
Cubical Convex Ear Decompositions

Russ Woodroofe
Department of Mathematics

Washington University in St. Louis
St. Louis, MO 63130, USA

russw@math.wustl.edu

Submitted: Aug 8, 2008; Accepted: Jun 5, 2009; Published: Jun 10, 2009

Mathematics Subject Classification: 05E25

Dedicated to Anders Björner in honor of his 60th birthday.

Abstract

We consider the problem of constructing a convex ear decomposition for a poset.
The usual technique, introduced by Nyman and Swartz, starts with a CL-labeling
and uses this to shell the ‘ears’ of the decomposition. We axiomatize the necessary
conditions for this technique as a “CL-ced” or “EL-ced”. We find an EL-ced of the
d-divisible partition lattice, and a closely related convex ear decomposition of the
coset lattice of a relatively complemented finite group. Along the way, we construct
new EL-labelings of both lattices. The convex ear decompositions so constructed
are formed by face lattices of hypercubes.

We then proceed to show that if two posets P1 and P2 have convex ear decom-
positions (CL-ceds), then their products P1 × P2, P1 ×̌ P2, and P1 ×̂ P2 also have
convex ear decompositions (CL-ceds). An interesting special case is: if P1 and P2

have polytopal order complexes, then so do their products.
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1 Introduction

Convex ear decompositions, introduced by Chari in [6], break a simplicial complex into
subcomplexes of convex polytopes in a manner with nice properties for enumeration. A
complex with a convex ear decomposition inherits many properties of convex polytopes.
For example, such a complex has a unimodal h-vector [6], with an analogue of the g-
theorem holding [31], and is doubly Cohen-Macaulay [31].

Nyman and Swartz constructed a convex ear decomposition for geometric lattices
in [17]. Their proof method used the EL-labeling of such lattices to understand the
decomposition’s topology. Similar techniques were pushed further by Schweig [23]. In
Section 2, we introduce the necessary background material, and then axiomatize the
conditions necessary for these techniques. We call such a convex ear decomposition a
“CL-ced”, or “EL-ced.”

We then show by example in Sections 3 and 4 how to use these techniques on some
poset families: d-divisible partition lattices, and coset lattices of a relatively comple-
mented group. These posets have each interval [a, 1̂] supersolvable, where a 6= 0̂. Finding
the convex ear decompositions will involve constructing a (dual) EL-labeling that re-
spects the supersolvable structure up to sign, and showing that a set of (barycentricly
subdivided) hypercubes related to the EL-labeling is an EL-ced, or at least a convex ear
decomposition. We will prove specifically:

Theorem 1.1. The d-divisible partition lattice Πd
n has an EL-ced, hence a convex ear

decomposition.

Theorem 1.2. The coset lattice C(G) has a convex ear decomposition if and only if G is
a relatively complemented finite group.
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I believe these convex ear decompositions to be the first large class of examples where
each ear is a hypercube.

Although both poset families were known to be EL-shellable, the EL-labelings that
we construct in these sections also seem to be new. The ideas used to find them may be
applicable in other settings, as briefly discussed in Section 6.

Lemma 1.3. Πd
n has a dual EL-labeling; C(G) has a dual EL-labeling if G is a comple-

mented finite group.

In Section 5 we change focus slightly to discuss products of bounded posets. Our first
goal is:

Theorem 1.4. If bounded posets P1 and P2 have convex ear decompositions, then so do
P1 × P2, P1 ×̌ P2, and P1 ×̂ P2.

This is the first result of which I am aware that links poset constructions and convex
ear decompositions with such generality. A result of a similar flavor (but more restrictive)
is proved by Schweig [23]: that rank selected subposets of some specific families of posets
have convex ear decompositions.

A special case of Theorem 1.4 has a particularly pleasing form:

Lemma 1.5. If P1 and P2 are bounded posets such that |P1| and |P2| are isomorphic
to the boundary complexes of simplicial polytopes, then so are |P1 × P2|, |P1 ×̌ P2|, and
|P1 ×̂ P2|.

We then recall the work of Björner and Wachs [4, Section 10] on CL-labelings of poset
products, which we use to prove a result closely related to Theorem 1.4:

Theorem 1.6. If bounded posets P1 and P2 have CL-ceds with respect to CL-labelings
λ1 and λ2, then P1 × P2, P1 ×̌ P2, and P1 ×̂ P2 have CL-ceds with respect to the labelings
λ1 × λ2, λ1 ×̌ λ2, and λ1 ×̂ λ2.

We close by considering some additional questions and directions for further research
in Section 6.

2 Definitions and tools

All simplicial complexes, posets, and groups discussed in this paper are finite.
A poset P is bounded if it has a lower bound 0̂ and an upper bound 1̂, so that 0̂ ≤ x ≤ 1̂

for all x ∈ P .
If P is a bounded poset, then the order complex |P | is the simplicial complex whose

faces are the chains of P \ {0̂, 1̂}. (This is slightly different from the standard definition,
in that we are taking only the proper part of the poset.) Where it will cause no confu-
sion, we talk about P and |P | interchangeably: for example, we say P has a convex ear
decomposition if |P | does.

We denote by M(P ) the set of maximal chains of P , which is in natural bijective
correspondence with the facets of |P | through adding or removing 0̂ and 1̂.

the electronic journal of combinatorics 16(2) (2009), #R17 3



2.1 Convex ear decompositions

A convex ear decomposition of a pure (d − 1)-dimensional simplicial complex ∆ is an
ordered collection of subcomplexes ∆1, . . . , ∆m ⊆ ∆ with the following properties:

ced-polytope ∆s is isomorphic to a subcomplex of the boundary complex of a simplicial
d-polytope for each s.

ced-topology ∆1 is a (d − 1)-sphere, and ∆s is a (d − 1)-ball for s > 1.

ced-bdry (
⋃s−1

t=1 ∆t) ∩ ∆s = ∂∆s for each s > 1.

ced-union
⋃m

s=1 ∆s = ∆.

It follows immediately from the definition that any complex with a convex ear decompo-
sition is pure. As far as I know, no one has tried generalizing the theory of convex ear
decompositions to non-pure complexes. As many interesting posets are not graded (i.e.,
have an order complex that is not pure), finding such a generalization could be useful.

Convex ear decompositions were first introduced by Chari [6]. He used the unimodality
of the h-vector of a simplicial polytope to give a strong condition on the h-vector for a
complex with a convex ear decomposition. Swartz [31] showed that a ‘g-theorem’ holds for
any (d − 1)-dimensional complex with a convex ear decomposition, as stated precisely in
Theorem 2.2. We refer the reader to [28] for further background on h-vectors, M-vectors,
and the (original) g-theorem.

Theorem 2.1. (Chari [6, Section 3]) The h-vector of a pure (d− 1)-dimensional complex
with a convex ear decomposition satisfies the conditions

h0 ≤ h1 ≤ · · · ≤ h⌊d/2⌋

hi ≤ hd−i, for 0 ≤ i ≤ ⌊d/2⌋.

Theorem 2.2. (Swartz [31, Corollary 3.10]) If {hi} is the h-vector of a pure (d − 1)-
dimensional complex with a convex ear decomposition, then

(h0, h1 − h0, . . . , h⌊d/2⌋ − h⌊d/2⌋−1)

is an M-vector.

2.2 Shellings

An essential tool for us will be the theory of lexicographic shellability, developed by
Björner and Wachs in [1, 2, 3, 4]. We recall some of the main facts.

We say that an ordering of the facets F1, F2, . . . , Ft of a simplicial complex ∆ (with t

facets) is a shelling if Fi ∩
(

⋃i−1
j=1 Fj

)

is pure (dim Fi − 1)-dimensional for all 1 < i ≤ t.

An equivalent condition that is often easier to use is:

if 1 ≤ i < j ≤ t, then ∃k < j such that (1)

Fi ∩ Fj ⊆ Fk ∩ Fj = Fj \ {x} for some x ∈ Fj.
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A simplicial complex is shellable if it has a shelling.
The existence of a shelling tells us a great deal about the topology of a pure d-

dimensional complex: the complex is Cohen-Macaulay, with homotopy type a bouquet of
spheres of dimension d. A fact about shellable complexes that will be especially useful for
us is that a shellable proper pure d-dimensional subcomplex of a simplicial d-sphere is a
d-ball [7, Proposition 1.2].

A cover relation in a poset P , denoted x ⋖ y, is a pair x � y of elements in P such
that there is no z ∈ P with x � z � y. Equivalently, a cover relation is an edge in the
Hasse diagram of P .

An EL-labeling of P (where EL stands for edge lexicographic) is a map from the
cover relations of P to some fixed partially ordered set, such that in any interval [x, y]
there is a unique increasing maximal chain (i.e., a unique chain with increasing labels,
read from the bottom), and this chain is lexicographically first among maximal chains
in [x, y]. It is a well-known theorem of Björner in the pure case [1, Theorem 2.3], and
more generally of Björner and Wachs [3, Theorem 5.8], that any bounded poset P with
an EL-labeling is shellable. As a result, the term EL-shelling is sometimes used as a
synonym of EL-labeling.

The families of posets that we study in this paper will have lower intervals [0̂, x] that
‘look like’ the whole poset, but upper intervals [x, 1̂] of a different form. For induction,
then, it will usually be easier for us to label the posets upside down, and construct dual
EL-labelings, that is, EL-labelings of the dual poset. Dual EL-labelings have been used
in other settings, and are natural in many contexts [2, Corollary 4.4] [24, Corollary 4.10].

A generalization of an EL-labeling which is sometimes easier to construct (though
harder to think about) is that of a CL-labeling. Here, instead of labeling the cover
relations (edges), we label “rooted edges.” More precisely, a rooted edge, or rooted cover
relation, is a pair (r, x ⋖ y), where the root r is any maximal chain from 0̂ to x. Also,
if x0 ⋖ x1 ⋖ · · · ⋖ xn is a maximal chain on [x0, xn], and r is a root for x0 ⋖ x1, then
r ∪ {x1} is a root for x1 ⋖ x2, and so on, so it makes sense to talk of a rooted chain c

r

on a rooted interval [x0, xn]
r
. A CL-labeling is one where every rooted interval [x, z]

r

has a unique increasing maximal chain, and the increasing chain is lexicographically first
among all chains in [x, z]

r
. An in-depth discussion of CL-labelings can be found in [2, 3]:

the main fact is that EL-shellable =⇒ CL-shellable =⇒ shellable. We will make real use
of the greater generality of CL-labelings only in Section 5, and the unfamiliar reader is
encouraged to read “EL” for “CL” everywhere else.

The homotopy type of bounded posets with a CL-labeling (including an EL-labeling)
is especially easy to understand, as discussed in [3]. Such a poset is homotopy equivalent to
a bouquet of spheres, with the spheres in one-to-one correspondence with the descending
maximal chains. These descending chains moreover form a cohomology basis for |P |.

2.3 Supersolvable lattices

The upper intervals [x, 1̂] in the posets we look at will be supersolvable, so we mention
some facts about supersolvable lattices. For additional background, the reader is referred
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to [26] or [15].
An element x of a lattice L is left modular if for every y ≤ z in L it holds that

(y ∨ x) ∧ z = y ∨ (x ∧ z). This looks a great deal like the well-known Dedekind identity
from group theory, and in particular any normal subgroup is left modular in the subgroup
lattice.

A graded lattice is supersolvable if there is a maximal chain 1̂ = x0 ⋗x1 ⋗ · · ·⋗xd = 0̂,
where each xi is left modular. Thus the subgroup lattice of a supersolvable group is
a supersolvable lattice. In fact, supersolvable lattices were introduced to generalize the
lattice properties of supersolvable groups.

A supersolvable lattice has a dual EL-labeling

λss(y ⋗ z) = min{j : xj ∧ y ≤ z} = max{j − 1 : xj ∨ z ≥ y},

which we call the supersolvable labeling of L (relative to the given chain of left modular
elements). This labeling has the property:

Given an interval [x, y], every chain on [x, y] has the same set
of labels (in different orders).

(2)

McNamara [14] has shown that having an EL-labeling that satisfies (2) characterizes the
supersolvable lattices.

2.4 Cohen-Macaulay complexes

If F is a face in a simplicial complex ∆, then the link of F in ∆ is

link∆ F = {G ∈ ∆ : G ∩ F = ∅ and G ∪ F ∈ ∆}.

A simplicial complex ∆ is Cohen-Macaulay if the link of every face has the homology of a
bouquet of top dimensional spheres, that is, if H̃i(link∆ F ) = 0 for all i < dim(link∆ F ).

The Cohen-Macaulay property has a particularly nice formulation on the order com-
plex of a poset. A poset is Cohen-Macaulay if every interval [x, y] has H̃i([x, y]) = 0 for
all i < dim(|[x, y]|). In particular, every interval in a Cohen-Macaulay poset is Cohen-
Macaulay. It is well-known that every shellable complex is Cohen-Macaulay. For a proof
of this fact and additional background on Cohen-Macaulay complexes and posets, see [28].

The Cohen-Macaulay property is essentially a connectivity property. Just as we say a
graph G is doubly connected (or 2-connected) if G is connected and G \ {v} is connected
for each v ∈ G, we say that a simplicial complex ∆ is doubly Cohen-Macaulay (2-CM) if

1. ∆ is Cohen-Macaulay, and

2. for each vertex x ∈ ∆, the induced complex ∆\ {x} is Cohen-Macaulay of the same
dimension as ∆.

Doubly Cohen-Macaulay complexes are closely related to complexes with convex ear de-
compositions:

the electronic journal of combinatorics 16(2) (2009), #R17 6



Theorem 2.3. (Swartz [31]) If ∆ has a convex ear decomposition, then ∆ is doubly
Cohen-Macaulay.

Thus, convex ear decompositions can be thought of as occupying an analogous role
to shellings in the geometry of simplicial complexes: a shelling is a combinatorial reason
for a complex to be (homotopy) Cohen-Macaulay, and a convex ear decomposition is a
combinatorial reason for a complex to be doubly Cohen-Macaulay. Of course, convex ear
decompositions also give the strong enumerative constraints of Theorems 2.1 and 2.2.

Intervals in a poset with a convex ear decomposition are not known to have convex ear
decompositions. However, intervals do inherit the 2-CM property, as intervals are links in
the order complex, and intervals inherit the Cohen-Macalay property. Thus, Theorem 2.3
is particularly useful in proving that a poset does not have a convex ear decomposition.

2.5 EL-ceds and CL-ceds

Nyman and Swartz used an EL-labeling in [17] to find a convex ear decomposition for
any geometric lattice. The condition on an EL-labeling says that ascending chains are
unique in every interval, and that the lexicographic order of maximal chains is a shelling.
Starting with the usual EL-labeling of a geometric lattice, Nyman and Swartz showed
that descending chains are unique in intervals of an ear of their decomposition, and that
the reverse of the lexicographic order is a shelling. Schweig used similar techniques in [23]
to find convex ear decompositions for several families of posets, including supersolvable
lattices with complemented intervals.

In this subsection, we axiomatize the conditions necessary for these techniques. Al-
though we state everything in terms of CL-labelings, one could just as easily read ‘EL’
for the purposes of this section, and ignore the word ‘rooted’ whenever it occurs.

Suppose that P is a bounded poset of rank k. Let {Σs} be an ordered collection of
rank k subposets of P . For each s, let ∆s be the simplicial subcomplex generated by
all maximal chains that occur in Σs, but not in any Σt for t < s. (Informally, ∆s is all
“new” maximal chains in Σs.) Recall that M(Σs) refers to the maximal chains of Σs,
and let M(∆s) be the maximal chains of ∆s. As usual, maximal chains are in bijective
correspondence with facets of the order complex via removing or adding 1̂ and 0̂.

The ordered collection {Σs} is a chain lexicographic convex ear decomposition (or CL-
ced for short) of P with respect to the CL-labeling λ, if it obeys the following properties:

CLced-polytope For each s, Σs is the face lattice of a convex polytope.

CLced-desc For any ∆s and rooted interval [x, y]
r

in P , there is at most one descending
maximal chain c on [x, y]

r
which is a face of ∆s.

CLced-bdry If c is a chain of length < k, such that c can be extended to a maximal
chain in both of ∆s and ∆t, where t < s; then c can be extended to a chain in
M(Σs) \M(∆s).

CLced-union Every chain in P is in some Σs.
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Note 2.4. We note the resemblance of (CLced-desc) with the increasing chain condition
for a CL-labeling (under the reverse ordering of labels); but though ∆s is a simplicial
complex corresponding with chains in P , it is not itself a poset.

Note 2.5. By analogy with CL-labelings, it would seem that we should require the de-
scending chain in (CLced-desc) to be lexicographically last. But this would be redundant:
suppose c is the lexicographically last maximal chain in [x, y]

r
that is also in ∆s, but that

c has an ascent at ci. Then Lemma 2.7 below gives that we can replace the ascent with
a descent, obtaining a lexicographically later chain, a contradiction.

Note 2.6. As previously mentioned, we will usually refer to EL-ceds in this paper, i.e.,
the special case where λ is an EL-labeling. Similarly, we may refer to dual EL-ceds, that
is, EL-ceds of the dual poset.

Lemma 2.7. (Technical Lemma) Let {Σs} be a CL-ced of a poset, with {∆s} as above,
and let c = {x⋖c1 ⋖ · · ·⋖cj−1 ⋖y} be a maximal chain on a rooted interval [x, y]

r
, with c

a face in ∆s. Suppose that c has an ascent at ci. Then ∆s contains a c′′ = (c \ {ci})∪ c′′i
which descends at c′′i , and is lexicographically later than c.

Proof. Let c− = c \ {ci}, and let Σt be the first subposet in the CL-ced that contains c−.
Since Σt is the face lattice of a polytope, it is Eulerian, so c− has two extensions in Σt.
By the uniqueness of ascending chains in CL-labelings, at most one is ascending at rank
i; by (CLced-desc), at most one is descending. Thus, there is exactly one of each. The
extension with the ascent is c, call the other extension c′′.

We have shown that c is in Σt and (since Σt is the first subposet containing c−) that
s = t, so that c′′ is in ∆s. Finally, c′′ is lexicographically later than c by the definition of
CL-labeling.

We also recall a useful lemma from undergraduate point-set topology [16, Exercise
17.19]:

Lemma 2.8. If B is a closed subset of X, then ∂B = B ∩ X \ B.

Although they did not use the terms “CL-ced” or “EL-ced” in their paper, the essence
of the following theorem was proved by Nyman and Swartz in [17, Section 4], where they
used it to construct convex ear decompositions of geometric lattices.

Theorem 2.9. If {Σs} is an CL-ced for P , then the associated subcomplexes {∆s} form
a convex ear decomposition for |P |.

Proof. (Nyman and Swartz [17, Section 4]) The property (ced-union) follows directly from
(CLced-union), and (ced-polytope) follows from (CLced-polytope) because the barycentric
subdivision of a polytope is again a polytope.

For (ced-bdry), we first note that ∂∆s = ∂
(

|Σs| \ ∆s

)

(the topological closure), hence

∂∆s ⊆ ∆s ∩ (
⋃

t<s ∆t). Conversely, if c is in ∆s ∩ (
⋃

t<s ∆t), then (CLced-bdry) gives that

c is in both ∆s and |Σs| \ ∆s. Lemma 2.8 then gives the desired inclusion.
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It remains to check (ced-topology). Using (CLced-desc), we show that the reverse of
the lexicographic order is a shelling of ∆s. For if

c = {0̂ ⋖ c1 ⋖ · · · ⋖ ck−1 ⋖ 1̂} and

c′ = {0̂ ⋖ c′1 ⋖ · · · ⋖ c′k−1 ⋖ 1̂}

are maximal chains in ∆s, with c lexicographically earlier than c′, then (CLced-desc) and
Note 2.5 give that c has an ascent on some interval where c disagrees with c′. So c has
an ascent at i, and ci 6= c′i.

Apply Lemma 2.7 on the interval [0̂, 1̂] to get c′′ in ∆s which descends at i, and
otherwise is the same as c. Then c′ ∩ c ⊆ c′′ ∩ c = c \ {ci}, so |c′′ ∩ c| = |c| − 1, and so
c′′ is lexicographically later than c, as Condition (1) requires for a shelling.

We now check that ∆s is a proper subcomplex of |Σs| for s ≥ 2. Suppose that
∆s = |Σs|. Then by Notes 2.4 and 2.5, λ is a CL-labeling on Σs with respect to the reverse
ordering of its label set. Since |Σs| is a sphere, there is an ascending chain (descending
chain with respect to the reverse ordering) in Σs. Since the ascending chain in P is unique,
we have s = 1.

By definition ∆1 = |Σ1| is a (k − 2)-sphere. Now since ∆s is shellable and a proper
subcomplex of the (k − 2)-sphere |Σs| for s ≥ 2, we get that ∆s is a (k − 2)-ball; thus
(ced-topology) holds.

Note 2.10. Each non-empty ear of {∆s} contains exactly one descending chain. This is
no accident: see the discussion at the end of Section 2.2.

Corollary 2.11. The following families of posets have EL-ceds, thus convex ear decom-
positions.

1. (Nyman and Swartz [17, Section 4]) Geometric lattices.

2. (Schweig [23, Theorem 3.2]) Supersolvable lattices with Möbius function non-zero on
every interval.

3. (Schweig [23, Theorems 5.1 and 7.1]) Rank-selected subposets of supersolvable and
geometric lattices.

In the following two sections, we will exhibit an EL-ced for the d-divisible partition
lattice, and (using only slightly different techniques) a convex ear decomposition for the
coset lattice of a relatively complemented group.

3 The d-divisible partition lattice

The d-divisible partition poset, denoted Π
d

n, is the set of all proper partitions of [n] =
{1, . . . , n} where each block has cardinality divisible by d. The d-divisible partition lattice,

denoted Πd
n is Π

d

n with a ‘top’ 1̂ and ‘bottom’ 0̂ adjoined. Πd
n is ordered by refinement
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(which we denote by ≺), as in the usual partition lattice Πn (= Π1
n). In general, Πd

n is
a subposet of Πn, with equality in the case d = 1; on the other hand, intervals [a, 1̂] are
isomorphic to Πn/d for any atom a ∈ Πd

n. We refer frequently to [33] for information about
the d-divisible partition lattice.

As Πn is a supersolvable geometric lattice, and hence quite well understood, we restrict
ourself to the case d > 1. It will sometimes be convenient to partition a different set
S 6= [n]. In this case we write ΠS to be the set of all partitions of S, and Πd

S the set of all
d-divisible partitions of S, so that Πd

n = Πd
[n] is a special case.

Wachs found a homology basis for Πd
n in [33, Section 2]. We recall her construction.

By Sn we denote the symmetric group on n letters. We will write a permutation α ∈ Sn

as a word α(1)α(2) . . . α(n), and define the descent set of α to be the indices where α
descends, i.e., des α = {i ∈ [n − 1] : α(i) > α(i + 1)}.

Then a split of α ∈ Sn at di divides α into α(1)α(2) . . . α(di) and α(di + 1) . . . α(n).
A switch-and-split at position di does the same, but first transposes (‘switches’) α(di)

and α(di + 1).
These operations can be repeated, and the result of repeated applications of splits

and switch-and-splits at d-divisible positions is a d-divisible partition. For example, if
α = 561234, then the 2-divisible partition 56 | 13 | 24 results from splitting at position 2
and switch-and-splitting at position 4.

Let Σα be the subposet of Πd
n that consists of all partitions that are obtained by

splitting and/or switch-and-splitting the permutation α at positions divisible by d. Let

Ad
n = {α ∈ Sn : α(n) = n, des α = {d, 2d, . . . , n − d}} .

Wachs proved

Theorem 3.1. (Wachs [33, Theorems 2.1-2.2])

1. Σα is isomorphic to the face lattice of the (n
d
− 1)-cube for any α ∈ Sn.

2. {Σα : α ∈ Ad
n} is a basis for H∗(Π

d
n).

After some work, this basis will prove to be a dual EL-ced.

3.1 A dual EL-labeling for Πd
n

In addition to the homology basis already mentioned, Wachs constructs an EL-labeling
in [33, Section 5], by taking something close to the standard EL-labeling of the geometric
lattice on intervals [a, 1̂] ∼= Πn/d (for a an atom), and “twisting” by making selected labels
negative. While her labeling is not convenient for our purposes, we use her sign idea to
construct our own dual EL-labeling starting with a supersolvable EL-labeling of [a, 1̂].

Partition lattices were one of the first examples of supersolvable lattices to be studied
[26]. It is not difficult to see that the maximal chain with jth ranked element

1 | 2 | . . . | j | (j + 1) . . . n
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is a left modular chain in Πn.
Let y ·≻ z be a cover relation in Πn. Then y is obtained by merging two blocks

B1 and B2 of the partition z, where without loss of generality maxB1 < max B2. The
supersolvable dual EL-labeling (relative to the above chain of left modular elements) is
especially natural:

λss(y ·≻ z) = min{j : (1 | . . . | j | (j + 1) . . . n) ∧ y ≺ z}

= max B1.

We now construct the labeling that we will use for Πd
n. Let y ·≻ z be a cover relation

in Πd
n, where z 6= 0̂. As above, y is obtained by merging blocks B1 and B2 of z, where

max B1 < max B2. Label

λ(y ·≻ z) =

{

−max B1 if max B1 < min B2,

max B1 otherwise, and

λ(y ·≻ 0̂) = 0.

When discussing dual EL-labelings, any reference to ascending or descending chains is in
the dual poset, so that the inequalities go in the opposite direction from normal.

Note 3.2. Let a ∈ Πd
n be an atom. Then a has n/d blocks, and every block has d

elements. Order the blocks {Bi} so that maxB1 < max B2 < · · · < max Bn/d, and let
B = {max B1, . . . , max Bn/d}. Then [a, 1] ∼= ΠB, and we recognize |λ| as the supersolvable
dual EL-labeling λss on ΠB.

Note 3.3. We also can view Πd
n as a subposet of Πn. A cover relation y ·≻ z in Πd

n is a
cover relation in Πn unless z = 0̂. Thus, |λ| is the restriction of λss on Πn, except at the
bottom edges y ·≻ 0̂.

Note 3.4. The cover relation x0 ·≻ x1 gets a negative label if and only if B1 |B2 is a non-
crossing partition of B = B1 ∪B2. We will call this a non-crossing refinement of x0. The
poset of all non-crossing partitions has been studied extensively [25, 13], although this
seems to have a different flavor from what we are doing. Also related is the connectivity set
of a permutation [29], the set of positions at which a split yields a non-crossing partition.

Recall that if P1 and P2 are posets, then their direct product P1 × P2 is the Cartesian
product with the ordering (x1, x2) ≤ (y1, y2) if x1 ≤ x2 and y1 ≤ y2. The lower reduced
product P1 ×̌ P2 of two bounded posets is

(

(P1 \ {0̂}) × (P2 \ {0̂})
)

∪ {0̂}. Although the
definition of the lower reduced product may appear strange at first glance, it occurs
naturally in many settings, including the following easily-proved lemma:

Lemma 3.5. Let y ≻ x be elements of Πd
n \ {0̂}, with y = B1 | . . . |Bk. Then

1. [0̂, y] ∼= Πd
B1

×̌ Πd
B2

×̌ . . . ×̌ Πd
Bk

.

2. [y, 1̂] ∼= Πk.

3. [x, y] is the direct product of intervals in Πd
Bi

.
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Note 3.6. We discuss (lower/upper reduced) products of posets at much more length in
Section 5. Although the situation with Πd

n is simple enough that we do not need to refer
directly to product labelings (introduced in Section 5.3), they are the underlying reason
we can look at partitions block by block in the proofs that follow.

Theorem 3.7. λ is a dual EL-labeling of Πd
n.

Proof. We need to show that each interval has a unique (dual) increasing maximal chain
which is lexicographically first. There are two forms of intervals we must check:

Case 1. Intervals of the form [0̂, x0].

Since the bottommost label on every chain in [0̂, x0] is a 0, every other label in an in-
creasing chain must be negative. Hence, every edge xi ·≻ xi+1 in an increasing chain must
correspond to a non-crossing refinement of xi.

In such a chain, any block B of x0 is partitioned repeatedly into non-crossing sub-blocks.
At the atom level, this block B is sub-partitioned as B1 | . . . |Bk, where max Bi <
min Bi+1. Thus, any increasing chain on [0̂, x0] passes through this single atom, and
we have reduced the problem to Case 2.

Case 2. Intervals of the form [xm, x0], where xm 6= 0̂.

By Lemma 3.5 and the discussion following, it suffices to examine a single block B of x0.
(The labels on disjoint blocks are independent of each other.)

In xm, let B be subpartitioned as B1 | . . . |Bk, with max Bs = bs and b1 < b2 < · · · < bk.
The edges we consider correspond with subpartitioning B between itself and B1 | . . . |Bk.

First, we show that the lexicographically first chain c = x0 ·≻ x1 ·≻ . . . ·≻ xm is unique.
If there are any negative labels down from xi, the edge xi ·≻ xi+1 will have the label −bs

with greatest absolute value among negative labels. Thus,

xi+1 = xi ∧ (B1 . . . Bs |Bs+1 . . . Bk) ,

and hence xi ·≻ xi+1 is the unique edge down from xi with this label. Otherwise, xi ·≻ xi+1

will have the least possible (positive) label, which is unique since |λ| is a dual supersolvable
EL-labeling on [xm, x0].

Next, we show that the lexicographically first chain is increasing. Suppose that c has a
descent at xi−1 ·≻ xi ·≻ xi+1, with λ(xi−1 ·≻ xi) = α and λ(xi ·≻ xi+1) = β, corresponding
to dividing a block C as

C ·≻ C1 |C2 ∪ C3 ·≻ C1 |C2 |C3.

Since |λ| is a dual EL-labeling, both labels cannot be positive. Thus, β < 0. If then
|α| < |β|, we have max C1 < max C2 < min C3, and then C ·≻ C1 ∪C2 |C3 is noncrossing,
with a β label, and so lexicographically before xi−1 ·≻ xi. Otherwise, |α| > |β|. Since
we have a descent at i, we see α > 0, and so the ±β < α label on the edge obtained by
partitioning C ·≻ C1 ∪ C2 |C3 is again lexicographically before xi−1 ·≻ xi. In either case,
we have shown that any c with a descent is not lexicographically first.
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Finally, we show that any increasing chain is lexicographically first. Suppose that there
is an edge x0 ·≻ y (≻ xm) that receives a −bs label. Then y = B1 . . . Bs |Bs+1 . . . Bk is
a non-crossing partition of B, and in particular Bs < Bs+1, . . . , Bk. We see that any
subpartion of x0 separating Bs from Bt for t > s is non-crossing, thus every chain on
[xm, x0] has a −bs label. This fact, combined with (2) shows that any increasing chain on
an interval must be constructed inductively by repeatedly taking the least-labeled edge
down, hence be lexicographically first.

The descending chains of Wachs’s EL-labeling are {rσ : σ ∈ Ad
n}, where rσ corre-

sponds to successively splitting σ at the greatest possible σ(id) [33, Theorem 5.2]. It is
easy to see that each rσ is also descending with respect to our dual EL-labeling, and a
dimension argument shows us that {rσ : σ ∈ Ad

n} is exactly the set of descending chains.

3.2 An EL-ced for Πd
n

Order {Σα} lexicographically by the reverse of the words α according to the reverse
ordering on [n]. That is, order lexicographically by the words α(n)α(n − 1) · · ·α(1),
where n ⊳ n − 1 ⊳ · · · ⊳ 1. We refer to this ordering as rr-lex, for “reverse reverse
lexicographic.” For example, 132546 is the first permutation in A2

6 with respect to rr-lex,
while 231546 <rr−lex 142536 (since 4 > 3 in position 5).

We will prove the following version of Theorem 1.1. Let Σα be as in the text preceding
Theorem 3.1, and λ as in Section 3.1.

Theorem 3.8. {Σα : α ∈ Ad
n} ordered by rr-lex is a dual EL-ced of Πd

n with respect to
λ.

We introduce some terms. If B1 | . . . |Bk is a partition of [n], then we say that α ∈ Sn

has the form B1B2 . . . Bk if the first |B1| elements in the word α are in B1, the next |B2|
are in B2, and so forth. When k = 2, we say that α has switched form B1B2 if α′ has
the form B1B2 for α′ = α ◦ (|B1| |B1| + 1), that is, for α′ equal to α composed with the
transposition of adjacent elements at |B1|.

We can also talk of α having form B1B2 . . . Bk up to switching, by which we mean
some α′ has the form B1 . . . Bk, where α′ is α up to transpositions at the borders of
some (but not necessarily all) of the blocks. Finally, if B ⊆ [n], then α|B is the word
α = α(1)α(2) . . . α(n) with all α(i)’s that are not in B removed.

Example 3.9. If B1 = {1, 2, 3} and B2 = {4, 5, 6}, then 123456, 321654, and 213465 all
have the form B1B2. 124356 and 135246 have switched form B1B2, while 152346 does not
have the form B1B2, even up to switching.

Clearly, the d-divisible partition B1 | . . . |Bk is in Σα if and only if α has the form
B1B2 . . . Bk up to switching.

Lemma 3.10. Every maximal chain c in Πd
n is in Σα for some α ∈ Ad

n.
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Proof. We will in fact construct the earliest such α according to the rr-lex ordering, which
will in turn help us with Corollary 3.11. The proof has a similar feel to the well-known
quicksort algorithm. Let c = {1̂ = c0 ·≻ . . . ·≻ cn/d = 0̂}.

Consider first the edge 1̂ ·≻ c1 in c. The edge splits [n] into B1 |B2, and clearly such α,
if it exists, must have the form B1B2 or B2B1 up to switching. If max B1 < max B2, then
all permutations in Ad

n of the (possibly switched) form B1B2 come before permutations of
the (possibly switched) form B2B1, so the rr-lex first α with c in Σα has the form B1B2

up to switching.
Apply this argument inductively down the chain. At ci, we will have shown that

the rr-lex first α with c in Σα must have the form B1B2 · · ·Bi+1 up to switching. Then
if ci ·≻ ci+1 splits block Bj into Bj,1 and Bj,2, with max Bj,1 < max Bj,2, an argument
similar to that with 1̂ ·≻ c1 gives that α must in fact have the form

B1B2 . . . Bj−1Bj,1Bj,2Bj+1 . . . Bi+1

up to switching.
At the end, we have shown the earliest α having c in Σα must have the form B1 . . . Bn/d

up to switching. Conversely, it is clear from the above that for any α of this form, c is in
Σα. Sort the elements of each Bi in ascending order to get a permutation α0. This α0 is
in Sn but not necessarily in Ad

n, so we perform a switch at each d-divisible position where
there is an ascent (i.e., where Bi < Bi+1). This gives us an element α ∈ Ad

n of the given
form up to switching, and finishes the proof of the statement.

We continue nonetheless to finish showing that α is the first element in Ad
n with c

in Σα. We need to show that if β is another element of Ad
n with the same form up to

switching of B1B2 . . . Bn/d (but different switches), then β >rr−lex α. If Bi < Bi+1, then
both α and β are switched at id (as otherwise we are not in Ad

n). Otherwise, if β is a switch
at id, then the switch exchanges β(id) and β(id + 1) (up to resorting the blocks). Since
β(id) > β(id + 1), “unswitching” moves a larger element of [n] later in the permutation,
yielding an rr-lex earlier element of the given form up to switching.

Let ∆α be the simplicial complex generated by maximal chains that are in Σα (α ∈ Ad
n),

but in no Σβ for β ∈ Ad
n with β <rr−lex α. In the following corollary, we summarize the

information from the proof of Lemma 3.10 about the form of α with c in ∆α.

Corollary 3.11. Let c be a maximal chain in ∆α, with y ·≻ x an edge in c which merges
blocks B1 and B2 into block B (max B1 < max B2). Then

1. α has the form . . . B1B2 . . . , up to switching.

2. Let τid be the transposition exchanging id and id + 1. If y ·≻ x corresponds to a
switch-and-split at id, then the permutation α ◦ τid is ascending between positions
(i − 1)d + 1 and (i + 1)d.

3. α|B1
= . . . max B1, i.e., max B1 is rightmost in α|B1

.
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Proof. (1) and (2) are clear from the proof of Lemma 3.10.
For (3), suppose that max B1 is not rightmost in α|B1

. Then since α is ascending on
d-segments, we have that maxB1 is rightmost in some d-segment of α|B1

. If a switch-
and-split occurs at maxB1 then we have a contradiction of (2), while a split contradicts
(1).

Every chain passing through an atom a has the same labels up to sign, and Corollary
3.11 tells us what the labels are. It is now not difficult to prove (CLced-desc) and (CLced-
bdry).

Proposition 3.12. Let [xm, x0] be an interval with xm, x0 ∈ ∆α. Then there is at most
one (dual) descending maximal chain c on [xm, x0] which is in ∆α.

Proof. There are two cases:

Case 1. xm = 0̂.

It suffices to consider a block B of x0. Partitions of B corresponding to edges in Σα must
either split or switch-and-split α|B at d-divisible positions, and as every chain on [0̂, x0]
has bottommost label 0, all other edges of a descending chain must have positive labels
(and so correspond to crossing partitions).

Claim 3.13. All edges of such a descending chain correspond to splittings of α.

Proof. (of Claim) Suppose otherwise. Without loss of generality we can assume that
x0 ·≻ x1 in c corresponds to a switch-and-split of B into B1 |B2, with B the block of
smallest size which is switch-and-split by an edge in c. We will show that c has an ascent.

Corollary 3.11 part 2 tells us that the first d letters in α|B2
are strictly greater than the

last d in α|B1
, and since max B1 is rightmost in α|B1

, that the first d letters of α|B2
are

strictly greater than all of B1. Since λ(xm−1 ·≻ 0̂) = 0, any negative label gives an ascent.
If |B2| = d, then we have shown that B1 |B2 is non-crossing (giving a negative label). If
on the other hand |B2| > d, then any subdivision of B2 gives a label with absolute value
> max B1, hence an ascent. In either case, we contradict c being a descending chain.

It follows immediately that a descending chain on [0̂, x0] is unique.

Case 2. xm 6= 0̂.

As usual, we consider what happens to a block B of x0. In xm, let B partition as
B1 | . . . |Bk, where α|B has the form B1B2 . . . Bk up to switching. Then every edge in ∆σ

comes from subdividing at some Bi, i.e., as shown at the dotted line here

· · · ∪ Bj |Bj+1 ∪ · · · ∪ Bi
... Bi+1 ∪ · · · ∪ Bl | . . .

Let bi = max Bi, so every chain on [xm, x0] has labels ±b1,±b2, . . . ,±bk−1.
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Suppose that · · · ∪Bi |Bi+1 ∪ . . . is crossing, but Bi |Bi+1 is non-crossing. Corollary 3.11
part 3 tells us that max(· · · ∪ Bi) = maxBi, so that

min(Bi+2 ∪ · · · ∪ Bk) < max Bi < min Bi+1 < max Bi+1.

It follows that Bi+1 |Bi+2 ∪ . . . is also crossing. Thus, if Bi |Bi+1 is non-crossing, then
(positive) bi is not the label of the first edge of a descending chain c, since bi+1 > bi

would then be the label of a later edge. That is, if Bi |Bi+1 is non-crossing, then a
descending chain has a −bi label. The “only if” direction is immediate, thus there is a
unique permutation and set of signs for the ±b1, . . . ,±bk−1 that could label a descending
chain.

Proposition 3.14. Let c be a (non-maximal) chain with extensions in both Σα and Σβ,
β <rr−lex α. Then c has maximal extensions in M(Σα) \M(∆α).

Proof. Let c = {1̂ = c0 > c1 · · · > cm > cm+1 = 0̂}. The first β with c in Σβ obeys the
following two conditions:

1. For each ci 6= 0̂, each block B in ci−1 splits into sub-blocks B1, . . . , Bk in ci, where
max B1 < · · · < max Bk. The restriction β|B is of the form B1B2 . . . Bk. (By
repeated application of Corollary 3.11 .)

2. For each block B of cm, β|B is the permutation

{b1b2 . . . bd+1bd . . . bid+1bid . . . bk},

where B = {b1, . . . , bk} for b1 < · · · < bk. That is, β|B is the ascending permutation
of the elements of B, with transpositions applied at d-divisible positions. (The
proof is by starting at the end and working to the front, greedily taking the greatest
possible element for each position.)

Since α is not the first permutation in Ad
n such that c ∈ Σα, α must violate at least one

of these. If it violates (1) for some B, then α|B has the form B1 . . . Bk with max Bj >
max Bj+1. Merge Bj and Bj+1 to add an edge down from ci−1 that is in Σα, otherwise
extend arbitrarily in Σα. By Corollary 3.11 part 1, the resulting chain is not in ∆α.

If α|B violates (2) for some B, then extend c by switch-and-splitting at every d-
divisible position of B, otherwise arbitrarily in Σα. At the bottom, B is partitioned
into some B1 | . . . |Bk. Since (2) is violated, applying transpositions to α at d-divisible
partitions gives a descent. But this contradicts the conclusion of Corollary 3.11 part 2,
and the resulting chain is not in ∆α.

We check the CL-ced properties: Wachs had already proved (CLced-polytope) as
presented in Theorem 3.1, Lemma 3.10 gives us (CLced-union), Proposition 3.12 gives
(CLced-desc), and Proposition 3.14 gives (CLced-bdry). We have completed the proof of
Theorem 3.8.
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4 The coset lattice

4.1 Group theory background

The coset poset of G, denoted C(G), is the set of all right cosets of all proper subgroups of
G, ordered under inclusion. The coset lattice of G, denoted C(G), is C(G) ∪ {∅, G}, that
is, C(G) with a top 1̂ = G and bottom 0̂ = ∅ added. With our definitions, it makes sense
to look at the order complex of C(G) (which is the set of all chains of C(G)), and so we
talk about the coset lattice, even though “coset poset” has a better sound to it. We notice
that C(G) has meet operation Hx ∧ Ky = Hx ∩ Ky and join Hx ∨ Ky = 〈H, K, xy−1〉y
(so it really is a lattice.) General background on the coset lattice can be found in [22,
Chapter 8.4], and its topological combinatorics have been studied in [5, 19, 36].

The subgroup lattice of G, denoted L(G) is the set of all subgroups of G, ordered by
inclusion. General background can be found in [22], and its topological combinatorics
have been studied extensively, for example in [24, 32].

Notice that for any x ∈ G, the interval [x, G] in C(G) is isomorphic to L(G). It is a
theorem of Iwasawa [11] that L(G) is graded if and only if G is supersolvable, hence C(G)
is graded under the same conditions. As we have only defined convex ear decompositions
for pure complexes, we are primarily interested in supersolvable groups in this paper.

Schweig proved the following:

Proposition 4.1. (Schweig [23]) For a supersolvable lattice L, the following are equiva-
lent:

1. L has a convex ear decomposition.

2. L is doubly Cohen-Macaulay.

3. Every interval of L is complemented.

Note 4.2. A construction very much like Schweig’s convex ear decomposition was earlier
used by Thévenaz in [32] on a subposet of L(G) to understand the homotopy type and
the conjugation action on homology of L(G) for a solvable group G.

It is easy to check that any normal subgroup N ⊳ G is left modular in L(G), so a
supersolvable group has a supersolvable subgroup lattice with any chief series as its left
modular chain. Let G′ denote the commutator subgroup of G. The following collected
classification of groups with every interval in their subgroup lattice complemented is pre-
sented in Schmidt’s book [22, Chapter 3.3], and was worked out over several years by
Zacher, Menegazzo, and Emaldi.

Proposition 4.3. The following are equivalent for a (finite) group G:

1. Every interval of L(G) is complemented.

2. If H is any subgroup on the interval [H0, H1], then there is a K such that HK = H1

and H ∩ K = H0.
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3. L(G) is coatomic, i.e., every subgroup H of G is an intersection of maximal sub-
groups of G.

4. G has elementary abelian Sylow subgroups, and if H1 ⊳ H2 ⊳ H3 ⊆ G, then H1 ⊳ H3.

5. G′ and G/G′ are both elementary abelian, G′ is a Hall π-subgroup of G, and every
subgroup of G′ is normal in G.

Note 4.4. The classification of finite simple groups is used in the proof that (3) is equivalent
to the others.

We will follow Schmidt and call such a group a relatively complemented group.
We notice that relatively complemented groups are complemented, that is, satisfy the

condition of Proposition 4.3 Part (2) on the interval [1, G]. On the other hand, S3 ×Z3 is
an example of a complemented group which is not relatively complemented. The comple-
mented groups are exactly the groups with (equivalently in this case) shellable, Cohen-
Macaulay, and sequentially Cohen-Macaulay coset lattice [36]. Computation with GAP
[10] shows that there are 92804 groups of order up to 511, but only 1366 complemented
groups, and 1186 relatively complemented groups.

We summarize the situation for the subgroup lattice regarding convex ear decomposi-
tions:

Corollary 4.5. The following are equivalent for a group G:

1. L(G) has a convex ear decomposition.

2. L(G) is doubly Cohen-Macaulay.

3. G is a relatively complemented group.

As a consequence, we get one direction of Theorem 1.2.

Corollary 4.6. If C(G) is doubly Cohen-Macaulay (hence if it has a convex ear decom-
position), then G is a relatively complemented group.

Proof. Every interval of a 2-Cohen-Macaulay poset is 2-Cohen-Macaulay, and the interval
[1, G] in C(G) is isomorphic to L(G).

The remainder of Section 4 will be devoted to proving the other direction.

4.2 A dual EL-labeling for C(G)

As with the d-divisible partition lattice, the first thing we need is a dual EL-labeling of
C(G). We will construct one for the more general case where G is complemented. The
main idea is to start with the EL-labeling of an upper interval and “twist” by adding
signs, similarly to our EL-labeling for Πd

n. The resulting labeling is significantly simpler
than the one I described in [36].
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Let G be a complemented group, and fix a chief series G = N1 ⊲ N2 ⊲ · · · ⊲ Nk+1 = 1
for G throughout the remainder of Section 4. Our labeling (and later our convex ear
decomposition) will depend on this choice of chief series, but the consequences for the
topology and h-vector of C(G) will obviously depend only on G.

For each factor Ni/Ni+1, choose a complement B0
i , i.e., a subgroup such that NiB

0
i = G

but Ni ∩B0
i = Ni+1. (Such a B0

i exists, as every quotient group of a complemented group
is itself complemented [22, Lemma 3.2.1].) From Section 2.3, the usual dual EL-labeling
of the subgroup lattice of a supersolvable group is

λss(K0 ⊃· K1) = max{i : NiK1 ⊇ K0} = min{i : Ni+1 ∩ K0 ⊆ K1}.

Remember that λss labels every chain on a given interval with the same set of labels (up
to permutation).

We now define a labeling λ of C(G) as follows. For K0 ⊃· K1 labeled by λss with i, let

λ(K0x ⊃· K1x) =

{

−i if K1x = K0x ∩ B0
i ,

i otherwise, and

λ(x ⊃· ∅) = 0.

It is immediate from this construction that |λ|[x,G] = λss (up to the “dropping x” iso-
morphism), much like the situation discussed in Section 3.1 for the d-divisible partition
lattice.

Lemma 4.7. Let G be any supersolvable group. Then:

1. If KB = G where B ⊂· G, then K ∩ B ⊂· K.

2. If λss(K0 ⊃· K1) = i, then for any complement Bi of Ni/Ni+1 and K ⊇ K0 we have
K0Bi = KBi = G.

Proof. For part 1, count: |K ∩B| = |K||B|
|G|

= |K|
[G:B]

and by supersolvability, [K : K ∩B] =

[G : B] is a prime.
For part 2, by the definition of the labeling, Ni∩K0 6⊆ K1 but Ni+1∩K0 ⊆ K1. We see

that Ni∩K0 6⊆ Ni+1, and since Ni+1 ⊂· Ni, that (Ni∩K0)Ni+1 = Ni and so K0Ni+1 ⊇ Ni.
Then K0Bi = K0Ni+1Bi ⊇ NiBi = G.

Theorem 4.8. If G is a complemented group, then λ is a dual EL-labeling of C(G).

Proof. We need to show that every interval has a unique increasing maximal chain which
is lexicographically first. There are two kinds of intervals we need to check:

Case 1. [∅, H0x]

As the last label of any chain on this interval is 0, in an increasing chain the others must be
negative (in increasing order). Since every chain has the same labels up to permutation,
uniqueness of the increasing chain is clear from the definition of λ. Existence follows from
applying Lemma 4.7 to the maximal subgroups B0

i . Finally, the chain takes the edge with
the least possible label down from each Hx, so it is lexicographically first.
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Case 2. [Hnx, H0x]

Let S be the label set of λss restricted to the interval [Hn, H0]. We notice that a −i label is
possible on [Hnx, H0x] only if Hnx ⊆ B0

i and i ∈ S. Thus, the lexicographically first chain
is labeled by all possible negative labels (in increasing order), followed by the remaining
(positive) labels, also in increasing order. Such a chain clearly exists and is increasing.
The negative-labeled part is unique since a −i label corresponds with intersection by B0

i ,
while the positive-labeled part is unique since λss = |λ| is an EL-labeling.

It remains to check that there are no other increasing chains. We have already shown that
there is only one increasing chain which has a −i label for each B0

i containing Hnx, so
any other increasing chain would need to have a +i label for some i ∈ S where Hnx ⊆ B0

i .
Without loss of generality, let this edge H0x ⊃· H1x be directly down from H0x. Then
i = min S, and since λss is a dual EL-labeling, we have that there is a unique edge down
from H0x with label ±i. But then H1x = H0x ∩ B0

i , so the edge gets a −i label, giving
us a contradiction and completing the proof.

Though we do not need it for our convex ear decomposition, let us briefly sketch the
decreasing chains of λ. Following Thévenaz [32], a chain of complements to a chief series
G = N1 ⊃· N2 ⊃· . . . ⊃· Nk+1 = 1 is a chain of subgroups G = Hk+1 ⊃· Hk ⊃· . . . ⊃·
H1 = 1 where for each i, Hi is a complement to Ni. Thévenaz showed that the chains of
complements in G correspond to homotopy spheres in |L(G)|. The following proposition
is the EL-shelling version of Thévenaz’s result for a supersolvable group, and is a special
case of [37, Proposition 4.3].

Proposition 4.9. The decreasing chains in L(G) with respect to λss are the chains of
complements to G = N1 ⊲ . . . ⊲ Nk+1 = 1.

Proof. If G = Hk+1 ⊃· Hk ⊃· . . . ⊃· H1 = 1 is a chain of complements, then NiHi = G ⊇
Hi+1, while

Ni+1Hi ∩ Hi+1 = (Ni+1 ∩ Hi+1)Hi = 1 · Hi = Hi

by left modularity (the Dedekind identity). Thus λss(Hi+1 ⊃· Hi) = i, and the chain is
descending.

Conversely, any descending chain corresponds to a sphere in |L(G)|, and by Thévenaz’s
correspondence, there can be no others.

Corollary 4.10. The decreasing chains in C(G) with respect to λ are all cosets of chains
of complements {G = Hk+1x ⊃· . . . ⊃· H1x = x ⊃· ∅} to the chief series G = N1 ⊲ . . . ⊲
Nk+1 = 1 such that no Hix = Hi+1x ∩ B0

i .

4.3 A convex ear decomposition for C(G)

Recall that subgroups H and K commute if HK = KH is a subgroup of G.

Lemma 4.11. (Warm-up Lemma) Let G be a solvable group with chief series G = N1 ⊲
N2 ⊲ · · · ⊲ Nk+1 = 1, and Bi and Bj be complements of normal factors Ni/Ni+1 and
Nj/Nj+1 where i 6= j. Then Bi and Bj commute.
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Proof. Suppose j < i. Then Ni+1 ( Ni ⊆ Nj+1 ( Nj , and Nj+1 ⊆ Bj . Thus, BjBi ⊇
NiBi = G.

Recalling G = N1 ⊲ N2 ⊲ · · · ⊲ Nk+1 = 1 as the chief series we fixed in Section 4.2, let

B = {Bi : Bi is a complement to Ni/Ni+1, 1 ≤ i ≤ k}

be a set of complements to Ni, one complement for each chief factor (so that |B| = k).
For any x ∈ G, let Bx = {Bix : Bi ∈ B}. We will call B a base-set for C(G).

The first step is to show that intersections of certain cosets of B give us a cube, using
a stronger version of Lemma 4.11.

Lemma 4.12. If B is a base-set, then (Bi1 ∩ · · · ∩ Bil)Biℓ+1
= G.

Proof. We count

|(Bi1 ∩ · · · ∩ Biℓ)Biℓ+1
| =

|(Bi1 ∩ · · · ∩ Biℓ)||Biℓ+1
|

|Bi1 ∩ · · · ∩ Biℓ ∩ Biℓ+1
|

=
|Bi1 ∩ · · · ∩ Biℓ−1

||Biℓ||Biℓ+1
|

|(Bi1 ∩ · · · ∩ Biℓ−1
)Biℓ ||Bi1 ∩ · · · ∩ Biℓ ∩ Biℓ+1

|
.

By induction on ℓ, this is

=
|Bi1 ∩ · · · ∩ Biℓ−1

||Biℓ||Biℓ+1
|

|G||Bi1 ∩ · · · ∩ Biℓ ∩ Biℓ+1
|

,

and by symmetry,

|(Bi1 ∩ · · · ∩ Biℓ)Biℓ+1
| = |(Bi1 ∩ · · · ∩ Biℓ−1

∩ Biℓ+1
)Biℓ|.

Repeating this argument shows that |(Bi1 ∩ · · ·∩Biℓ)Biℓ+1
| is independent of the ordering

of the Bij ’s, or of the choice of iℓ+1.
Then take iℓ+1 to be the largest index of any such Bij , so that Niℓ+1

⊆ Bi1 ∩ · · · ∩Biℓ .
In particular, (Bi1 ∩ · · · ∩ Biℓ)Biℓ+1

⊇ Niℓ+1
Biℓ+1

= G. Since the ordering of the ij ’s
doesn’t affect the cardinality, |(Bi1 ∩ · · · ∩Biℓ)Biℓ+1

| = |G| for any choice of iℓ+1, proving
the lemma.

Corollary 4.13. If B is a base-set and x is such that the elements of B and Bx are
distinct from one another (i.e., Bi 6= Bix for all i), then the meet sublattice generated by
B ∪ Bx is isomorphic to the face lattice of the boundary of a k-cube.

Proof. Any Bj commutes with any intersection of Bi’s, j 6= i, and the result follows from
Lemma 4.7 and since Bi ∩ Bix = ∅ for all i.
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We henceforth assume that G is relatively complemented.
Let B be a base-set for C(G) as above, and x ∈ G be such that Bix 6= B0

i (for each i).
Then we define ΣBx to be the meet sublattice of C(G) generated by Bx ∪ {B0

i : Bix =
B0

i x}, and the larger meet sublattice Σ+
Bx to be generated by

Bx ∪ {B0
i : Bix = B0

i x} ∪ {Biyi : Bi 6= B0
i },

where the yi’s are some elements such that Biyi 6= Bix. By Lemma 4.7 and the proof of
Corollary 4.13,

⋂

{i :Bix=B0
i x}

B0
i ∩

⋂

{i :Bi 6=B0
i }

Biyi = y (for some y),

so Σ+
Bx is given by all intersections of Bx ∪ By. Thus (also by Corollary 4.13) |Σ+

Bx| is a
convex polytope with subcomplex |ΣBx|.

Lemma 4.14. Let H0x ⊃· H1x be an edge in C(G) with λ(H0x ⊃· H1x) = i. Then
H1x = H0x ∩ Bix for some complement Bi to Ni/Ni+1.

Proof. Since every maximal chain in C(G) has exactly one edge with λ(H0x ⊃· H1x) = ±i
for each i ∈ [k], it suffices to show that H1 is contained in some complement Bi to Ni/Ni+1.
Then H0 cannot be contained in Bi, as that would give two ±i edges, and so H1 = H0∩Bi.

Since G is relatively complemented, every interval in L(G) is complemented. In par-
ticular, any interval of height 2 has both increasing and decreasing chains, so for any
H−1 ⊃· H0 there is an H+

1 ⊂· H−1 with λss(H−1 ⊃· H+
1 ) = i.

Repeat this argument inductively on H−1 ⊃· H+
1 until H−1 = G. The final H+

1 is the
desired Bi, and the definition of λss shows that Bi is a complement to Ni/Ni+1.

Corollary 4.15. Every maximal chain in C(G) is in some ΣBx.

Corollary 4.15 would not hold if we replaced ‘relatively complemented’ with any weaker
condition, since the result implies coatomicity, and Proposition 4.3 tells us that relatively
complemented groups are exactly those with coatomic subgroup lattice.

Now that we have a set of cubes that cover C(G), the next step is to assign an order
to them. For any base-set B, let ρi(B) be 0 if Bi = B0

i , and 1 otherwise. We put the
ρi’s together in a binary vector ρ(B), which we will call the pattern of B. Order the Bx’s
(and hence the ΣBx’s) in any linear extension of the lexicographic order on ρ(B). Let ∆Bx

be the simplicial complex with facets the maximal chains that are in ΣBx, but not in any
preceding ΣB′x′.

The ΣBx’s are generally proper subsets of face lattices of convex polytopes, so (CLced-
polytope) does not hold and we do not have an EL-ced. We can use the same sort of
argument, however, to prove the following refinement of Theorem 1.2:

Theorem 4.16. {∆Bx} is a convex ear decomposition for C(G) under the pattern ordering.

Corollary 4.15 shows that the ears cover C(G), that is, that (CLced-union) holds. Our
next step is to show that an analogue of (CLced-desc) holds.

It will be convenient to let S([a, b]) be the label set of |λ| on the interval [a, b], that is,
the set of nonnegative i’s such that λ gives ±i labels on cover relations in [a, b].
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Lemma 4.17. For any interval [a, b] in C(G), there is at most one (dual) descending
maximal chain c on [a, b] which is in ∆Bx.

Proof. If a = ∅, then the unique descending chain on [a, b] in ΣBx is given by intersecting
with each Bix (i ∈ S([∅, b]) \ {0}) in order.

If a 6= ∅, then the interval [a, b] in ΣBx is Boolean, with a maximal chain for each
permutation of S([a, b]). If there is a −i label on a chain in ∆Bx, then the edge can be
obtained by intersecting with B0

i . But since ΣBx is the first such complex containing the
chain, we must have ρi(B) = 0 (otherwise, replace Bix with B0

i ). But this tells us that
every label with absolute value i on [a, b] in ∆Bx is negative. Every such chain thus has
the same set of labels, and at most one permutation of these labels is descending.

Corollary 4.18. ∆Bx is shellable.

Proof. Suppose a maximal chain c = {G = c1 ⊃· . . . ⊃· ck+1 ⊃· ck+2 = ∅} in ΣBx has an
ascent at j. If j 6= k + 1, then it is immediate that c \ {cj} has two extensions in ΣBx,
and we argue exactly as in Lemma 2.7 and Theorem 2.9.

If j = k + 1, then the ascent at j has labels −i, 0, and hence ρi(B) = 0 and ΣBx is the
first cube containing c \ {ck+1}. Intersecting with B0

i x instead of B0
i at ck gives another

chain c′ in ∆Bx with a descent at k + 1, and we again argue as in Theorem 2.9.

Finally, we show directly that (ced-bdry) holds. We start with a lemma.

Lemma 4.19. Given any chain c = {G = c1 ⊃ · · · ⊃ cm ⊃ cm+1 = ∅}, there is an
extension to a maximal chain c++ such that if c is in ΣBx, then c++ is in some Σ+

Bx. If
Bx is the first such with c in ΣBx, then c++ is in ΣBx.

Proof. We make the extension in two steps. First, let c+ be the extension of c by aug-
menting each cj ⊃ cj+1 for j 6= m with the chain on [cj+1, cj] that is increasing according
to |λ|. Intersecting cj iteratively with Bix or B0

i (as appropriate, for each i in S([cj+1, cj]))
in increasing order gives this chain, thus, c+ is also in ΣBx.

In a similar manner, let c++ be the extension of c+ at cm ⊃ ∅ by intersecting with
each B0

i for i ∈ S(m) in increasing order. Suppose cm = Hx. Then uniqueness of the
lexicographically first chain in [1, H ] gives that H ∩ B0

i = H ∩ Bi, so there is some Biyi

with Hx ∩ B0
i = Hx ∩ Biyi. Repeated use of this gives us a Σ+

Bx containing c++: the
generating elements for this cube include those for ΣBx and the Biyi’s found here. Notice
that if ρ(i) = 0 for each i ∈ S([∅, cm]), then B0

i is already in the generating set for ΣBx,
thus c++ is also in ΣBx.

Proposition 4.20. ∆Bx ∩
(
⋃

B′x′≺Bx ∆B′x′

)

= ∂∆Bx.

Proof. Suppose that c is in ∆Bx ∩
(
⋃

B′x′≺Bx ∆B′x′

)

, and let c++ be as in Lemma 4.19.
Then c++ is an extension in Σ+

Bx, but since c++ is contained in ΣB′x for the first such
complex containing c, we get that c++ is in M(Σ+

Bx) \ M(∆Bx). Lemma 2.8 then gives
that c is in ∂∆Bx.

Conversely, let c be in ∆Bx, but not in a previous ΣB′x′. Since c is not in any previous
ΣB′x′, no extensions of it are either, so any extension of c that is in ΣBx is in ∆Bx. As
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we have ordered the base-sets by pattern, we get that ρi(B) = 0 for i ∈ S([∅, cm]), thus,
by the special treatment of B0

i in the definition of ΣBx, every extension of c in any Σ+
Bx

is in ΣBx. Combining these two statements, we see that there is no extension of c in
M(Σ+

Bx) \M(∆Bx), and so by Lemma 2.8 that c is not in ∂∆Bx.

We have now finished the proof of Theorem 4.16. Let us review: Corollary 4.13 gave us
(ced-polytope), Proposition 4.20 was (ced-bdry), and Corollary 4.15 gave us (ced-union).
We notice that the base-set with the earliest pattern is B0 = {B0

i }, and that each ΣB0x

is the face lattice of a cube. Thus the first ∆Bx is a polytope, while all subsequent ones
are proper subcomplexes of polytopes. Since we proved in Corollary 4.18 that each ∆Bx

is shellable, we have (ced-topology).

Note 4.21. As previously mentioned, the convex ear decomposition we have constructed
is not a (dual) EL-ced. Although we would rather find an EL-ced than a general convex
ear decomposition, this is not in general possible with the cubes we are looking at here.
For example C(Z2

2) has exactly three possible Σ+
Bx’s, but the homotopy type of the wedge

of 6 1-spheres, so some |Σ+
Bx| \ |Σ+

B′x′ | must be disconnected. The example of C(Z2
2) is a

geometric lattice, so does have an EL-ced (for a different EL-labeling), but I have not
been able to extend this to an EL-ced for other relatively complemented groups.

The reader may have noticed that the constructed convex ear decomposition is not
far from being an EL-ced – the difference is that each Σ+

Bx gives several “new” ears – and
that another possibility would be to extend the definition of EL-ced to cover this case.
However, as this would make the definition more complicated, and as the gain seems
relatively small, I have chosen to leave the definition as presented.

5 Poset products

Throughout this section, let P1 and P2 be bounded posets.
In Section 3.1, we defined the product P1 × P2 and lower reduced product P1 ×̌ P2 of

P1 and P2. It should come as no surprise that the upper reduced product P1 ×̂P2 of P1 and
P2 is defined as

(

(P1 \ {1̂}) × (P2 \ {1̂})
)

∪ {1̂}. There is a natural inclusion of P1 ×̌ P2

(and of P1 ×̂ P2) into P1 × P2.
Our goal in Section 5 is to explain the background and give proofs for Theorems 1.4

and 1.6. The flavor and techniques of this section are different from the previous two,
so we pause to justify its connection with “Cubical Convex Ear Decompositions”. Lower
reduced products come up fundamentally both in the d-divisible partition lattice, as we
discussed in Section 3.1, as well as in the coset lattice, where C(G1×G2) ∼= C(G1)×̌C(G2)
for groups G1 and G2 of co-prime orders. And some of the decompositions in product
posets are cubical after all: a cube is the direct product of intervals, so if Cd is the

boundary of the d-cube, with face lattice L(Cd), then L(Cd) = ˇ∏d

1 L(C1).

5.1 Poset products and polytopes

I am told that the following proposition is folklore. It is also discussed briefly in [12].
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Proposition 5.1. If Σ1 and Σ2 are the face lattices of convex polytopes X1 and X2, then

1. Σ1 × Σ2 is the face lattice of the “free join” X1 ⊛ X2, a convex polytope.

2. Σ1 ×̌ Σ2 is the face lattice of the Cartesian product X1 × X2, a convex polytope.

3. Σ1 ×̂ Σ2 is the face lattice of the “free sum” of X1 and X2, a convex polytope.

Proposition 5.1 guides us to a proof of Lemma 1.5. Our main tool will be stellar
subdivision.

If ∆ is a convex polytope with a proper face σ, then a stellar subdivision of ∆ at σ,
denoted stellarσ ∆, is conv (∆ ∪ {vσ}), where vσ = wσ − ε(w∆ − wσ) for some point wσ

in the relative interior of σ, some point w∆ in the interior of ∆, and a small number ε.
In plain language, we “cone off” a new vertex lying just over σ. Note that the relative
interior of a vertex is the vertex itself. Stellar subdivisions are discussed in depth in [9,
III.2] and [8].

The main fact [9, III.2.1, III.2.2] that we will need is that the faces of the boundary
complex of stellarσ ∆ are

{τ : σ 6⊆ τ} ∪ {vσ ∗ τ : τ ∈ ∆ with τ, σ ⊆ τ ′ for some τ ′ ∈ ∆, but σ 6⊆ τ} .

Thus the stellar subdivision replaces the faces containing σ with finer subdivisions.

Example 5.2. [8, Section 2] The barycentric subdivision of a polytopal d-complex ∆ is
the repeated stellar subdivision of ∆ along a reverse linear extension of its face lattice
L(∆). That is, subdivide each d-dimensional face, then each (d−1)-dimensional face, and
so forth.

If X is the boundary complex of a polytope, then let X denote conv X, that is, the
polytope of which X is the boundary complex.

Lemma 5.3. Suppose P1 and P2 are bounded posets and that |P1| and |P2| are the bound-
ary complexes of polytopes. Then |P1 ×̌P2| can be obtained from the boundary complex of
|P1| × |P2| by a sequence of stellar subdivisions.

Proof. Let ∆0 be the boundary complex of |P1| × |P2|. The faces of ∆0 are exactly the
products F (1)×F (2), where each F (i) is a non-empty face in Pi, and at least one is proper.
In particular the vertices are products of vertices v(1) × v(2), where v(i) is in Pi \ {0̂, 1̂}.
We write this product of vertices as (v(1), v(2)), and think of it as sitting in |P1 ×̌ P2|.

We start by ordering the elements {v(2)} of P2 by a reverse linear extension, and
stellarly subdividing at each σ = |P1| × v(2) in this order. Inductively assume that the
faces containing σ are those of the form (|P1| ×F (2)) ∗C, where F (2) is a face of |P2| with
top-ranked vertex v(2), and C is a simplex corresponding to (the simplicial join of) a chain
of elements of the form (1̂, w(2)) (with each w(2) > v(2)). Subdivision replaces these faces

with those of the form (|P1| × F
(2)
0 ) ∗ C ∗ {vσ}, where F

(2)
0 is a face having top-ranked

vertex < v(2). We abuse notation to call the newly introduced vertex vσ as (1̂, v(2)), which
puts us in the situation required to continue our induction.
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We next do the same procedure for the faces v(1) × |P2|. That is, we order {v(1)} by
a reverse linear extension of P1, and repeatedly perform stellar subdivision at each such
face according to this order. Since a face cannot contain both |P1| and |P2|, these stellar
subdivisions are independent of the ones at |P1| × v(2).

After subdividing at all |P1|×v(2) and v(1)×|P2|, we obtain a complex ∆1. The vertex
set of ∆1 is exactly P1 ×̌P2 \ {0̂, 1̂}. The faces of ∆1 are {(F (1) ×F (2)) ∗C}, where F (i) is
a face of |Pi|, and C is a simplex corresponding to either a chain of elements (1̂, w(2)) or
a chain of elements (w(1), 1̂).

Finally, we perform stellar subdivision at the vertices v = (v(1), v(2)), where v(i) ∈ Pi \
{0̂, 1̂}, in the order of a reverse linear extension of P1×̌P2. We make an induction argument
parallel to the one above: at the step associated with vertex v, the faces containing v are
{(F (1) × F (2)) ∗ C}. As before, F (i) is a face of |Pi| with top-ranked vertex v(i), and C
corresponds to (the simplicial join of) elements in a chain greater than v in P1×̌P2. Stellar

subdivision at v replaces these faces with {(F
(1)
0 ×F

(2)
0 )∗C ∗{v}}, where F

(i)
0 has greatest

vertex < v(i), and we continue the induction.
When we have subdivided at every vertex, we obtain a complex ∆2. The faces of ∆2

are simply {C}, where C is the simplicial join of vertices in a chain of P1 ×̌ P2, which is
the definition of the order complex |P1 ×̌ P2|.

Corollary 5.4. If If P1 and P2 are bounded posets such that |P1| and |P2| are the boundary
complexes of polytopes, then |P1×̌P2| and (by duality) |P1×̂P2| are also boundary complexes
of polytopes.

For P1 ×P2, a similar result holds. Recall that the free join ∆1 ⊛ ∆2 of two polytopes
∆1 and ∆2 is obtained by taking the convex hull of embeddings of ∆1 and ∆2 into skew
affine subspaces of Euclidean space (of high enough dimension). The faces of ∆1 ⊛ ∆2, as
hinted in Proposition 5.1, are F (1)

⊛ F (2), and dim F (1)
⊛ F (2) = dim F (1) + dim F (2) + 1.

Lemma 5.5. Suppose P1 and P2 are bounded posets and that |P1| and |P2| are the bound-
ary complexes of polytopes. Then |P1 ×P2| can be obtained from the boundary complex of
|P1| ⊛ |P2| by a sequence of stellar subdivisions.

Proof. Since the details of the proof are very similar to the preceding Lemma 5.3, we
provide a sketch only. Let ∆0 = |P1|⊛ |P2|. Notice that the vertices of ∆0 are {∅⊛v(2)}∪
{v(1)

⊛ ∅}, while the edges are {v(1)
⊛ v(2)}.

As in Lemma 5.3, we begin by ordering the facets |P1|⊛ v(2) and v(1)
⊛ |P2| according

to reverse linear extensions of P2 and P1, and inductively performing stellar subdivision.
Each such subdivision creates a vertex, which we name (1̂, v(2)) or (v(1), 1̂). We obtain
a complex ∆1 with faces {(F (1)

⊛ F (2)) ∗ C} where F (i) is a proper face of Pi (possibly
empty), and C corresponds to a chain in the elements {(1̂, v(2))} or {(v(1), 1̂)}.

We then order the edges v(1)
⊛v(2) by a linear extension of P1×P2, and inductively per-

form stellar subdivision to create vertices (v(1), v(2)). The resulting complex is isomorphic
to |P1 × P2|.

Corollary 5.6. If P1 and P2 are bounded posets such that |P1| and |P2| are the boundary
complexes of polytopes, then |P1 × P2| is also the boundary complex of a polytope.
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This completes the proof of Lemma 1.5.

5.2 Convex ear decompositions of product posets

Let P1 and P2 be bounded posets with respective convex ear decompositions {∆
(1)
s } and

{∆
(2)
t }. Let P be either P1 ×P2, P1 ×̌ P2, or P1 ×̂P2; with coordinate projection maps p1

and p2. Take d = dim |P |, d1 = dim |P1|, and d2 = dim |P2|.
We define ∆s,t to be the simplicial complex generated by the maximal chains of P

that project to ∆
(1)
s in the first coordinate, and ∆

(2)
t in the second. Order these complexes

lexicographically by (s, t).

Theorem 5.7. {∆s,t} is a convex ear decomposition for |P |.

Proof. Lemma 1.5 gives that ∆s,t is a subcomplex of the boundary complex of a polytope,
so (ced-polytope) is satisfied.

The topology of various poset products is nicely discussed in Sundaram’s [30, Section
2]. There are homeomorphisms

|P1 ×̌ P2| ≈ |P1 ×̂ P2| ≈ |P1| ∗ |P2|,

where ∗ is the join of topological spaces. This result goes back to Quillen [18, Proposition
1.9], although his notation was much different – Sundaram makes the connection in [30,
proof of Proposition 2.5]. Walker [34, Theorem 5.1 (d)] extends this to show that

|P1 × P2| ≈ susp(|P1| ∗ |P2|),

where susp denotes the topological suspension. Identical proofs to Quillen’s and Walker’s
show that ∆s,t ≈ ∆s ∗∆t in the upper/lower reduced case, and that ∆s,t ≈ susp(∆s ∗∆t)
in the direct product case. In particular, ∆s,t is a d-ball for (s, t) > (1, 1) and a d-sphere
for (s, t) = (1, 1) by results in PL-topology [20, Proposition 2.23]. We have shown that
(ced-topology) is satisfied.

It is clear that (ced-union) holds. It remains to check (ced-bdry).

Claim 5.8. ∂∆s,t is exactly the set of all faces in ∆s,t that project to either ∂∆
(1)
s or ∂∆

(2)
t

(or both).

Proof. The boundary of a simplicial d-ball ∆ is generated by the d − 1 faces that are
contained in only a single facet of ∆. If c is a d − 1 face of ∆s,t (i.e., a chain of length
d − 1), then at least one of p1(c) and p2(c) also has codimension 1.

Since ∆s,t is defined to be the chains which project to ∆
(1)
s and ∆

(2)
t , we see that if p1(c)

is d1 − 1 dimensional and c is d − 1 dimensional, then p1(c) has exactly one extension

in ∆
(1)
s if and only if c has exactly one extension in ∆s,t. The argument if p2(c) has

codimension 1 is entirely similar.
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We now show both inclusions for (ced-bdry). If d is any chain in ∂∆s,t with p1(d) in

∂∆
(1)
s , then p1(d) is in ∆

(1)
u for some u < s by (ced-bdry), so d is in ∆u,t; similarly if p1(d)

is maximal and p2(d) is in ∂∆
(2)
t . Thus ∂∆s,t ⊆ ∆s,t ∩

(

⋃

(u,v)<(s,t) ∆u,v

)

.

In the other direction: if c is in ∆s,t and ∆u,v (for (u, v) < (s, t)), then p1(c) is in

both ∆
(1)
s and ∆

(1)
u . If s 6= u, then p1(c) is in ∂∆

(1)
s , so c is in ∂∆s,t. A similar argument

applies for p2 when s = u. Thus, ∂∆s,t ⊇ ∆s,t ∩
(

⋃

(u,v)<(s,t) ∆u,v

)

, and we have shown

(ced-bdry), completing the proof.

5.3 Product CL-labelings

In this subsection, we explicitly recall the product CL-labelings introduced by Björner
and Wachs in [4, Section 10], and hinted at in Section 3.1. Since there is no particular
reason to work with dual labelings in Section 5, I’ve chosen to work with standard (not
dual) CL-labelings, so that everything is “upside down” relative to Sections 3 and 4. Since
the root of an edge of the form 0̂ ⋖ x is always ∅, we suppress the root from our notation
in this case.

Let P be a bounded poset with a CL-labeling λ that has label set Sλ. A label s ∈ Sλ

is atomic if it is used to label a cover relation 0̂⋖x (for any atom x), and non-atomic if it
is used to label any other rooted cover relation. (In an arbitrary CL-labeling, a label can
be both atomic and non-atomic.) A CL-labeling is orderly if Sλ is totally ordered and
partitions into S−

λ < SA
λ < S+

λ , where every atomic label is in SA
λ , and every non-atomic

label is either in S−
λ or S+

λ . There are similar definitions of co-atomic, non-co-atomic, and
co-orderly, and of course we can generalize to talk of orderly and co-orderly chain edge
labelings, even if the CL-property is not met.

Lemma 5.9. (Björner and Wachs [4, Lemma 10.18]) Let P be a bounded poset with a
CL-labeling λ. Then P has an orderly CL-labeling λ′, and a co-orderly CL-labeling λ′′,
such that any maximal chain c in P has the same set of ascents and descents under each
of the three labelings λ, λ′, and λ′′.

The proof involves constructing a recursive atom ordering from λ, and then construct-
ing a CL-labeling with the desired properties from the recursive atom ordering.

Note 5.10. The result of Lemma 5.9 is not known to be true if ‘CL’ is replaced by ‘EL’.

To find a CL-labeling of P1 × P2, we label each edge in P1 × P2 with the edge in P1

or P2 to which it projects. More formally, notice that any rooted cover relation (r, x ⋖ y)
projects to a cover relationship in one coordinate, and to a point in the other. Then the
product labeling, denoted λ1 ×λ2, labels (r, x ⋖ y) with λi (pi(r), pi(x ⋖ y)), where i is the
coordinate where projection is nontrivial. It is straightforward to show that λ1 × λ2 is a
CL-labeling if λ1 and λ2 are CL-labelings of P1 and P2, and where we order Sλ1

∪ Sλ2
by

any shuffle of Sλ1
and Sλ2

[4, Proposition 10.15].
The idea behind finding a CL-labeling of P1 ×̌ P2 (or similarly P1 ×̂ P2) is to restrict

λ1 × λ2 to P1 ×̌ P2. For a cover relation x ⋖ y where x 6= 0̂, this works very well, as x ⋖ y
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in P1 ×̌P2 is also a cover relation in P1 ×P2, and the roots project straightforwardly. The
problem comes at cover relations 0̂ ⋖ y, which project to a cover relation in both P1 and
P2. Here, we need to combine the labels λ1

(

0̂ ⋖ p1(y)
)

and λ2

(

0̂ ⋖ p2(y)
)

.
The orderly labelings constructed in Lemma 5.9 are a tool to perform this combination

in a manner that preserves the CL-property. Let P1 and P2 have orderly CL-labelings λ1

and λ2, with disjoint label sets S1 and S2. Suppose the label sets are shuffled together as

S−
1 < S−

2 < SA
1 < SA

2 < S+
1 < S+

2 .

Then the lower reduced product labeling λ1 ×̌ λ2 labels an edge 0̂ ⋖ y with the word
λ1

(

p1(0̂ ⋖ y)
)

λ2

(

p2(0̂ ⋖ y)
)

in SA
1 SA

2 (lexicographically ordered), while all other rooted

edges (r, x ⋖ y) (for x 6= 0̂) are labeled with the nontrivial projection λi (pi(r), pi(x ⋖ y))
as in λ1 × λ2. Björner and Wachs proved [4, Theorems 10.2 and 10.17] that λ1 ×̌ λ2 is a
CL-labeling of P1 ×̌ P2.

Similarly, if λ1 and λ2 are co-orderly CL-labelings of P1 and P2, with disjoint label sets
shuffled together as for the orderly labelings above, we define the upper reduced product
labeling λ1 ×̂ λ2 as follows. Label an edge of the form (r, x ⋖ 1̂) with the word

λ1

(

p1(r), p1(x ⋖ 1̂)
)

λ2

(

p2(r), p2(x ⋖ 1̂)
)

in SA
1 SA

2 , and all other edges (r, x ⋖ y) (for y 6= 1̂) as in λ1 × λ2. Then [4, Theorems 10.2
and 10.17] gives us that λ1 ×̂ λ2 is a CL-labeling of P1 ×̂ P2.

Example 5.11. The labeling λdiv we constructed for the d-divisible partition lattice was
an co-orderly EL-labeling of the dual lattice: actually, SA was just {0}. As discussed in
Lemma 3.5, intervals split as products, and the restriction of λdiv to an interval splits as
the appropriate product labeling.

We summarize in the following theorem:

Theorem 5.12. (Björner and Wachs [4, Proposition 10.15 and Theorem 10.17]) Let P1

and P2 be posets, with respective labelings λ1 and λ2.

1. If λ1 and λ2 are CL-labelings (EL-labelings), then λ1 × λ2 is a CL-labeling (EL-
labeling) of P1 × P2.

2. If λ1 and λ2 are orderly CL-labelings, then λ1 ×̌ λ2 is a CL-labeling of P1 ×̌ P2.

3. If λ1 and λ2 are co-orderly CL-labelings, then λ1 ×̂ λ2 is a CL-labeling of P1 ×̂ P2.

5.4 CL-ceds of product posets

Fix our notation as in Section 5.2, but suppose in addition that P1 and P2 have CL-ceds
{Σ

(1)
s } and {Σ

(2)
t } with respect to the CL-labelings λ1 and λ2. Denote the resulting ears of

new chains as {∆
(1)
s } and {∆

(2)
t }, as in Section 2.5. Then take Σs,t to be the appropriate

product of Σ
(1)
s and Σ

(2)
t , and ∆s,t to be the associated ear of new chains.

We first notice that there is no inconsistency with the notation used in Section 5.2:
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Lemma 5.13. A maximal chain c is in ∆s,t if and only if p1(c) is in ∆
(1)
s and p2(c) is

in ∆
(2)
t .

Proof. The statement follows straightforwardly from the fact that the maximal chains of
Σs,t are those that project to Σ

(1)
s and Σ

(2)
t .

As we did in Section 5.2, order the {Σs,t} according to the lexicographic order of (s, t).
Let λ be the appropriate product CL-labeling, where we assume without loss of generality
via Lemma 5.9 that λ1 and λ2 are orderly or co-orderly. Then we will prove:

Theorem 5.14. {Σs,t} is a CL-ced for |P | with respect to λ.

Proof. Proposition 5.1 tells us that (CLced-polytope) is satisfied, and (CLced-union) is
immediate from the definitions.

For (CLced-bdry), we work backwards, and notice that we have already shown in

Theorem 5.7 that ∂∆s,t = ∆s,t∩
(

⋃

u,v<s,t ∆u,v

)

. Lemma 2.8 meanwhile gives that ∂∆s,t =

∆s,t ∩ |Σs,t| \ ∆s,t, hence that a chain c with extensions in both ∆s,t and ∆u,v has an
extension in M(Σs,t) \M(∆s,t), as required. (A direct proof is also straightforward.)

It remains to check (CLced-desc). Although the statement of this property is very
similar to [4, Theorem 10.17] (which says that λ is a CL-labeling), the proof in [4] uses
some machinery. So we work from scratch, as follows.

If P = P1 × P2 and we are considering the rooted interval [x, y]
r
, then the labels of a

maximal chain c
r

on [x, y]
r

are the same as the labels of p1(c)p1(r) union with the labels of
p2(c)p2(r), “shuffled together” in some order. Thus, if c

r
is descending, then the projections

must also be descending. Since the label sets S1 and S2 are taken to be disjoint, there
is a unique way of shuffling the two label sets (and so the two chains) together to get a
descending chain.

For P = P1 ×̌ P2, the proof is the same unless x = 0̂. In this case, the first label of
a maximal chain c is in SA

1 SA
2 , while the first label of the projections are in SA

1 and SA
2 ,

respectively. If c is descending, then all labels after the first are from S−
1 or S−

2 , since
S−

1 < S−
2 < SA

1 SA
2 < S+

1 < S+
2 , and thus p1(c) and p2(c) are descending, and we argue as

before.
The proof for P = P1 ×̂ P2 is entirely similar to that for P1 ×̌ P2.

6 Further questions

The close relationship between the techniques used in Sections 3 and 4 leads us to ask the
following question.

Question 1. Are there other families of posets with similar structure to Πd
n and C(G)?

Can the techniques used in Sections 3 and 4 be used to construct dual EL-labelings and
EL-ceds?
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What we mean by ‘similar’ here is not clear. At the least, we need a poset P where
every interval of the form [a, 1̂] is supersolvable, and where the supersolvable structure
is canonically determined, i.e., such that we can label all edges of P \ {0̂} in a way that
restricts to a supersolvable labeling on each such [a, 1̂] interval. We then need a way to
sign the edges giving an EL-labeling, and the poset has to somehow be ‘wide’ or ‘rich’
enough to have an EL-ced.

One possible source of such examples is the theory of exponential structures. An
exponential structure is a family of posets with each upper interval isomorphic to the
partition lattice, and each lower interval isomorphic to a product of smaller elements in
the same family. Exponential structures were introduced in [27], where the family of
d-divisible partition lattices was shown to be one example. Shellings are constructed for
some other examples in [21, 35].

Question 2. Can techniques like those used in Section 3 (and Section 4) be used to con-
struct dual EL-labelings and/or EL-ceds of exponential structures besides the d-divisible
partition lattice?

However, it is not a priori clear how to construct a labeling that restrict to a super-
solvable labeling on any [a, 1̂] for exponential structures. In examples even finding an
EL-labeling often seems to be a difficult problem.

A question suggested by the results of Section 5 is:

Question 3. Are there other operations on posets that preserve convex ear decompositions
and/or CL-ceds?

For example, Schweig shows [23, Theorem 5.1] that rank-selected supersolvable and
geometric lattices have convex ear decompositions. Do all rank-selected subposets of
posets with convex ear decompositions have a convex ear decomposition? Are there any
other useful constructions that preserve having a convex ear decomposition and/or EL-
ced? A place to start looking would be in Björner and Wach’s papers [2, 3, 4], where they
answer many such questions for EL/CL-labelings.

Acknowledgements

Thanks to Ed Swartz for introducing me to convex ear decompositions; and to him, Jay
Schweig, and my graduate school advisor Ken Brown for many helpful discussions about
them. Tom Rishel listened to and commented on many intermediate versions of the results
and definitions of this paper. Sam Hsiao helped me in understanding the material of
Proposition 5.1, and in looking for its extension to Lemma 1.5. Vic Reiner pointed out that
the labeling based on pivots of C(G) that I used in [36] was really a supersolvable labeling,
which suggested the improved EL-labeling used in Section 4. Volkmar Welker suggested
exponential structures as a possible area for further exploration. The anonymous referee
gave many helpful comments.

the electronic journal of combinatorics 16(2) (2009), #R17 31



References

[1] Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer.
Math. Soc. 260 (1980), no. 1, 159–183.

[2] Anders Björner and Michelle L. Wachs, On lexicographically shellable posets, Trans.
Amer. Math. Soc. 277 (1983), no. 1, 323–341.

[3] , Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348

(1996), no. 4, 1299–1327.

[4] , Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349

(1997), no. 10, 3945–3975.

[5] Kenneth S. Brown, The coset poset and probabilistic zeta function of a finite group,
J. Algebra 225 (2000), no. 2, 989–1012.

[6] Manoj K. Chari, Two decompositions in topological combinatorics with applications
to matroid complexes, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3925–3943.

[7] Gopal Danaraj and Victor Klee, Shellings of spheres and polytopes, Duke Math. J.
41 (1974), 443–451.

[8] G. Ewald and G. C. Shephard, Stellar subdivisions of boundary complexes of convex
polytopes, Math. Ann. 210 (1974), 7–16.

[9] Günter Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in
Mathematics, vol. 168, Springer-Verlag, New York, 1996.

[10] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.10,
2007, (http://www.gap-system.org/ ).
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