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Abstract

A complete characterization of locally primitive normal Cayley graphs of meta-
cyclic groups is given. Namely, let Γ = Cay(G,S) be such a graph, where G ∼= Zm.Zn

is a metacyclic group and m = pr1

1 pr2

2 · · · prt

t such that p1 < p2 < · · · < pt. It is
proved that G ∼= D2m is a dihedral group, and val(Γ ) = p is a prime such that
p|(p1(p1 − 1), p2 − 1, . . . , pt − 1). Moreover, three types of graphs are constructed
which exactly form the class of locally primitive normal Cayley graphs of metacyclic
groups.

1 Introduction

Throughout the paper, groups are finite, and graphs are finite, simple and undirected.
For a graph Γ , let V (Γ ) denote its vertex set. For v ∈ V (Γ ), let Γ (v) denote the set
of vertices which are adjacent to v. If Γ is regular, then |Γ (v)| is called the valency of
Γ , and denoted by val(Γ ). A digraph Γ is called a Cayley digraph if there exist a group
G and a subset S ⊆ G \ {1}, such that its vertex set can be identified with G, and two
vertices u, v are adjacent if and only if vu−1 ∈ S. If further S = S−1 =: {s−1|s ∈ S}, then
Γ is undirected and called Cayley graph. This Cayley digraph is denoted by Cay(G, S),
and the vertex of Γ corresponding to the identity element of group G is denoted by 1.

Let Γ be a graph, and let X be a group of automorphisms of Γ , that is, X 6 AutΓ .
Then Γ is called X-vertex transitive (or simply called vertex transitive) if X is transitive
on V (Γ ), and Γ is called X-locally primitive (or simply called locally primitive) if Xv: =
{x ∈ X|vx = v} is primitive on Γ (v) for each vertex v. A 2-arc of Γ is a sequence (u, v, w)
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of three distinct vertices such that v is adjacent to both u and w. Then Γ is called (X, 2)-
arc-transitive, if X is transitive on the set of 2-arcs of Γ . It is known that 2-arc-transitive
graphs form a proper subclass of vertex transitive locally primitive graphs.

It is well-known that a graph Γ is a Cayley graph of a group G if and only if AutΓ con-
tains a subgroup which is isomorphic to G and regular on V (Γ ), see [3, Proposition 16.3].
If AutΓ has a normal subgroup which is regular and isomorphic to G, then Γ is called a
normal Cayley graph of G.

Locally primitive Cayley graphs and 2-arc-transitive Cayley graphs have been exten-
sively studied, see for example, [1, 7, 9, 11, 12] and references therein. Also, normal
Cayley graphs have received much attention in the literature, see for example, [6, 8, 13].
In particular, 2-arc-transitive normal Cayley graphs of elementary abelian groups are
classified by Ivanov and Praeger [6]. This motivates the author to study locally primitive
normal Cayley graphs of some classes of groups. The purpose of this paper is to give a
complete characterization of locally primitive normal Cayley graphs of metacyclic groups.
For convenience, we limit our attention on nonabelian metacyclic group case as abelian
metacyclic group case is trivial.

We now state the main theorems of this paper.

Theorem 1.1 Let Γ = Cay(G, S) be a connected X-locally primitive normal Cayley graph
of valency at least 3, where G ∼= Zm.Zn is a nonabelian metacyclic group, and Ĝ < X 6
Aut(Γ ) with Ĝ = {ĝ : x → xg for all x ∈ G|g ∈ G}. Let m = pr1

1 pr2

2 · · · prt

t be the standard
decomposition of m such that p1 < p2 < · · · < pt. Then G ∼= D2m is a dihedral group, and
val(Γ ) = p is a prime such that p|(p1(p1 − 1), p2 − 1, . . . , pt − 1). Further, either m is a
prime and Zp 6 X1 6 Zp : Zp−1, or X1 = Zp.

Theorem 1.1 has the following interesting corollary which shows 2-arc-transitive nor-
mal Cayley graphs of metacyclic groups are complete bi-partite graphs of prime valency.

Corollary 1.2 Every 2-arc-transitive normal Cayley graph of a metacyclic group is iso-
morphic to Kp,p, where p is a prime.

In section 4, we will construct three types of Cayley graphs (see Constructions 4.1-4.3
below). The second main theorem of this paper is to prove that all locally primitive
normal Cayley graphs of metacyclic groups are in these constructions.

Theorem 1.3 Graphs in Constructions 4.1 − 4.3 are exactly form the class of locally
primitive normal Cayley graphs of metacyclic groups.

This paper is organized as follows. Section 2 gives some necessary preliminaries and
lemmas. Section 3 proves Theorem 1.1. Section 4 first constructs three types of graphs,
and then proves Theorem 1.3. Section 5 gives a characterization of locally primitive
bi-normal Cayley graphs of dihedral groups.
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2 Preliminaries

In this section, we give some necessary preliminaries and lemmas for proving Theorem 1.1
and Theorem 1.3.

Let Γ = Cay(G, S). Let

Ĝ = {ĝ : x → xg for all x ∈ G|g ∈ G},

Aut(G, S) = 〈σ ∈ Aut(G) | Sσ = S〉.

It is known that Ĝ and Aut(G, S) are subgroups of Aut(Γ ), and Aut(G, S) fixes the vertex
1 and normalizes the regular subgroup Ĝ. Moreover, the normalizer of Ĝ in Aut(Γ ) is
uniquely determined by Aut(G, S).

Lemma 2.1 ([5, Lemma2.1]) For a Cayley graph Γ = Cay(G, S), the normalizer
NAut(Γ )(Ĝ) = Ĝ:Aut(G, S). In particular, if Γ is a normal Cayley graph of group G, then

Aut(Γ ) = Ĝ : Aut(G, S).

For a given graph, it is generally quite difficult to describe its automorphism group.
However, for a Cayley graph Γ = Cay(G, S), by Lemma 2.1, the automorphism group
Aut(Γ ) has a transitive subgroup NAut(Γ )(Ĝ) which contains a regular subgroup Ĝ and
can be described in terms of Aut(G, S). Thus the subgroup Aut(G, S) plays an important
role in the study of Cayley graphs, see for example, [5, 10, 13, 15]. If Γ = Cay(G, S) is an
X-normal Cayley graph, then by Lemma 2.1, the vertex stabilizer X1 6 Aut(G, S), that
is, X1 acts on Γ in a very nice way–by conjugation. In particular, if Γ is connected, the
action of X1 on Γ is uniquely determined by its action on Γ (1) = S. Due to this nice
action, the following lemma is not difficult to prove.

Lemma 2.2 Let Γ = Cay(G, S) be a connected X-locally primitive normal Cayley graph,
where Ĝ < X 6 Aut(Γ ). Then

(1) 〈S〉 = G, and all elements of S are involutions and conjugate under Aut(G, S).

(2) X1 6 Aut(G, S) acts faithfully and primitively on S.

By Lemma 2.2, we have following method for constructing arc-transitive normal Cay-
ley graphs.

Construction. For a group G, take an element g ∈ G\{1} and a subgroup H of Aut(G).
Let S = {gh|h ∈ H} and Γ = Cay(G, S).

Lemma 2.3 Using notations as in the above construction. Then Γ is an arc-transitive
normal Cayley digraph of G. In particular, if 〈S〉 = G and g is conjugate to g−1 in H,
then Γ is a connected undirected arc-transitive normal Cayley graph of G.

Proof. Let X = Ĝ:Aut(G, S). Then Ĝ�X and X1 = Aut(G, S) ⊇ H , so X1 is transitive on
Γ (1) = S, thus Γ is an X-arc-transitive normal Cayley digraph of G. The last statement
is then obviously true. 2
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3 Proof of Theorem 1.1

We first prove two technical lemmas for proving Theorem 1.1. The first plays an important
role which reduces the metacyclic group case into dihedral group case.

Lemma 3.1 Let Γ = Cay(G, S) be a connected X-locally primitive normal Cayley graph
of valency at least 3, where G ∼= Zm.Zn is a nonabelian metacyclic group, and Ĝ < X 6
Aut(Γ ). Then n = 2 and G ∼= D2m is a dihedral group.

Proof. By Lemma 2.2, 〈S〉 = G, and all elements of S are involutions and conjugate under
Aut(G, S). Since G ∼= Zm.Zn is a metacyclic group, we may suppose that

G = 〈a, b|am = bnk = 1, bn = al, ab = ar〉, (1)

where kl = m, rn ≡ 1(mod m) and k|(r − 1), see [2, P.175]. In particular, each element x
of G can be uniquely expressed in the form x = aibj , where 0 6 i 6 m − 1, 0 6 j 6 n − 1.

Suppose x = aibj ∈ G is an involution. Then x2 = (aibj)2 = ai(bjaib−j)b2j = 1. Note
ai(bjaib−j) ∈ 〈a〉, it follows that b2j ∈ 〈a〉, and then 2j ≡ 0(mod n). If n is odd, we
have j ≡ 0(mod n), and then x = ai ∈ 〈a〉, so G has at most one involution (depending
on whether m is odd or even), which is impossible as |S| ¿ 3. Thus n is even. Let
n = 2n1. Then j ≡ 0(mod n1), so x = aibn1 or x = am/2 and m is even. If n1 6= 1, then
〈S〉 ⊆ 〈a, bn1〉 ∼= Zm.Z2 is a proper subgroup of G, which is again impossible as 〈S〉 = G.
Hence n1 = 1, n = 2 and G ∼= Zm.Z2 is an extension of a cyclic group by a cyclic group
of order 2.

Assume that m is even. Recall that G can be expressed as in (1) with n = 2. If
r = −1, let aib−1 be an involution in G \ 〈a〉, then (aib−1)2 = a(r+1)i−l = a−l = 1, we
conclude l = m and k = 1, that is, G ∼= D2m. Thus assume now r 6= −1. It is easily
shown that an element aib−1 is an involution if and only if i is the solution of the equation

(r + 1)x ≡ l(mod m). (2)

Since G \ 〈a〉 has at least two involutions, the equation (2) has solutions, say x = i0 is
one. Then all involutions of G are am/2, ai0b−1, . . . , ai0+(d−1)m/db−1, where d = (r + 1, m).
Moreover, as r 6= −1, it follows that d 6 m/2.

Since r2 ≡ 1(mod m), and m is even, it follows r is odd, and then 4|m. For each
σ ∈ Aut(G) and c ∈ G, it is easy to verify σ(c2) ∈ 〈a〉, and then σ(am/2) ∈ 〈a〉 as m/2 is
even. Note am/2 is the unique involution in 〈a〉, it follows that σ fixes am/2. So am/2 6∈S
as X1 6 Aut(G, S) is transitive on S.

Now, note that 〈am/d〉 � G, we have

〈S〉 ⊆ 〈ai0b−1, ai0+m/db−1, . . . , ai0+(d−1)m/db−1〉

= 〈am/d, ai0b−1〉 = 〈am/d〉.〈ai0b−1〉 ∼= Zd.Z2

is a proper subgroup of G, which is impossible as 〈S〉 = G.
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Hence, m is odd. Then all Sylow subgroups of G are cyclic. By [14, P. 281] or [16,
Theorem 6.2], we may suppose that

G = 〈a, b|am = b2 = 1, ab = ar〉,

where r2 ≡ 1(mod m) and (2(r − 1), m) = 1. Then r ≡ −1(mod m), that is, G ∼= D2m.
This completes the proof of the lemma. 2

For a group H and its subgroup K, the core of K in H , denoted by coreH(K), is the
largest normal subgroup of H contained in K. K is called a core-free subgroup of H if
coreH(K) = 1. By definition, if H is abelian, and has a core-free maximal subgroup K,
then H is a cyclic group of prime order and K = 1. The following lemma gives some
properties of the automorphism groups of dihedral groups.

Lemma 3.2 Let G ∼= D2m be a dihedral group. Let H be a nontrivial subgroup of Aut(G),
and K be a core-free maximal subgroup of H. Then |H : K| is a prime.

Proof. Suppose that G = 〈a, b|am = b2 = 1, ab = a−1〉. Note 〈a〉 is a characteristic
subgroup of G, it easily follows that each automorphism σ of G has the following form:

σ : a → ai, b → ajb with (i, m) = 1 and 0 6 j 6 m − 1.

Let
N = {σ : a → a, b → ajb|0 6 j 6 m − 1},

R = {σ : a → ai, b → b|(i, m) = 1}.

Then it is easily shown that N ∼= Zm � Aut(G), R ∼= Aut(Zm) and Aut(G) = N :R ∼=
Zm:Aut(Zm).

Assume first that H ∩ N = 1. Then

H = H/(H ∩ N) ∼= HN/N 6 Aut(G)/N ∼= Aut(Zm)

is abelian, so K = 1 and H is a cyclic group of prime order. The lemma is true. Thus
assume next that H ∩N 6= 1. Suppose p is a prime and divides |H ∩N |, and τ ∈ H ∩N
such that o(τ) = p. Note that subgroups of a cyclic group are characeristic subgroups, so
subgroups of N are normal subgroups of Aut(G), thus K ∩N = 1 as K is core-free in H .
In particular, (H ∩N)∩K = 1. Then K < 〈τ〉:K 6 (H ∩N):K 6 H . Since K is maximal
in H , we have H ∩ N = 〈τ〉 and |H :K| = |〈τ〉| = p is a prime. This completes the proof
of the lemma. 2

Now, we are ready to prove Theorem 1.1.

First, by Lemma 3.1, n = 2 and G ∼= D2m is a dihedral group.
By Lemma 2.2, X1 6 Aut(G, S) 6 Aut(G) and X1

∼= XS
1

is primitive, it then follows
that X1s is a core-free maximal subgroup of X1, where s ∈ S. So, by Lemma 3.2, we
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conclude val(Γ ) = |S| = |X1:X1s| = p is a prime. Further, since X1 is solvable, X1 is
an affine group, then there exist σ, τ ∈ Aut(G, S) such that X1 = 〈σ〉:〈τ〉 ∼= Zp : Zr,
where r|(p − 1) and 〈σ〉 is regular on S. That is, S = s〈σ〉. Since 〈a〉 is a characteristic
subgroup of G and has at most one involution, we conclude that S ⊆ G \ 〈a〉. Note that
all involutions in G \ 〈a〉 are conjugate in G, without lose of generality, we may suppose
S = b〈σ〉.

Suppose that σ is defined by σ : a → ai, b → ajb, where (i, m) = 1, and 0 6 j 6 m− 1.
Then, by direct computation, we have S = {b, ajb, . . . , a(ip−2+ip−3+···+1)jb}. In particular,
〈S〉 = 〈b, aj〉. By the connectivity of Γ , 〈b, aj〉 = G, it then follows (j, m) = 1. Further,
as o(σ) = p, bσp

= b, we conclude ip−1 + ip−2 + · · · + 1 ≡ 0(mod m). In particular,
ip ≡ 1(mod m). Hence ip−1 + ip−2 + · · · + 1 ≡ 0(mod prk

k ) for each k. If i ≡ 1(mod prk

k ),
then p = pk and rk = 1; if i 6≡ 1(mod prk

k ), then p is the smallest positive solution of the
equation ix ≡ 1(mod prk

k ). So p|ϕ(prk

k ), where ϕ is the Euler function. Thus we always
have p|pk(pk − 1) for each k. Further, as p1 < p2 < · · · < pt, for k ¿ 2, pk not divides
p1(p1 − 1), so p 6= pk, we thus conclude p|(p1(p1 − 1), p2 − 1, . . . , pt − 1).

Suppose m = p1 is a prime. Then X = Ĝ:X1, and Zp 6 X1 6 Zp:Zp−1. Suppose next
m is not a prime. Since ip−1 + ip−2 + · · · + 1 ≡ 0(mod m), it follows i 6≡ 1(mod m), and
then p is the smallest positive solution of the equation ix ≡ 1(mod m). So, if στ = σl,
where 1 6 l 6 p − 1, then ai = aσ = aστ

= aσl

= ail , so il−1 ≡ 1(mod m), we conclude
p|(l − 1), and then l = 1. Therefore, X1

∼= XS
1
∼= Zp:Zr is abelian. Hence r = 1 and

X1
∼= Zp. 2

From the process of the above proof, we easily have the following corollary, which will
be used later.

Corollary 3.3 Let G = 〈a〉:〈b〉 ∼= D2m. Let σ ∈ Aut(G) such that σ : a → ai, b → ajb.
Then o(σ) = p and 〈b〈σ〉〉 = G if and only if ip−1 + ip−2 + · · · + 1 ≡ 0(mod m) and
(j, m) = 1.

4 Constructions

Let Γ = Cay(G, S) be a connected X-locally primitive normal Cayley graph, where G ∼=
Zm.Zn is a nonabelian metacyclic group, and Ĝ < X 6 Aut(Γ ). By Theorem 1.1, we
know that G ∼= D2m is a dihedral group. In this section, we first construct three types of
Cayley graphs of dihedral groups.

Construction 4.1 Suppose m = p ¿ 3 is a prime.
Let G = 〈a〉:〈b〉 ∼= D2p. Let S = G \ 〈a〉, and Γ = Cay(G, S).

Construction 4.2 Suppose m = pr1

1 pr2

2 · · · prt

t is not a prime, where p1 < p2 < · · · < pt,
and p is a prime such that p|(p1 − 1, p2 − 1, . . . , pt − 1).

Let 〈ak〉 ∼= Zp
rk
k

. Take σk ∈ Aut(〈ak〉) of order p for each k. Let a = a1a2 · · ·at ∈

〈a1〉 × 〈a2〉 × · · · × 〈at〉, and τ = σ1σ2 · · ·σt ∈ Aut(〈a〉). Let G = 〈a〉:〈b〉 ∼= D2m. Define

the electronic journal of combinatorics 16 (2009), #R96 6



σ ∈ Aut(G) such that σ : a → aτ , b → ajb, where (j, m) = 1. Let S = b〈σ〉 and Γ =
Cay(G, S).

Construction 4.3 Suppose m = pr1

1 pr2

2 · · · prt

t is not a prime, where p1 < p2 < · · · < pt,
and p1|(p2−1, . . . , pt−1), and suppose that the equation xp1−1+xp1−2+· · ·+1 ≡ 0(mod pr1

1 )
has integer solution.

Let 〈ak〉 ∼= Zp
rk
k

. Take σ1 ∈ Aut(〈a1〉), say σ1(a1) = am1

1 , such that mp1−1
1 + mp1−2

1 +

· · · + 1 ≡ 0(mod pr1

1 ). For k ¿ 2, take σk ∈ Aut(〈ak〉) of order p1. Let a = a1a2 · · ·at ∈
〈a1〉 × 〈a2〉 × · · · × 〈at〉, and τ = σ1σ2 · · ·σt ∈ Aut(〈a〉). Let G = 〈a〉:〈b〉 ∼= D2m. Define
σ ∈ Aut(G) such that σ : a → aτ , b → ajb, where (j, m) = 1. Let S = b〈σ〉 and Γ =
Cay(G, S).

Lemma 4.4 Let 〈c〉 ∼= Zq be a cyclic group, where q = rs is a prime power. Let σ ∈
Aut(〈c〉) such that σ : c → ci. Suppose o(σ) = p is a prime such that (p, q) = 1. Then
ip−1 + ip−2 + · · ·+ 1 ≡ 0(mod q).

Proof. Since o(σ) = p, we have ip ≡ 1(mod q). So, to prove the lemma, it is sufficient
to prove (i − 1, q) = 1. If this is not true, then r|(i − 1). Suppose i = 1 + kr. Then

cσrs−1

= c(1+kr)rs−1

= c. So p|rs−1 as o(σ) = p, which is impossible. 2

The next lemma shows that graphs in Constructions 4.1-4.3 are locally primitive nor-
mal Cayley graphs, which then forms a part of the proof of Theorem 1.3.

Lemma 4.5 Graphs in Constructions 4.1−4.3 are locally primitive normal Cayley graphs
of dihedral groups.

Proof. Suppose Γ is a graph as in Construction 4.1. Since S contains all involutions of
G, so 〈S〉 = G and Aut(G, S) = Aut(G) ∼= Zp:Zp−1. Suppose Aut(G, S) = 〈σ〉:〈τ〉. Let

X1 = 〈σ〉:〈τk〉 with k|(p − 1), and X = Ĝ:X1. Then as |S| = p is a prime, X1 6 Aut(Γ )
is primitive on Γ (1) = S, so Γ is a connected X-locally primitive normal Cayley graph
of D2p.

Suppose Γ is a graph as in Construction 4.2. Let X1 = 〈σ〉 and X = Ĝ:X1. Suppose
aσ = ai. Then aσk

k = ai
k. Since (o(σk), p

rk

k ) = (p, prk

k ) = 1 for each k, by Lemma 4.4,
ip−1 + ip−2 + · · ·+1 ≡ 0(mod prk

k ), then ip−1 + ip−2 + · · ·+1 ≡ 0(mod m). By Corollary 3.3,
o(σ) = p and 〈S〉 = G. As |S| = p is a prime, X1 is primitive on Γ (1) = S, so Γ is a
connected X-locally primitive normal Cayley graph of D2m.

Finally, suppose Γ is a graph as in Construction 4.3. Let X1 = 〈σ〉 and X = Ĝ:X1.
Suppose aσ = ai. For k ¿ 2, since (o(σk), p

rk

k ) = 1, by Lemma 4.4, ip1−1 + ip1−2 + · · ·+1 ≡
0(mod prk

k ). Moreover, by assumption, mp1−1
1 +mp1−2

1 + · · ·+1 ≡ 0(mod pr1

1 ), we conclude
ip1−1 + ip1−2 + · · · + 1 ≡ 0(mod m). So, by Corollary 3.3, o(σ) = p and 〈S〉 = G. Hence
Γ is a connected X-locally primitive normal Cayley graph of D2m as X1 is primitive on
Γ (1) = S. 2

Now, we prove Theorem 1.3.
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By Lemma 4.5, to prove Theorem 1.3, it is sufficient to prove that every connected
locally primitive normal Cayley graph of metacyclic group is isomorphic to a graph as in
Constructions 4.1-4.3.

Let Γ = Cay(G, S) be a connected X-locally primitive Cayley graph of a metacyclic
group. By Theorem 1.1, G is a dihedral group. Suppose G = 〈a〉:〈b〉 ∼= D2m and m =
pr1

1 pr2

2 · · · prt

t , where p1 < p2 < · · · < pt. By Lemma 1.1, val(Γ ) = p is a prime and
p|(p1(p1 − 1), p2 − 1, . . . , pt − 1).

Suppose first p 6 |m. Then p|(p1 − 1, p2 − 1, . . . , pt − 1). By Theorem 1.1, we may
suppose X1 = 〈σ〉 ∼= Zp, and S = b〈σ〉, where σ ∈ Aut(G). Suppose σ : a → ai, b → ajb.
By Corollary 3.3, ip−1 + ip−2 + · · · + 1 ≡ 0(mod m) and (j, m) = 1. Consider σ as
an automorphism of the cyclic group 〈a〉. It is easily shown that there exist elements
a1, a2, . . . , at ∈ 〈a〉 such that o(ak) = prk

k and a = a1a2 · · ·at. Let mk ≡ i(mod prk

k ). Define
σk : ak → amk

k . Then σ = σ1σ2 · · ·σt. Moreover, as mp−1
k + mp−2

k + · · · + 1 ≡ 0(mod prk

k ),
and p 6= pk, we have mp

k ≡ 1(mod prk

k ) and mk 6≡1(mod prk

k ), so σk is an automorphism of
〈ak〉 of order p. Hence Γ is isomorphic to a graph as in Construction 4.2.

Suppose now p|m. Then p = p1 is a prime. If m = p1, then S = D2p \ 〈a〉, and
Γ = Cay(D2p, S) is isomorphic to a graph as in Construction 4.1. If m is not a prime,
then t ¿ 2 and p1|(p2 − 1, . . . , pt − 1). By Theorem 1.1, we may suppose X1 = 〈σ〉 ∼= Zp1

,
and S = b〈σ〉, where σ ∈ Aut(G). Suppose σ : a → ai, b → ajb. By Corollary 3.3,
ip1−1 + ip1−2 + · · · + 1 ≡ 0(mod m) and (j, m) = 1. View σ as an automorphism of the
cyclic group 〈a〉, then with similar argument as in the above paragraph, one may prove:
there exist elements a1, a2 . . . , at ∈ 〈a〉 such that o(ak) = prk

k and a = a1a2 · · ·at; there
exist σk ∈ Aut(〈ak〉) such that σ = σ1σ2 · · ·σt; for k ¿ 2, σk are of order p1; if suppose
σ1(a1) = am1

1 , then mp1−1
1 + mp1−2

1 + · · ·+ 1 ≡ 0(mod pr1

1 ). So Γ is isomorphic to a graph
as in Construction 4.3. 2

5 Locally primitive bi-normal dihedral graphs

Let Γ = Cay(G, S), and Ĝ < X 6 Aut(Γ ). If Ĝ is not normal in X, but has a subgroup
of index 2 which is normal in X, then Γ is called an X-bi-normal Cayley graph of G.
For a group H , recall the socle of H , denoted by soc(H), is the products of all minimal
subgroups of H . In this final section, we give a characterization of locally primitive
bi-normal Cayley graphs of dihedral groups.

Theorem 5.1 Let Γ = Cay(G, S) be a connected X-locally primitive bi-normal Cayley
graph of valency at least 3, where G ∼= D2m is a dihedral group, and Ĝ < X 6 Aut(Γ ).
Then Γ ∼= Km,m is a complete bi-partite graph, or val(Γ ) = 4 or p with p a prime.

Proof. By assumption, there exists a subgroup M of Ĝ with index 2 such that M is
normal in X. Then M ∼= Zm or Dm and m is even. Let ∆1, ∆2 be the M-orbits on V (Γ ).
Let X+ = X∆1

= X∆2
.

Assume first X+ is unfaithful on ∆1. Let K1 be the kernel of X+ acting on ∆1. Then
K1 6= 1 and K1 acts faithfully on ∆2. For an edge {α, β} of Γ , where α ∈ ∆1 and β ∈ ∆2,
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let B be the K1-orbit of β in ∆2. Since K1 fixes α, we conclude B ⊆ Γ (α). Further, as

1 6= K
Γ (α)
1 � (X+

α )Γ (α) = X
Γ (α)
α , and X

Γ (α)
α is primitive, we have B = Γ (α). Since this

holds for every vertex which is adjacent to a vertex of B, by the connectivity of Γ , we
have B = ∆2, that is, Γ ∼= Km,m. Similarly, the same result holds if X+ is unfaithful on
∆2.

Thus assume next X+ is faithful on ∆1 and ∆2. Since M � X+ and M is regular on
∆1, it follows X+ 6 NSym(∆1)(M) ∼= M :Aut(M), see [4, Corollary 4.2B]. Then Xα = X+

α 6
Aut(M), where α ∈ V (Γ ).

Suppose M ∼= Zm. Then Xα 6 Aut(Zm) is abelian. Since Γ is X-locally primitive,

X
Γ (α)
α is an abelian primitive permutation group, so val(Γ ) = |Γ (α)| is a prime.

Suppose now M ∼= Dm and m is even. Then Xα 6 Aut(M) is soluble. Further, as X
Γ (α)
α

is primitive, it follows that X
Γ (α)
α is affine, so soc(X

Γ (α)
α ) = Z

d
p, and val(Γ ) = |Γ (α)| = pd

for some prime p. Let C = CX(M) be the centralizer of M in X, and D = 〈C, M〉. Then
C, D are normal subgroups of X, and C+: = C∆1

= CX+(M), D+: = D∆1
= 〈C+, M〉

are normal subgroups of X+. Let g ∈ G \ M . In what follows, we distinguish two cases,
depending on whether g ∈ CX(M) or not.

Case 1. g ∈ CX(M).
In this case, D+ = 〈D+, g〉 ∼= D+.Z2 is transitive on V (Γ ). If Dα = 1, then G = D

is a normal subgroup of X, that is, Γ is an X-normal Cayley graph of G, which is not
the case. Thus Dα 6= 1. Then D

Γ (α)
α 6= 1, and soc(X

Γ (α)
α ) = Z

d
p � D

Γ (α)
α . Moreover,

Dα = D+
α
∼= MD+

α /M ∼= D+/M ∼= C+/Z(M) is a factor group of C+. Further, as M is

regular on ∆1, C+ 6 M ∼= Dm is semiregular on ∆1. Note that D
Γ (α)
α is a factor group of

C+/Z(M), and subgroups and factor groups of a dihedral group are dihedral or cyclic, it
follows that Z

d
p is a subgroup of a dihedral group or a cyclic group, we then conclude that

either d = 1 or d = 2 and p = 2. That is, val(Γ ) = p or 4.

Case 2. g 6∈CX(M).
In this case, C = C+ and D = D+, so D has 2 orbits on V (Γ ). If C = 1, then D = M ,

and X/M 6 Aut(M)/M ∼= Aut(Zm/2)/Z2 is abelian. Further, as X+ = M :X+
α , we have

X+
α

∼= X+/M 6 X/M is abelian, so X
Γ (α)
α is an abelian primitive group, thus val(Γ ) =

|Γ (α)| is a prime. If C 6= 1, then Dα 6= 1, so D
Γ (α)
α 6= 1 and soc(X

Γ (α)
α ) = Z

d
p � D

Γ (α)
α .

Now, with similar argument as in Case 1, one may prove that val(Γ ) = p or 4. This
completes the proof of the theorem. 2
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