be written
as a product of k reflections from T . The partial order � on W is defined by declaring
for u, w ∈ W :

u � w ⇔ ℓ(w) = ℓ(u) + ℓ(u−1w). (1)

The subposet of elements of W that weakly precede c in the partial order (1) is denoted
NCPc. The subposet NCPc forms a lattice (by [7] for example), and is called the non-
crossing partition lattice.

We now review the definition of the geometric model X(c) of NCPc constructed in
[7]. The spherical simplicial complex X(c) has as vertex set the set of positive roots
{ρ1, ρ2, . . . , ρnh/2}. An edge joins ρi to ρj if i < j and r(ρj)r(ρi) is a length 2 element
preceding c. The vertices 〈ρi1 , . . . , ρik〉 form a (k − 1)-simplex if they are pairwise joined
by edges. For each w � c, X(w) is defined to be the subcomplex of X(c) consisting of
those simplices whose vertices have the property that the corresponding reflections weakly
precede w.

Finally, we recall some notation and standard facts about posets ([3], [9]). Let P
denote a bounded poset with minimal element 0̂ and maximal element 1̂. The proper
part of the poset P is denoted by P̄ and defined to be P̄ = P \ {0̂, 1̂}. Let |P | denote the
simplicial complex associated to P , that is the simplicial complex whose vertices are the
elements of the poset P and whose simplices are the non-empty finite chains in P . We
say that the poset P is contractible if the simplicial complex |P | is contractible. For ∆
a simplicial complex, let P (∆) denote the poset of simplices in ∆ ordered by inclusion.
The barycentric subdivision of the simplicial complex ∆ is the simplicial complex |P (∆)|
and is denoted sd(∆).

3 Homotopy Equivalence

We begin with the observation that every simplex in X(c) defines a non-crossing partition.
Recall from Lemma 4.8 of [7] that if {τ1, . . . , τk} is the ordered vertex set of a simplex σ
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of X(c) then
ℓ(r(τ1) . . . r(τk)c) = n − k.

In particular, r(τk) . . . r(τ1) is a non-crossing partition of length k.

Definition 3.1. We define f : P (X(c)) → NCPc by

f(σ) = r(τk) . . . r(τ1)

where σ is the simplex of X(c) with ordered vertex set {τ1, . . . , τk}.

Lemma 3.2. The map f is a poset map.

Proof. Let σ = {τ1, . . . , τk} ∈ P (X(c)) and let θ � σ. Therefore, θ = {τi1 , . . . , τil} for
some 1 ≤ i1 < · · · < il ≤ k. Note that for any roots ρ and τ , we have r(ρ)r(τ) = r(τ)r(ρ′),
where ρ′ = r(τ)[ρ]. We can use this equality to conjugate the reflections in f(θ) to the
beginning of the expression for f(σ). Therefore f(θ) = r(τil) . . . r(τi1) � r(τk) . . . r(τ1) =
f(σ).

By definition of f , f−1(c) is the set of maximal elements in P (X(c)) and f−1(e) is
empty. We therefore can consider the induced map,

f̂ : P̂ (X(c)) → NCPc

where P̂ (X(c)) is the poset obtained from P (X(c)) by removing the maximal elements.
Note that P̂ (X(c)) is the poset of simplices of the (n − 2)-skeleton of X(c).

The following result was proved by Athanasiadis and Tzanaki in Theorem 4.2 of [1]
in the more general setting of generalised cluster complexes and generalised non-crossing
partitions. However, we include the proof of the specific case here.

Theorem 3.3. The map f̂ is a homotopy equivalence.

Proof. Since f is a poset map by Lemma 3.2, f̂ : P̂ (X(c)) → NCPc is a poset map. We
intend to apply Quillen’s Fibre Lemma [9] to this map f̂ . Following the notation of [9],
we define the subposet f̂�w of P̂ (X(c)) for w ∈ NCPc by

f̂�w = {σ ∈ P̂ (X(c)) : f̂(σ) � w}.

We claim that f̂�w = P (X(w)). Assuming the claim, the theorem follows from Propo-
sition 1.6 of [9] if |P (X(w))| is contractible. It is shown in Corollary 7.7 of [7] that
X(w) is contractible for all w ∈ NCPc. Since X(w) and sd(X(w)) are homeomorphic
(by [9] for example) and |P (X(w))| = sd(X(w)), it follows that |P (X(w))| is contractible.

To prove the claim we first show that f̂�w ⊆ P (X(w)). If σ ∈ f̂�w, then e ≺ f̂(σ) �

w ≺ c by definition of f̂�w. By applying Lemma 3.2 to the reflections corresponding

to vertices of σ, it follows that σ ∈ P (X(w)). To show that P (X(w)) ⊆ f̂�w, let σ ∈
P (X(w)). If σ has ordered vertex set {τ1, . . . , τk}, then r(τi) � w for each i by definition
of X(w). Then f̂(σ) = r(τk) . . . r(τ1) � c. By Equation 3.4 of [7], we know that since
f̂(σ) � c, w � c and each r(τi) � w then f̂(σ) = r(τk) . . . r(τ1) � w. Therefore,
σ ∈ f̂�w.
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Corollary 3.4. |NCPc| has the homotopy type of a wedge of spheres, one for each facet
of X(c).

Proof. The map f̂ induces a homotopy equivalence |f̂ | : |P̂ (X(c))| → |NCPc|. The
simplicial complex X(c) is a spherical complex that is convex and contractible (Theorem
7.6 of [7]). Let Y denote the subspace of X(c) obtained by removing a point from the
interior of each facet. Then |P̂ (X(c))| is a deformation retract of Y and therefore has the
homotopy type of a wedge of (n− 2) spheres. The number of such spheres is equal to the
number of facets of X(c).

Note 3.5. This is a more direct proof of the result in Corollary 4.4 of [2] where it is
proved that for a crystallographic root system, the Möbius number of NCPc is equal to
(−1)n times the number of maximal simplices of X(c), which can also be viewed as positive
clusters corresponding to the root system.

4 Homology Embedding

We now briefly review the results in [4] where geometric bases for the homology of inter-
section lattices are constructed. Let A be a central and essential hyperplane arrangement
in Rn. We refer to the connected components of Rn \A as regions. We let LA denote the
set of intersections of subfamilies of A, partially ordered by reverse inclusion. We refer to
LA as the intersection lattice of A.

Homology generators are found by using a non-zero vector v such that the hyperplane
H

v
, which is through v and normal to v, is generic. This means that dim(H

v
∩ X) =

dim(X)−1 for all X ∈ LA. In Theorem 4.2 of [4], it is proven that the collection of cycles
gR corresponding to regions R such that R ∩ H is nonempty and bounded, form a basis
of H̃d−2(L̄A) where H is an affine hyperplane, generic with respect to A. Lemma 4.3 of
[4] states that for each region R, the affine slice R ∩H

v
is nonempty and bounded if and

only if v · x > 0 for all x ∈ R. At this point, we refer the reader to Figure 1 which illus-
trates this basis for W = C3. The figure shows the stereographic projection of the open
hemisphere satisfying v · x > 0 and is combinatorially equivalent to the projection onto
H

v
. Each region in the figure which is non-empty and bounded contributes a generator

to the basis for the homology of the intersection lattice.

The fact that the hyperplane H
v

is generic is equivalent to the fact that 0 /∈ H
v

and
H ∩ X 6= ∅ for all 1-dimensional subspaces X ∈ LA (Section 4 of [4]). We will refer to a
non-zero vector in a one dimensional subspace X ∈ LA as a ray. It is therefore sufficient
to check that H

v
is generic with respect to the set of rays. In Section 4.1, we describe for

any W , the general construction of a vector v with H
v

generic. In Section 4.2, we use the
construction of v to explicitly embed the homology of the non-crossing partition lattice
in the homology of the intersection lattice.
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4.1 Construction of a generic vector for general finite reflection

groups

Let {τ1, . . . , τn} be an arbitrary set of linearly independent roots. Since the number of
roots is finite and rays occur at the intersection of hyperplanes, it follows that the number
of unit rays is finite. Hence, the set {r · ρ | r a unit ray, ρ a root} is finite and

λ = min{|r · ρ| : r a unit ray, ρ a root and r · ρ 6= 0}

is a well defined, positive, real number. It will be convenient to use the auxiliary quantity
a = 1 + 1/λ.

Proposition 4.1. Let v = τ1 +aτ2 +a2τ3 + · · ·+an−1τn and r be a unit length ray. Then
|r · v| ≥ λ. In particular, H

v
is generic.

Proof. Let r denote a unit length ray. Since {τ1, . . . , τn} is a linearly independent set,
r · τk 6= 0 for some τk. Let k be the index with 1 ≤ k ≤ n satisfying

r · τk 6= 0, and r · τk+1 = 0, . . . , r · τn = 0.

By replacing r by −r if necessary, we can assume that r · τk > 0 and hence r · τk ≥ λ by
the definition of λ. We now compute r · v.

r · v = r · (τ1 + aτ2 + a2τ3 + · · ·+ an−1τn)

= r · τ1 + a(r · τ2) + a2(r · τ3) + · · · + an−1(r · τn)

= r · τ1 + a(r · τ2) + a2(r · τ3) + · · · + ak−1(r · τk) + 0

≥ −1 + a(−1) + a2(−1) + · · ·+ ak−2(−1) + ak−1(λ)

= −1(1 + a + a2 + · · ·+ ak−2) + ak−1(λ)

= λ.

The last equality follows from the formula for the sum of a geometric series and the fact
that λ = 1/(a − 1).

4.2 Specialising the generic hyperplane

In order to relate the homology basis for non-crossing partition lattices to the homology
basis for the corresponding intersection lattice, we apply the operator
µ = 2(I −c)−1 from [7] to X(c) to obtain a complex which we will call µ(X(c)) and which
is the positive part of the complex µ(AX(c)) studied in [6]. The complex µ(X(c)) has
vertices µ(ρ1), . . . , µ(ρnh/2) and a simplex on µ(ρi1), . . . , µ(ρik) if

ρ1 ≤ ρi1 < · · · < ρik ≤ ρnh/2 and ℓ(r(ρi1) . . . r(ρik)c) = n − k.

The walls of the facets of µ(AX(c)) are hyperplanes. Since regions considered in [4] are
bounded by reflection hyperplanes, this provides the connection between the two and ex-
plains why we use µ(X(c)) instead of X(c).
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We now apply Proposition 4.1 to the case where τ1, . . . , τn are the last n positive
roots. Thus we set τi = ρnh/2−n+i. Since {τ1, . . . , τn} is a set of consecutive roots and
r(τn) . . . r(τ1) = c, the set {τ1, . . . , τn} is linearly independent by Note 3.1 of [7].

Proposition 4.2. For τi = ρnh/2−n+i and

v = τ1 + aτ2 + a2τ3 + · · · + an−1τn,

µ(ρi) · v > 0 for all 1 ≤ i ≤ nh/2.

Proof. Recall from Proposition 4.6 of [7] that the following properties hold.

µ(ρi) · ρj ≥ 0 for 1 ≤ i ≤ j ≤ nh/2.

µ(ρi+t) · ρi = 0 for 1 ≤ t ≤ n − 1 and for all i.

Since τ1, . . . , τn are the last n positive roots, it follows that µ(ρi) · τj ≥ 0. Furthermore
for each ρi, there is at least one τj with µ(ρi)·τj > 0 by linear independence of {τ1, . . . , τn}.
Since all the coefficients of v are strictly positive, µ(ρi) · v > 0.

Proposition 4.3. The projection of µ(X(c)) onto the affine hyperplane H
v

where v is
as in Proposition 4.2 induces an embedding of the homology of the non-crossing partition
lattice into the homology of the corresponding intersection lattice.

Proof. Recall from Section 3 that homology generators for the non-crossing partition lat-
tice are identified with the boundaries of facets of X(c) and hence with facets of µ(X(c)).
On the other hand, we can use the generic vector v to identify homology generators of
the intersection lattice with cycles gR corresponding to regions R such that R ∩ H is
nonempty and bounded. From [6], the boundary of each facet of µ(X(c)) is a union of
pieces of reflection hyperplanes. It follows that vertices µ(ρi) for 1 ≤ i ≤ nh/2 are rays
and each facet of µ(X(c)) projects to a union of affine slices of the form R ∩H . Further-
more, the projection of distinct µ(X(c)) facets have disjoint interiors.

We denote the projection map by p : µ(X(c)) → H and by p∗ the induced map from
the homology of the non-crossing partition lattice to the homology of the intersection
lattice. Then p∗ takes the homology generator g′

F corresponding to a facet F of µ(X(c))
to the sum of the intersection lattice homology generators gR corresponding to the affine
slices R∩H contained in p(F ). That is p∗(g

′
F ) = ΣbRgR where bR = 1 if R∩H is contained

in p(F ) and 0 otherwise.

To establish injectivity of p∗, we observe that p∗(ΣaF g′
F ) = ΣcRgR where cR = 0 if R

is not contained in p(µ(X(c))) and cR = aF if F is the unique facet satisfying R ⊆ p(F ).
Thus ΣaF g′

F is an element of Ker(p∗) if and only if aF = 0 for all F .

Example 4.4. For W = C3 and for appropriate choices of fundamental domain and sim-
ple system, the relevant regions are shown in Figure 1 where i represents µ(ρi).
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Figure 1:

The basis for homology of the intersection lattice is formed by cycles corresponding to
regions in Figure 1 which are non-empty and bounded. For this example, there are 15
such regions.

Homology generators for the non-crossing partition lattice are identified with the bound-
aries of facets of µ(X(c)), of which there are 10 in this example. These facets are outlined
in bold. Note that the facet with corners µ(ρ2), µ(ρ4), µ(ρ8) is a union of two facets of the
Coxeter complex and therefore the embedding maps the homology element associated to this
facet to the sum of the two corresponding generators in the homology of the intersection
lattice.
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