
Shellability of a poset of polygonal subdivisionsTorsten EkedahlStokholms universitetSE-106 91 StokholmSwedenteke�math.su.seSubmitted: Ot 31, 2008; Aepted: De 7, 2009; Published: De 15, 2009Mathematis Subjet Classi�ation: 52B22, 18D50Dediated to Anders Björner on the oasion of his sixtieth birthdayAbstratWe introdue a sequene of posets losely related to the assoiahedra. In this weare motivated by reasons similar to those of Stashe� in the ase of the assoiahedra.We make a study of this poset showing that it has an indutive struture withproper downwards intervals being produts of smaller posets in the same series andassoiahedra. Using this we also show that they are thin dual CL-shellable and inpartiular that they are the fae poset of a regular ell deomposition of the ball.1 IntrodutionThe purpose of this artile is to introdue a sequene of posets losely related to the faelatties of the assoiahedra and study their ombinatorial properties, in partiular it willbe shown that they are shellable. The origin of these posets are in priniple not relevantfor suh a study, nevertheless I shall start by brie�y disussing it. The assoiahedraare relevant to the desription of produts whih are assoiative only up to homotopy(�A∞�-spaes). The prototypial suh example is the path spae of a topologial spaewhere the omposition of paths is not assoiative but is assoiative up to homotopy andtwo maps from one spae to another onstruted out of suh homotopies are homotopiand so on. Suppose now that the spae is a manifold M and that we are really onlyinterested in smooth paths. The problem is that the omposition of smooth paths isusually not smooth. The solution would seem to be to smooth the omposition but theproblem then is that suh a smoothing is not unique. Thus one is fored to speak abouta omposition and will have to ontend with the ambiguities inherent in that. A diretway of expressing a omposition is as a smooth map from the standard 2-simplex ∆2 to
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M , where the original two paths are the restrition of that map to the �rst two edges andthe partiular omposite is the restrition to the third edge. The map itself is then thepartiular smoothing of the omposition of the �rst two edges to the third edge. We writethis as a · b → ab, where a and b are the original paths, a · b represents the omposition,
ab the smoothing and the arrow represents a partiular smoothing with ab as end result.Following the pattern of higher oherene onditions that made the assoiahedra ap-pear in the �rst plae, we assume that we have di�erent hoies of ompositions a ·b → ab,
b·c → bc, a·bc → abc and ab·c → abc and we are looking for some supplementary ohereneondition that would express that these hoies of omposites are oherently assoiative.In this partiular ase the omposites �t together to give a smooth map from the boundaryof ∆3 to M and we ould demand that this map extend smoothly to ∆3 itself. However,we would rather have onditions that an be formulated in terms of omposition of pathsand the A∞-struture. Hene using the homotopies given by the smoothings together withthe assoiativity homotopy a · (b · c)

a·b·c
−→ (a · b) · c gives us a mapping from the boundaryof the pentagon into the path spae of M :

a · (b · c) a·b·c
(a · b) · c

a · bc ab · c

abcThe oherene ondition should then be that this map extend to the full pentagon. Thepentagon of ourse is the seond assoiahedron indiating that there is indeed a relationbetween this ondition and the assoiahedron. If one analyses the next oherene ondi-tion, one arrives at something that is not an assoiahedron (see Fig. 2) but is visibly apolyhedron. In this note we shall give a general de�nition of these oherene onditionsleading to posets that share the simplest ombinatorial properties with the fae posets ofpolyhedra suh as being a lattie and being shellable. From the point of view of the origi-nal motivation shellability has the important onsequene that the posets are fae posetsof a regular ell deomposition of a ball. However, its lose relation with the assoiahedraseems to me an indiation that they should be interesting from a purely ombinatorialperspetive.Just as for the assoiahedra themselves everything is best phrased in terms of trian-gulations of n-gons. A new notion appears however. We shall need to onsider not justtriangulations of a �xed polygon but also triangulations of a subpolygon all of whoseverties are verties of the larger polygon as well as a simple way of passing from a partialtriangulation to a partial triangulation of a smaller polygon.Conerning spei� results our prinipal poset is CCn, the poset of ompound ollapses;by adding a smallest element we get CC+

n whih is proved to be a graded poset (Corollary3.5) and a lattie (Proposition 3.7). Finally it is shown in Theorem 4.2 that CC+

n is dualCL-shellable and thin. Analogously to the ase of the assoiahedron we also have a loal
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struture theorem in that every interval ]0̂, x] is a produt of smaller posets of ompoundollapses and fae posets of assoiahedra (Proposition 3.3). As CCn will be seen to bevery analogous to the fae poset of the assoiahedron the following problem omes verynaturally.Problem: Is CCn the fae poset of a onvex polytope?My own experiene with polytopes is too meager to allow me to venture an opinion.2 A low dimensional exampleTo motivate our subsequent deliberations we start by desribing CC5, the �rst non-trivialexample. (Note that in order to simplify we shall disregard some terminologial distin-tions that will be made later.)We an as usual desribe ell deompositions of the n-gon as partial parenthesisationsof a produt of n−1 symbols. As we shall deal also with k-gons for k 6 n we shall do thefollowing: We attah symbols, letters starting with a in our example, to the initial edgesof the n-gon and then to an arbitrary edge we attah the onatenation of the symbolsin order of the initial edges onneting the initial vertex of the edge to the �nal. (Aninitial vertex has been hosen and the polygon is then oriented ounterlokwise.) Hene,if we attah a, b, and c to the initial edges of the 4-gon, the edge from the �rst to thethird vertex will get label ab. The �nal edge will in general get the label obtained byonatenating all the labels of the initial edges. For instane if we start with a 6-gonwith initial edge labels a, b, c, d, and e, then the 6-gon itself will orrespond to theunparenthesised expression a · b · c · d · e whereas the 4-gon onsisting of the edge fromthe �rst to the third vertex, from the third to the fourth, from the fourth to the sixth,and the �nal edge will orrespond to the unparenthesised expression ab · c · de (f., Fig.1). The full onatenation abcde will then orrespond to the 1-gon onsisting just of the

a

b

c

e
d

abcde

de

ab

c
a·b·c·d·e ab·c·de

Figure 1: A 6-gon and a 4-gon and 1-gon ontained in it.�nal edge (idem).Furthermore a ell deomposition of a k-gon, whih is the onvex hull of a set ofverties of the n-gon ontaining the initial and �nal vertex, will orrespond to a partially
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parenthesised expression of onatenations of the labels of the initial edges suh that thelabels appear in inreasing order. Thus ab · cd orresponds to the ell deomposition,using edges of the 5-gon, onsisting of the edge onneting the �rst vertex to the third,the edge onneting the third to the fourth and (as always) the �nal edge. A ompoundollapse then orresponds to replaing possibly several but disjoint unparenthesised sub-expressions with the orresponding onatenation. Continuing the last example (a·b)·(c·d)ollapses to any of ab · (c · d), (a · b) · cd, and ab · cd.Note further that aording to our de�nitions any ell deomposition ollapses to itselfand we shall denote C → C ∈ CCn also by just C.In Figure 2 we have assembled all the ollapses (or as they shall be alled laterompound ollapses) inside of a 5-gon exept the ones orresponding to a · b · c · d and
a · b · c · d → abcd. Edges represent inompletely parenthesised expressions with their (twoas it were) omplete parenthesisations at their ends. The arrows represent ompound ol-lapses, where the dotted arrows give those that orrespond to 2-ells in what is obviouslya regular ell deomposition of a 2-ell. Together with a · b · c · d and a · b · c · d → abcd weget a regular ell deomposition of the 3-ell.

(a·(b·c))·d a·((b·c)·d)

(a·bc)·d

(a·b)·(c·d)

ab·(c·d) (a·b)·cd

ab·cd

abcdabc·d

a·b·cdab·c·d
((a·b)·c)·d a·(b·(c·d))

(a·b·c)·d a·(b·c·d)

a·(b·c)·d

a·bc·d a·(bc·d)

(a·b)·c·d a·b·(c·d)

(ab·c)·d a·(b·cd)

a·bcd

Figure 2: Convex ell deompositions of a 5-gon.
3 CombinatorisWe start with a onvex planar n-gon, Pn. In indutive arguments we shall deal with manypolygons and use Pn for the polygon urrently onsidered, we shall also not partiularlydistinguish between a polygon as a onvex set and as the set of its boundary edges oreven verties. We also pik one of its edges whih we all the �nal edge and all the otheredges its initial edges. We further orient the �nal edge so that it gets an initial vertex
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and a �nal vertex. The other edges are then oriented so that they point away from theinitial vertex and towards the �nal one. (If Pn is expliitly embedded in the plane it seemsreasonable to orient the edges so that one moves ounterlokwise when moving along theinitial edges from the initial to the �nal vertex.) In this way we also get a total order onthe set of verties of Pn; we go from a lower vertex to a higher one by moving along initialedges. A onvex polygon whose verties are a subset of the verties of Pn will then havea unique edge onneting the �rst of its verties to its last, alled its �nal edge, the restare its initial edges and ome with natural orientations just as for Pn itself. We shall allsuh a polygon a ap or ell. For aps, but not for ells, we also allow the degenerate aseonsisting of just one edge.We let CDn be the set of ell deompositions of Pn, where a ell deomposition is asubset C of the set of edges onneting the verties of Pn suh that
• the �nal edge is a member of C,
• edges of C meet only at verties of Pn and
• any edge whih is a part of the boundary of the onvex hull C of C is a member of

C.We shall also all the onvex hull, C, of C the support of C. If C is a onvex elldeomposition, the losure of a omponent of C \ C (i.e., C minus the edges of C) is aell and will be alled a ell of the ell deomposition. It is lear that the boundary of Cis a polygon, the boundary polygon of C.When speaking of the interior, Zo, of a subset of R2 we shall mean the relative interior,i.e., the interior of Z as a subset of the smallest a�ne subspae ontaining Z. If C ∈ CDn,then we put C · Z := {ℓ ∈ C | ℓo ⊆ Z }.If C, D ∈ CDn, then we say that D is a ompound ollapse of C, denoted C → D, if
D ⊆ C and C \D is ontained in the boundary polygon of C. We say then that C is theollapser, denoted (C → D)r, and D the ollapsee, denoted (C → D)e, of the ompoundollapse. As C is the union of D and the boundary polygon of C when speifying aompound ollapse it is enough to speify D and the boundary polygon something weshall do without further omment. If C, D ∈ CDn, then D is said to be a re�nement of
C, denoted C > D, if C and D have the same support and C ⊆ D. If C, D ∈ CDn, thenwe say that D is a ollapse of C, denoted C ։ D, if there is a re�nement C ′ of C anda ompound ollapse C ′ → D, i.e., C > C ′ → D. If C, D ∈ CDn, then we say that D isa lapse, denoted C  D, of C if D is a re�nement of some D′ and there is a ompoundollapse D′ → C, i.e., D 6 D′ → C. We now let CCn be the set of pairs C, D ∈ CDn suhthat C → D. We de�ne a relation on CCn by (C, D) > (E, F ) if C ։ E and D  F . If
P is a partiular onvex n-gon we shall also use CC(P ) for the ompound ollapses of P .Remark: These de�nitions ould probably do with some further elaboration. Anexample of a ompound ollapse onsists of the ollapsing of a ap formed by some bound-ary edges of C and one interior edge of D onto the interior edge or more diretly one justremoves its boundary edges. A general ompound ollapse onsists of several suh ol-lapses done simultaneously whih means in partiular that the aps involved meet at most
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in verties. For a ollapse one wants to ollapse ertain onvex regions onto one of theirsides but is stopped from doing it beause some of the sides do not belong to C thoughthe regions are ontained in C and all but one of their faes lie in the boundary of C.One thus starts by adding those sides to C and has the liberty of adding other edges tooas long as they don't lie in one of the regions. A lapse is formulated in a way so as tomake it dual to a ollapse but as we shall see in the next lemma one gets from C to Dby adding any number of edges (in suh a way so that we still get a ell deomposition).We shall later give a very preise desription of the over relation assoiated to >. It willindeed be seen to be a partial order.If C, D ∈ CDn and C ⊆ D, then a residual boundary edge of the pair (D, C) is an edgewhih lies in the boundary of D but is not ontained in C. The set of residual boundaryedges will be denoted R(D, C).Lemma 3.1 Let A, B ∈ CDn.i) We have that A → B preisely when B ⊆ A, A ·(A\B)o = ∅, and A = B∪R(A, B).ii) We have that A ։ B preisely when B ⊆ A, A·(A\B)o = ∅, and A ⊆ B∪R(A, B).iii) We have that A  B preisely when A ⊆ B.Proof: Assume that A → B as B ⊆ A we have B ⊆ A and as all ℓ ∈ C \ D lie inthe boundary of C we have A · (A \ B)o = ∅ but also that ℓ ∈ R(A, B) whih gives
A = B ∪ R(A, B). Conversely, assume B ⊆ A, A · (A \ B)o = ∅, and A = B ∪ R(A, B)the last learly giving B ⊆ A. An ℓ ∈ A \ B lies in R(A, B) and thus in the boundary of
A. This proves i).Assume now A ։ B and assume that A > C → B. By i) we have B ⊆ C and byde�nition A = C so that B ⊆ A. As A ⊆ C and C ·(C \B) = ∅ by i) we get A ·(A\B) = ∅and also A ⊆ C = B∪R(C, B) again by i) and R(C, B) = R(A, B) as A = C. Conversely,assume B ⊆ A, A · (A \ B)o = ∅, and A ⊆ B ∪ R(A, B). Putting C := B ∪ R(A, B), Cand A have the same support so that C = B ∪R(C, B) and we have C → B by i) and as
A ⊆ Cwe also have A > C whih �nishes the proof of ii).Finally, if A  B there is a C with B 6 C → A we have B ⊇ C and C ⊇ A by i).Conversely, if B ⊇ A we let C onsist of the union of A and the elements of B that arenot part of the boundary of B. Then we have B 6 C → A, whih gives A  B. �Proposition 3.2 The relation 6 on CCn is a partial order.Proof: The only property whih is not lear is transitivity. Hene assume that we have
A → B, C → D, and E → F as well as A ։ C, C ։ E, B  D, and D  F . Itis obvious from Lemma 3.1 that B  F . Now, again from Lemma 3.1, we have that
B ⊆ D ⊆ F ⊆ E ⊆ C ⊆ A and A · (A \ B)o = ∅ and thus A · (A \ E)o = ∅. What is leftto show is then that A ⊆ E ∪ R(A, E). Let ℓ ∈ A and assume �rst that ℓ ∈ A · E. Aswe have that A ⊆ C ∪ R(A, C) and E ⊆ C we get that ℓ ∈ C and thus that ℓ ∈ C · E.The fat that C ⊆ E ∪ R(C, E) then implies that ℓ ∈ E. Hene we may assume that
ℓ ∈ A · (A\E) but as we already know that A · (A \E)o = ∅ this implies that ℓ ∈ R(A, E)whih �nishes the proof. �If C → D is a ompound ollapse, a ap of it is the losure of a omponent of C \ D. Itis lear that it is a ap in the sense introdued above.
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We let Kn be the poset of partial triangulations of an n + 1-gon.1 With this indexingone of the onsequenes of the next proposition is that Kn−1 is a oatom of CCn. In orderto be able to deal with several opies of this poset at the same time, if P is a polygonthen we shall also use K(P ) for the partial triangulations of P .Proposition 3.3 Suppose (C → D) > (E → F ) in CCn. Let E ′ := E · D and for eahap γ of C → D let Eγ := E ·γ resp. Fγ := F ·γ. Then E ′ is a re�nement of D, Eγ → Fγ,
E = E ′∪∪γEγ and F = E ′∪∪γFγ. Conversely, given C → D, a re�nement E ′ of D andompound ollapses Eγ → Fγ for eah ap γ of C → D then we have a ompound ollapse
E → F where E = E ′ ∪ ∪γEγ and F = E ′ ∪ ∪γFγ and (C → D) > (E → F ).In partiular, the interval of elements below C → D is isomorphi to Km ×

∏

γ CCmγ
,where D is an m + 1-gon and the ap γ is an mγ-gon.Proof: By the de�nition of ompound ollapse we have that D ⊆ C and F ⊆ E and byLemma 3.1 D ⊆ F so that D is ontained in C, E and F . In partiular, E ′ is a re�nementof D. Now, γ lies in the losure of C \D whih implies that all boundary edges of Eγ liesin Eγ. As E → F , F · (Eγ \ Fγ) = ∅ whih gives Eγ → Fγ . As C is the union of D andthe (support of) the aps γ we get E = E ′ ∪ ∪γEγ and F = E ′ ∪ ∪γFγ . The onverse issimilar.This result then shows that an element below C → D is spei�ed by a re�nement of

D and a ompound ollapse of eah ap whih gives the bijetion of the �nal result andit is lear that partial order on suh elements is the produt order. �Note that CCn has a maximal element C → D where D is the �nal edge and C is the
n-polygon itself. As is standard we shall denote it 1̂.Proposition 3.4 i) For 1 < i < n we let Fi be the ompound ollapse Ci → Di where
Di onsists of just the �nal edge and Ci onsists of boundary edges of the onvex hull ofall the verties but the i'th. For S a subset of {1, n} ⊂ S ⊆ {1, . . . , n} we let F ′

S be theompound ollapse C ′

S → D′

S where C ′

S is the polygon Pn and D′

S is the onvex hull of theverties whose positions appear in S. Then the Fi and the F ′

S are exatly the oovers ofthe maximal element of CCn.ii) The overs of a ompound ollapse A → B are of one of the following forms andall suh forms are overs:
• An internal edge is removed from B ( �edge removal�).
• A ap of B is ollapsed ( �ap ollapse�).
• A small ap of A is added ( �small ap addition�).Proof: If (C ′ → D′) > (C → D), then D′ ⊆ D and C ′ is a oarsening of a elldeomposition that has a ompound ollapse to C. In partiular if D is a polygon theneither D′ = D or D′ onsists only of the �nal edge. On the other hand if C ontains the1There are di�erent hoies of the indexing for the assoiahedra in the literature. We adopt hereStashe�'s original, [St63a℄, indexing.
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boundary of Pn then there is no non-trivial ompound ollapse to C and hene C wouldbe a re�nement of C ′. Together this shows that if C → D = F ′

S then C ′ → D′ = 1̂ sothat F ′

S is a oover of 1̂. The argument for Fi is similar.Conversely assume C → D is a oover of 1̂. By our previous onsiderations weonlude that D is a polygon. Assume �rst that it is not equal to the �nal edge. Then if
D is not equal to Pn, then there is a boundary edge ℓ of D that is not in the boundary of
Pn. It is the �nal edge of a polygon γ whose edges other than ℓ lie in the boundary of Pn.Putting C ′ := C ∪ γ \ ℓ we have that C ′ → D and (C ′ → D) > (C → D) and C ′ → D isnot equal to 1̂ whih is a ontradition and the onlusion is that C → D = F ′

S for some
S. The ase when D is the �nal edge leads in a similar fashion to Fi. This proves i).As for ii) it follows immediately from Proposition 3.3 and i). �We now let K+

n be the poset obtained by adding an arti�ial minimal element 0̂ to Knand similarly CC+

n is obtained from CCn by adding 0̂.Corollary 3.5 CC+

n is graded of length n − 2.Proof: We argue by indution on n. It is enough, by Proposition 3.4, to show that theintervals [0̂, Fi] and [0̂, F ′

S] are graded of length n−3. In the ase of the Fi it follows fromProposition 3.3 that [0̂, Fi] is isomorphi to CC+

n−1 whih by indution is indeed graded oflength n − 3. In the ase of FS, let γ1, . . . , γk be the aps of F ′

S. We assume that D is an
m-gon and γj an mj-gon. Then we have that ∑

j mj − 2 +m = n. On the other hand, byProposition 3.3 we have that [0̂, F ′

S] is isomorphi to (

Km−1 ×
∏

j CCmj

)+. Now, K+

m−1is graded of length m − 2 and by indution CC+

mj
is graded of length mj − 2 and hene

[0̂, F ′

S] is graded of length ∑

j mj − 2 + m − 2 = n − 2. �We say that two ell deompositions C and D are ompatible if for any edge ℓ of Cand any edge ℓ′ of D distint from ℓ, ℓ and ℓ′ interset at most in verties of Pn.Lemma 3.6 If C and D are ompatible then C ∪ D is a ell deomposition.Proof: The only ondition that is not trivially ful�lled is that C∪D ontains any edge ofthe boundary polygon of its onvex hull. Assume therefore that E is suh an edge whihis not ontained in C ∪ D. Its two endpoints p and q must be endpoints of elements of
C ∪D but E annot be an edge of C or D. Hene we may assume that p is larger than q(in the total order of the verties of Pn) and is the �nal endpoint of E ′ ∈ C and q is theinitial endpoint of E ′′ ∈ D. Now, as E ′′ lies in the onvex hull of C ∪D its �nal endpointmust ome after the �nal endpoint of E, i.e., p and similarly the initial endpoint of E ′must ome before q. That however implies that E ′ and E ′′ must meet in the interior ofthe onvex hull C ∪ D whih is a ontradition. �Proposition 3.7 CC+

n is a lattie. More preisely, the in�mum of A → B and A′ → B′is 0̂ unless B and B′ are ompatible and B ∪B′ ⊆ A∩A′. If these onditions are ful�lledthe in�mum A′′ → B′′ is given as follows: B′′ = B ∪ B′ and the boundary of A′′ is thelargest polygon ontained in A ∩ A′.
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Proof: If we have (A → B), (A′ → B′) > (C → D), then D ⊇ B, B′ so that B and B′are ompatible. Furthermore we have B ⊆ D ⊆ CA′ and by symmetry B ∪ B′ ⊆ A ∩ A′.Hene, if either B and B′ are not ompatible or B ∪ B′ ( A ∩ A′, then the in�mum is
0̂. Assume now that the onditions are ful�lled. For any C → D dominated as above by
A → B and A′ → B′ we have B′′ ⊆ D. By Proposition 3.6 B′′ is a ell deomposition.It is also lear that A → B′′ and A′ → B′′ and as we have (A → B) > (A → B′′),
(A′ → B′) > (A′ → B′′) as well as C → D being dominated by A → B′′ and A′ → B′′we may assume that B = B′. This means that the di�erene between B and A resp. A′are just edges that lie in the respetive boundaries. Also, C ⊆ A∩ A′ and it is lear thatthere is a largest polygon ontained in A ∩ A′ and adding its boundary edges to B thusgives an in�mum. �4 ShellabilityOur aim is now to show that CC+

n is a thin shellable poset. More preisely we shall showthat it is dual CL-shellable, f., [BW83℄. In our proof of the dual CL-shellability of CCnwe are going to use the equivalent ondition of having a reursive oatom ordering. In thereursion neessary to verify that a partiular oatom ordering is indeed a reursive one weare going to use the produt struture of Proposition 3.3. It is however formulated in termsof CCn's rather than CC+

n so we start by formulating the ondition of having a reursiveoatom orderability in a way that uses a poset P (possibly) without a least element (andwhih is of ourse should be equivalent to the usual ondition for P+, the poset with aleast element added). (We are otherwise using the notation and formulation of [BVSWZ,Def. 4.7.17℄ whih appeared somewhat more onvenient than the original one of [BW83,Def. 3.1℄.) Thus we assume that P+ is graded and put, for x ∈ P , [x] := {y ∈ P | y 6 x }.A reursive oatom ordering of P onsists of a total ordering <c of its oatoms and either
length(P+) 6 2 or length(P+) > 2 and for any oatom x there is a distinguished subset
Qx with Qx 6= ∅ when x is not <c-�rst suh that1. [x] ∩ (∪x′<x[x

′]) = ∪y∈Qx
[y] and2. [x] has a reursive oatom ordering in whih the elements of Qx ome �rst.(The ondition of non-emptiness of Qj takes are of overing 0̂ of P+.)The fat we reursively are dealing with produts of smaller posets will be used togetherwith the fat that the ondition of CL-shellability is inherited by produts (noted in[BW83℄ with referene to [Bj08, Thm. 4.3℄) with two modi�ations. First, as (P ×Q)+ 6=

P+ × Q+ we are not talking about exatly the same produt. Seond, we are goingto use this result reursively, i.e., apply it to the [xj ], with the above notation, whihfores us to verify an external ondition on the reursive oatom ordering. Hene weneed to be expliit on how the reursive oatom ordering on a produt is obtained fromorderings on the fators and during our arguments we shall in fat need to deal with severalways of obtaining suh an ordering. (The fat that produts of posets with reursiveoatom orderings have some reursive oatom ordering is of ourse well-known, f., [BW83,
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Comment before Thm. 8.3℄.) The following lemma takes are of the di�erent versions thatwe shall need.Lemma 4.1 Let P and P ′ be posets with P+ and P ′+ graded. Assume given reursiveoatom orderings of P and P ′ together with initial sequenes of them. Order the oatomsof P × P ′ as follows: Start with (x, 1̂) where x runs over the initial segment for P ,inthe order given, then take (1̂, x′), where x′ runs over the initial segment for P ′, then take
(x, 1̂) with x running over the rest of the oatoms for P and �nally end with (1̂, x′) where
x′ runs over the rest of the oatoms of P ′. This oatom ordering is a reursive oatomordering.Proof: We have to verify the reursive onditions and let us start with the ase of theoatom being of the form (x, 1̂) with x in the initial segment of the oatom ordering of P .We then hoose a reursive oatom ordering of [x] and an initial segment Qx for whih
[x] ∩ ∪z<x[z] = ∪y∈Qx

[y]. We then order the oatoms of [(x, 1̂)] = [x] × P ′ by putting theoatoms (y, 1̂) �rst and in the order given and the oatoms (x, y) last in the given reursiveoatom ordering of P ′. If we let the Q for (x, 1̂) be {(y, 1̂) | y ∈ Qx } we easily see thatthe onditions needed are ful�lled. The ase of a oatom of the form (1̂, x′) with x′ in theinitial segment of P ′ is ompletely analogous. Consider next the ase when the oatom isof the form (x, 1̂) with x not in the initial segment. Choose as before a reursive oatomordering of [x] with a Qx as above. We de�ne a oatom ordering on [(x, 1̂)] = [x] × P ′ bytaking the (Qx, 1̂) �rst, then the given initial segment of P ′ times x, then the rest of theoatoms of P (times 1̂ ∈ P ′) and last the rest of the oatoms of P ′ (times x). By indutionthis gives a reursive oatom ordering of [(x, 1̂)] and letting the Q for this element be theunion of (Qx, 1̂) and the initial segment of P ′ the neessary onditions are ful�lled. Thease of oatoms of the form (1̂, x′) with x′ not in the initial segment of P ′ is analogous. �With this lemma we are now ready to prove dual CL-shellability after having introduedone more notion. For a over (A → B) ≺ (C → D) we de�ne its residual as follows. Ifthe over is a small ap addition the residual is the small ap added, if it is a ap ollapseit is the ap that is ollapsed and if it is an edge removal the residual is the removed edge.Theorem 4.2 CC+

n is a thin dual CL-shellable lattie.Proof: To begin let us reord that we shall use without further mention that as CC+

nand K+
n are latties, the intersetion [x] ∩ [y] in CCn resp. Kn is, when non-empty, equalto [x ∧ y].In order to verify the reursive onditions of a (proposed) reursive oatom ordering weshall use Proposition 3.3. This fores us to �rst disuss reursive oatom orderings on Kn.We an de�ne a partial pseudo-order, the hord order, on the hords (i.e., non-boundaryline segments onneting two verties) of Pn+1 by saying that ℓ1 6c ℓ2 if they interset inat most verties of Pn+1 and if the interior of ℓ1 lies in the omponent of Pn+1 \ ℓ2 thatontains the �nal edge. An extension of the hord order to a total order on the hordswill be a alled an admissible order. Eah hord ℓ de�nes a oatom, xℓ, of Kn given by theunion of ℓ and Pn+1 and all oatoms are obtained in that way. Hene an admissible ordergives a total order on the oatoms of Pn+1 and the ontention is that any admissible order
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gives a reursive oatom order. A hord ℓ of Pn+1 deomposes Pn+1 into two polygons,one, P ′, whih has the �nal edge of Pn+1 as its �nal edge and one, P ′′, whih has ℓ as its�nal edge. It is lear that the hord orders on P ′ and P ′′ are the orders indued from thehord order on Pn+1 and in partiular an admissible order on the hords of Pn+1 induesan admissible order on the hords of P ′ and P ′′. Hene by indution we may assumethat these latter orders give reursive oatom orderings. Furthermore, the interval [xℓ] isisomorphi to the produt K(P ′) × K(P ′′) and thus has a reursive oatom ordering byLemma 4.1 and indution. Now, every oatom of [xℓ] whose seond omponent in theprodut deomposition is 1̂ is of the form xℓ′ ∧ xℓ, in the lattie struture of Kn, for some
ℓ′ 6c ℓ. This means that we may hoose the Q for xℓ to be equal to the oatoms of theform xℓ′ ∧ xℓ for ℓ′ smaller than ℓ in the admissible order.Turning to CCn we shall use the same tehnique as for Kn using Proposition 3.3. Thismeans that to begin with we hoose one and for all an admissible order on the hords of Pnwhih indues a reursive oatom ordering on eah K-subposet arising from a subpolygonof Pn. We are going to use the following onvention to desribe the oatoms and moregenerally elements of an interval [x]. By Proposition 3.3 this interval is the produt ofthe CC's of the aps of x and the K of its ollapsee. Hene, eah oatom orresponds to aoatom of either the CC of a ap or the K of the ollapsee and we shall say that the oatombelongs to that ap or ollapsee. General elements orrespond to sequenes of elementsin the CC's of the aps and one element of the K of the ollapsee and the omponentsof that sequene will be alled the omponents of the elements in the respetive aps orollapsee. We now have to hoose an ordering of the oatoms of CCn in a uniform enoughway so that it applies also to all subpolygons but we also have to tell in whih order weare going to write the fators of an interval as it is needed to get a oatom ordering onthe produt. Starting with the oatom ordering we have by Proposition 3.4 two typesof oatoms, the Fi, whih we shall say are of small ap type, for 1 < i < n and F ′

S, ofap type, for {1, n} ⊂ S ⊆ {1, . . . , n}. We now put the Fi �rst, ordered by the reverse ofthe natural order of the i (even though as we shall see the order among the Fi doesn'tmatter). After that we take the F ′

S ordered as follows: We put S before T if there is an isuh that j > i ⇒ (j ∈ S ⇐⇒ j ∈ T ) and i ∈ T but i /∈ S. We shall all this order thelex-order.Next we need to deide in whih order to put the fators when representing an interval
[x]. We do this by going through the aps of x starting with the one ontaining the largestverties, in their polygon order, and ontinuing with the next largest and so on. Finally,for an arbitrary x ∈ CCn we order its oatoms as follows: We �rst take all the oatoms ofsmall ap type of the aps of x ordered within eah ap as above and between aps by theorder of the aps that has just been given. We then take all oatoms of ap type of theaps ordered within aps as per above and between aps by the ap order. Last, we take allthe oatoms orresponding to the K of the ollapsee of x ordered by the given admissibletotal order of hords of Pn. Combining Lemma 4.1 and Proposition 3.3, the result wehave already obtained about reursive oatom orderings of K's and using indution wemay assume that these oatom orderings give reursive oatom orderings on all [x] but
x = 1̂.
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It thus remains to prove that this ordering is a reursive oatom ordering of CCn and forthat we need to identify the Qx and show that they ful�l the required onditions. We startwith the ase when the oatom x is equal to Fi. The interval [Fi] is just CCn−1 = CC((Fi)r).Furthermore, the oatoms of [Fi] of small ap type are exatly the ompound ollapses ofthe form Fi ∧ Fj for i 6= j and the order on the Fj indues the oatom ordering we havereursively de�ned on [Fi]. Hene we an let the Q for Fi onsist of its oatoms of smallap type. This veri�es the reursive ondition for the ase when x is of small ap type.Assume now instead that we are dealing with a oatom F ′

S of ap type. We let its
Q onsist of all the oatoms of its aps. This is an initial segment of its oatoms and itremains to verify the �rst part of the reursive oatom ordering onditions.It is lear that [Fi] ∩ [F ′

S ] is empty unless i /∈ S and is otherwise the oatom of [F ′

S]belonging to the ap of F ′

S whih ontains i and there it is the small ap type oatomwhose ollapser does not ontain i. This means that the interval of any small ap typeoatom belonging to the aps of F ′

S are of the form [Fi] ∩ [F ′

S] and thus all intersetions
[Fi] ∩ [F ′

S] are ontained in intersetions whih are oatoms in [Fi] ∩ [F ′

S].Assume now that T omes before S in the lex-order. Hene there is an i suh that
j > i ⇒ (j ∈ S ⇐⇒ j ∈ T ) and i ∈ T but i /∈ S. Let γ be the ap of F ′

S ontaining
i. In the produt deomposition of [F ′

S] we have that the omponent of F ′

T ∧ F ′

S in a apthat omes before γ is 1̂ while the omponent in γ is not 1̂ but rather a oatom c of aptype. There then is a T ′ suh that F ′

T ′ ∧F ′

S is a oatom belonging to γ and its omponentin γ is c. (In fat T ′ is given by the onditions that S ⊂ T ′ and T ′ \ S are the vertiesof c not in S.) In partiular we have that F ′

T ∧ F ′

S is below F ′

T ′ ∧ F ′

S in the partial orderof CCn. As also every oatom of F ′

S belonging to a ap where it is of ap type is of theform F ′

T ′ ∧F ′

S (with T ′ onstruted as above) we have veri�ed the required onditions fora reursive oatom ordering.For thinness let us assume that x ≺ y ≺ z.If x ≺ y and y ≺ z have di�erent forms then it is lear that there is a x ≺ y′ ≺ zsuh that the residual of x ≺ y′ is equal to that of y ≺ z and the residual for y′ ≺ z tothat of x ≺ y and that y and y′ are the only elements in the interval (x, z). If x ≺ y and
y ≺ z both are edge removals, then x and z di�er by two internal edges and they an beremoved in any order giving again two elements in (x, z). For the ase when both are apollapses, then the aps an be ollapsed in any order unless the �nal edge of one of themis an initial edge of the other. In that ase we get an x ≺ y′ ≺ z by letting x ≺ y′ bethe edge removal where the edge removed is the ommon �nal edge of one ap and initialedge of the other and y′ ≺ z is the ap ollapse ollapsing the union of the two aps (seeFig. 3).The remaining ase is that both overs are small ap additions. Again if the two smallap residuals do not have an edge in ommon they an be added in any order. If they dohave a ommon edge their union is a quadrangle with the ommon edge as a diagonal.One may then make two small ap additions by using the other diagonal (see Fig. 3). �We have an immediate orollary.Corollary 4.3 CCn is the fae poset of a regular PL-ell deomposition of a ball.
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Figure 3: Interfering ap ollapses and small ap additions.Proof: This follows from [Bj84℄. �Referenes[BVSWZ℄ A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Ori-ented matroids, seond ed., Enylopedia of Mathematis and its Appliations,vol. 46, Cambridge University Press, Cambridge, 1999.[BW83℄ A. Björner and M. Wahs, On lexiographially shellable posets, Trans. Amer.Math. So. 277 (1983), no. 1, 323�341.[Bj08℄ A. Björner, Shellable and Cohen-Maaulay partially ordered sets, Trans. Amer.Math. So. 260 (1980), no. 1, 159�183.[Bj84℄ A. Björner, Posets, regular CW omplexes and Bruhat order, European J. Com-bin. 5 (1984), no. 1, 7�16.[St63a℄ J. D. Stashe�, Homotopy assoiativity of H-spaes. I, Trans. Amer. Math. So.108 (1963), 275�292.
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