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Abstract

We show that there is an m = 2n + o(n), such that, in the Maker-Breaker game
played on Z

d where Maker needs to put at least m of his marks consecutively in one
of n given winning directions, Breaker can force a draw using a pairing strategy.
This improves the result of Kruczek and Sundberg [15] who showed that such a
pairing strategy exists if m > 3n. A simple argument shows that m has to be at
least 2n + 1 if Breaker is only allowed to use a pairing strategy, thus the main term
of our bound is optimal.

1 Introduction

A central topic of combinatorial game theory is the study of positional games, the in-
terested reader can find the state of the art methods in Beck’s Tic-Tac-Toe book [4]. In
general, positional games are played between two players on a board, the points of which
they alternatingly occupy with their marks and whoever first fills a winning set completely
with her/his marks wins the game. Thus a positional game can be played on any hyper-
graph, but in this paper, we only consider semi-infinite games where all winning sets are
finite. If after countably many steps none of them occupied a winning set, we say that
the game ended in a draw. It is easy to see that we can suppose that the next move of
the players depends only on the actual position of the board and is deterministic.1 We
say that a player has a winning strategy if no matter how the other player plays, she/he
always wins. We also say that a player has a drawing strategy if no matter how the other
player plays, she/he can always achieve a draw (or win). A folklore strategy stealing
argument shows that the second player (who puts his first mark after the first player puts
her first mark, as ladies go first) cannot have a winning strategy, so the best that he can

1This is not the case for infinite games and even in semi-infinite games it can happen that the first
player can always win the game but there is no N such that the game could be won in N moves. For
interesting examples, we refer the reader to the antique papers [2, 5, 7].
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hope for is a draw. Given any semi-infinite game, either the first player has a winning
strategy, or the second player has a drawing strategy. We say that the second player
can achieve a pairing strategy draw if there is a matching among the points of the board
such that every winning set contains at least one pair. It is easy to see that the second
player can now force a draw by putting his mark always on the point which is matched
to the point occupied by the first player in the previous step (or anywhere, if the point
in unmatched). Note that in a relaxation of the game for the first player, by allowing her
to win if she occupies a winning set (not necessarily first), the pairing strategy still lets
the second player to force a draw. Such drawing strategies are called strong draws. Since
in these games only the first player is trying to complete a winning set and the second is
only trying to prevent her from doing so, in these games, the first player is called Maker,
the second Breaker, and the game is called a Maker-Breaker game.

This paper is about a generalization of the Five-in-a-Row game2 which is the more
serious version of the classic Tic-Tac-Toe game. This generalized game is played on the
d-dimensinal integer grid, Z

d, and the winning sets consist of m consecutive gridpoints
in n previously given directions. For example, in the Five-in-a-Row game d = 2, m = 5
and n = 4, the winning directions are the vertical, the horizontal and the two diagonals
with slope 1 and −1. Note that we only assume that the greatest common divisor of the
coordinates of each direction is 1, so a direction can be arbitrarily long, e.g. (5, 0, 24601).
The question is, for what values of m can we guarantee that the second player has a
drawing strategy? It was shown by Hales and Jewett [4], that for the four above given
directions of the two dimensional grid and m = 9 the second player can achieve a pairing
strategy draw. In the general version, a somewhat weaker result was shown by Kruczek
and Sundberg [15], who showed that the second player has a pairing strategy if m > 3n
for any d. They conjectured that there is always a pairing strategy for m > 2n + 1,
generalizing the result of Hales and Jewett.3

Conjecture 1 (Kruczek and Sundberg). If m = 2n+1, then in the Maker-Breaker game
played on Z

d, where Maker needs to put at least m of his marks consecutively in one of n
given winning directions, Breaker can force a draw using a pairing strategy.

Our main result asymptotically solves their conjecture.

Theorem 2. There is an m = 2n + o(n) such that in the Maker-Breaker game played
on Z

d, where Maker needs to put at least m of his marks consecutively in one of n given
winning directions, Breaker can force a draw using a pairing strategy.

In fact we prove the following theorem, which is clearly stronger because of the classical
result [10] showing that there is a prime between n and n + o(n).

Theorem 3. If p = m − 1 > 2n + 1 is a prime, then in the Maker-Breaker game played
on Z

d, where Maker needs to put at least m of his marks consecutively in one of n given
winning directions, Breaker can force a draw using a pairing strategy.

2Aka Go-Muku and Amőba.
3It is not hard to show that if m = 2n, then such a strategy might not exist, we show why in Section

3.
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The proof of the theorem is by reduction to a game played on Z and then using the
following recent number theoretic result of Preissmann and Mischler. Later this result
was independently rediscovered by Kohen and Sadofschi [13] and by Karasev and Petrov
[11], they both gave a short proof using the Combinatorial Nullstellansatz [1]. The latter
paper also gives an even shorter topological proof and generalizations.

Lemma 4. [17] Given d1, . . . , dn and p > 2n + 1 prime, we can select 2n numbers,
x1, . . . , xn, y1, . . . , yn all different modulo p such that xi + di ≡ yi mod p.

We prove our theorem in the next section and end the paper with some additional
remarks.

2 Proof of Theorem 3

We consider the winning directions to be the primivite vectors4 ~v1, ..., ~vn. Using a standard
compactness argument it is enough to show that there is a pairing strategy if the board is
[N ]d, where [N ] stands for {1, . . . , N}. For interested readers, the compactness argument
is discussed in detail at the end of this section.

First we reduce the problem to one dimension. Take a vector ~r = (r1, r2, ..., rd) and
transform each grid point ~v to ~v ·~r. If ~r is such that rj > 0 and rj+1 > N(r1 + . . .+ rj) for
all j, then this transformation is injective from [N ]d to Z and each winning direction is
transformed to some number, di = |~r ·~vi|.

5 So we have these n differences, d1, . . . , dn, and
the problem reduces to avoiding arithmetic progressions of length m with these differences.
From the reduction it follows that if we have a pairing strategy for this game, we also
have one for the original.

Let p be a prime such that 2n + 1 6 p 6 2n + 1 + o(n). (In [10] it was shown that we
can always find such a p). If we pick a vector ~u uniformly at random from [p]d, then for
any primitive vector ~v, ~u ·~v will be divisible by p with probability 1/p. Since each winning
direction was a primitive vector, using the union bound, the probability that at least one
of the ~u · ~vi is divisible by p is at most n/p < 1/2. So, there is a ~u′ = (u′

1, u
′

2, .., u
′

d) ∈ [p]d

such that none of ~u′ · ~vi is divisible by p. If we now take ~r = (r1, r2, .., rd) such that
rj = u′

j + (pN)j−1, then the dot product with ~r is injective from [N ]d to Z and none of
the di = ~r · ~vi are divisible by p, since ∀j rj ≡ u′

j mod p.
We now apply Lemma 4 for d1, ..., dn to get 2n distinct numbers x1, x2, ...xn, y1, y2, .., yn

such that 0 6 xi, yi < p and xi +di ≡ yi mod p. Our pairing strategy is, for every x ≡ xi

mod p, x is paired to x + di and if x ≡ yi mod p, then x is paired to x − di.
To see that this is a good pairing strategy, consider an arithmetic progression a1, ..., am

of m = p + 1 numbers with difference, say, di. Since p and di are coprimes, one of the
numbers a1, ..., am−1, say aj, must be such that aj ≡ xi mod p. Hence aj , aj+1 must be
paired in our pairing strategy, showing both cannot be occupied by Maker. �

4A vector (v1, . . . , vd) ∈ Z
d is primitive if gcd(v1, . . . , vd) = 1.

5It is even possible that some of these numbers are zero, we will take care of this later.
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For completeness here we sketch how the compactness argument goes. We show that
it is sufficient to show that a pairing strategy exists for every finite [N ]d board. For this
we use the following lemma.6

Lemma 5. [14] (König’s Infinity Lemma) Let V0, V1, .. be an infinite sequence of disjoint
non-empty finite sets, and let G be a graph on their union. Assume that every vertex v
in a set VN with N > 1 has a neighbour f(v) in VN−1. Then G contains an infinite path,
v0v1... with vN ∈ VN for all N .

Given a pairing strategy for [N0]
d, consider a smaller board [N ]d where N < N0. We

can think of a pairing strategy as, essentially, a partition of [N0]
d into pairs and unpaired

elements.7 We can construct a good pairing strategy for the smaller board by taking
the restriction of these set of pairs to [N ]d and leave the elements paired outside [N ]d as
unpaired elements. We call this as a restriction of the pairing strategy to the new board.
As long as we do not change the length of the winning sets and the prescribed directions,
any winning set in the [N ]d board is also a winning set in the [N0]

d board and hence must
have a pair from the restriction. Hence, the Breaker can block all winning pairs and the
restriction of the pairing strategy is a valid strategy for Breaker for the smaller board.

We can now prove the following theorem,

Theorem 6. Given a fixed set S, |S| = n, of winning directions, and positive integer m,
if Breaker has a pairing strategy for all boards [N ]d and length of winning sets equal to m,
then Breaker also has a pairing strategy for the Z

d board.

We will apply König’s Infinity Lemma to prove the theorem. Let VN be the set of all
pairing strategies on the {−N, . . . , N}d board with winning sets as defined in the theorem.
We say a strategy in VN−1 and a strategy in VN have an edge between them if the former
is a restriction of the latter. It is easy to see that every vertex in VN does have an edge to
its restriction in VN−1. Hence, by the lemma, we must have an infinite path v0v1.... The
union of all these pairing strategies gives a valid pairing strategy for the infinite game.

3 Possible further improvements and remarks

As we said before, if m 6 2n, then the second player cannot have a pairing strategy draw.
This can be seen as follows. On one hand, in any pairing strategy, from any m consecutive
points in a winning direction, there must be at least two points paired to each other in
this direction. On the other hand, there must be a winning direction in which at most
1/n of all points are matched to another in this direction. If we pick a set of size m − 1
uniformly randomly in this direction, then the expected number of points mathced in this
direction will be at most (m − 1)/n < 2. Thus, there is a set of size m − 1 that contains

6We use the version stated in [8].
7Note that a pairing strategy does not guarantee that every element is paired. It only states that

every winning set has a pair. Hence there might be many unpaired elements in a pairing strategy.
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only one such point. Its matching point can now be avoided by extending this set to one
way or the other, thereby giving us a winning set with no matched pair.

If n = 1 or 2, then a not too deep case analysis shows that the first player has a
winning strategy if m = 2n, even in the strong game, where the second player also wins
if he occupies a winning set. Moreover, the second player has a pairing strategy for
m = 2n + 1 if n = 1 or 2, thus, in this case, the conjecture is tight. However, for higher
values, it seems that Breaker can always do better than just playing a pairing strategy, so
we should not expect this strategy the best to achieve a draw. Quite tight bounds have
been proved for Maker-Breaker games with potential based arguments, for the latest in
generalization of Tic-Tac-Toe games, see [16]. Despite this, from a combinatorial point
of view, it still remains an interesting question to determine the best pairing strategy.
Unfortunately our proof can only give 2n+2 (if 2n+1 is a prime) which is still one bigger
than the conjecture.

One could hope that maybe we could achieve a better bound using a stronger result
than Lemma 4 (see for example the conjecture of Roland Bacher in [17], whom we would
like to thank for directing us to it [3]), however, already for n = 3, our method cannot
work. Consider the three directions (1, 0), (0, 1), (1, 1). Optimally, we would hope to map
them to three numbers, d1, d2, d3, all coprime to 6, such that we can find x1, x2, x3, y1, y2, y3

all different modulo 6 such that xi + di ≡ yi mod 6. But this is impossible since d3 =
d1 + d2, so we cannot even fulfill the condition that the differences have to be coprimes to
6. But even if we forget about that condition, it would still be impossible to find a triple
satisfying d3 = d1 + d2. If we consider a pairing strategy where the pair of any grid point
~v, depends only on v · r, then the above argument shows that such a pairing strategy does
not exist for the three vectors (1, 0), (0, 1), (1, 1). However, it is not hard to find a suitable
periodic pairing strategy for these three vectors. We would like to end with an equivalent
formulation of Conjecture 1.

Conjecture 7 (Kruczek and Sundberg, reformulated). Suppose we are given n primitive
vectors, ~vi of Z

d
2n for i ∈ [n]. Is it always possible to find a partition of Z

d
2n into ~xj

i , ~y
j
i for

i ∈ [n], j ∈ [2n] such that ~xj
i + ~vi = ~yj

i and ~xj
i − ~xj′

i is not a multiple of ~vi for j 6= j′?

Also, one can formulate a more daring conjecture about general graphs.

Conjecture 8. Suppose that the edges of a 2d-regular graph are colored such that the
edges of each color form a cycle of length 2d. Then there is a perfect matching containing
one edge of each color.

For d = 2, there is a simple proof by Zoltán Király [12], who also invented the above
formulation of the problem. However, since the submission of our paper, this conjecture
was disproved on the first Emléktábla Workshop [6]. It was shown with a tricky con-
struction that maybe there is no perfect matching at all, yet alone a rainbow one. They
asked whether the conjecture holds for bipartite graphs, in which case the existence of a
(non-rainbow) matching is guaranteed by Hall’s theorem [10].
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