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Abstract

The planarity theorems of MacLane and Whitney are extended to compact
graph-like spaces. This generalizes recent results of Bruhn and Stein (MacLane’s
Theorem for the Freudenthal compactification of a locally finite graph) and of Bruhn
and Diestel (Whitney’s Theorem for an identification space obtained from a graph
in which no two vertices are joined by infinitely many edge-disjoint paths).

1 Introduction

The theorems of MacLane and Whitney characterize planarity of a graph G in different
ways. The former characterizes planar graphs by the existence of a basis for the cycle
space of G in which every edge appears at most twice, while the latter characterization is
in terms of the circuit matroid of G having a graphic dual matroid. Naturally, these are
closely connected to Kuratowski’s Theorem: G is planar if and only if G does not contain
a subdivision of either K3,3 or K5.

Recent work has treated extensions of these theorems to infinite graphs. Bruhn and
Diestel [1] generalize Whitney’s Theorem in the case of an infinite graph in which no two
vertices are joined by infinitely many edge-disjoint paths. Bruhn and Stein [2] provide
MacLane’s Theorem in the case of locally finite graphs. In both cases, the theorem is
proved for a topological space obtained from the graph by adding its ends and, in the
former case, identifying a vertex with each end that is not separated from the vertex
by any finite set of edges. In the central case of 2-connected graphs, these spaces are
compact, connected, and Hausdorff.

Thomassen and Vella [12] have recently introduced the notion of a graph-like space.
A graph-like space is a metric space G that contains a subset V so that (i) for any two
elements u and w of V , there is a separation (U,W ) of V so that u ∈ U and w ∈ W , and
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(ii) G− V consists of disjoint open subsets of G, each homeomorphic to the real line and
having precisely two limit points in V . The elements of V are the vertices of G and the
components of G−V are the edges of G. A graph-like continuum is a compact graph-like
space; Thomassen and Vella show graph-like continua are locally connected Peano spaces,
and that they satisfy a form of Menger’s Theorem.

As a remark, compactness, at least of the blocks of the graph-like space, seems to be
an important ingredient in these theorems. There is no theory yet developed concerning
the cycle space of a 2-connected graph-like space that is not compact. It is certainly not
true that a non-compact graph-like space necessarily has spanning trees that satisfy the
basis-exchange axiom of a matroid. Consider the graph-like space in Figure 1. It is easy
to verify that the set I consisting of all the edges incident with v plus the edge e is a
maximal set that does not contain any circle. The same is true for the set J consisting of
all the edges in the outer circle except e, plus the edge f . If we try to remove e from I,
the exchange axiom indicates we should be able to add an edge from J \ I = J \ {f} to
I \{e} to get another circle-free set of edges. As this is obviously false, the circle-free sets
do not satisfy the exchange axiom. (This is now a standard example. The earliest record
we can find of it is in Higgs [5], who attributes it to Bean.)

Figure 1: Noncompact graph-like space with non-matroidal spanning trees
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Graph-like continua appeal as an object of study because they extend many of the
combinatorial properties of finite graphs while still being quite general. The class of graph-
like continua contains the class of finite graphs, the compactifications of infinite graphs
considered by Casteels, Richter and Vella [3, 13], and the spaces considered by Bruhn,
Diestel and Stein in [1, 2]. The graph-like continuum depicted in Figure 2, in which there
are two points that have degree 1 but also are the ends of a ladder, is an example of a
graph-like continuum that does not fit into any of the aforementioned categories.

Figure 2: Graph-like continuum formed by joining the two ends of the Freudenthal com-
pactification of the doubly infinite ladder with an edge.

For finite graphs, the theorems of MacLane and Whitney can be easily derived from
Kuratowski’s Theorem. Fortunately, graph-like continua satisfy the following deep version
of Kuratowski’s Theorem, due to Thomassen [11] and, in 1934, Claytor [4].

Theorem 1.1 Let X be a compact, 2-connected, locally connected metric space. Then X
is homeomorphic to a subset of the sphere if and only if X contains no subspace homeo-
morphic to either K3,3 or K5.

We will use this result to prove MacLane’s and Whitney’s Theorems for graph-like
continua. We note the assumption here that X is 2-connected . This means X is connected
and, for each x ∈ X, X − x is also connected. Thomassen mentions that the thumbtack
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space, consisting of a disc together with a compact interval with one end identified with
the centre of the disc, is not planar. It satisfies all the hypotheses of Theorem 1.1 except
2-connection, and yet does not contain either K3,3 or K5. There are graph-like continua
that have this same property, so we cannot hope to have planarity be the characterization
in our generalizations of MacLane’s and Whitney’s Theorems. Rather, our versions of
MacLane’s and Whitney’s Theorems will characterize the graph-like continua with no
subspace homeomorphic to either K3,3 or K5. In both instances, the 2-connected spaces
are the interesting ones and this is, by Theorem 1.1, the same as planarity.

2 Blocks, the cycle space and B-matroids

In both proofs the first step is a reduction to the 2-connected case, which allows us to
apply Theorem 1.1 for one direction of the characterization. Thomassen and Vella [12]
prove that each component of a graph-like continuum is locally connected and has only
countably many edges.

A cut point in a topological space X is a point u of X so that, if K is the component of
X containing u, K−u is not connected. A block of X is a maximal non-empty connected
subset Y of X so that Y has no cut point. The space X is 2-connected if it is connected
and has no cut point.

To prove the existence of blocks of X, it suffices to make the easy observation that if
K and L are connected subsets of X each with no cut point and |K ∩L| > 2, then K ∪L
has no cut point; the existence of blocks now follows from Zorn’s Lemma. Furthermore,
it is an easy exercise to show that a maximal connected subset of X with no cut point is
closed.

Let G be a connected graph-like continuum. If e is an edge of G so that G− e is not
connected, then every point of cl(e) is a cut point of G. However, we would like cl(e) to
be a block of G. This is achieved by restricting the consideration of cut points to elements
of the vertex set V of G. The application of Zorn’s Lemma is just as simple.

A graph-like continum H contained in G is a subgraph of G if, for each edge e of G,
either cl(e) ⊆ H or e ∩H = ∅. A cycle in G is a connected subgraph C of G containing
at least one edge so that, if e is any edge of C, then C − e is connected, while if e and f
are distinct edges of C, then C − (e ∪ f) is not connected.

Moreover, the connected closed subsets of a graph-like continuum are arc-wise con-
nected [12]. From this it follows that, in fact, the cycles of G are precisely the homeomor-
phic images of circles in G [13, Thm. 35]. Therefore, a block of G has at least two edges
if and only if it contains a cycle.

The notion of a cycle space for a topological space has been introduced by Vella and
Richter [13]. Their results are for spaces more general still than graph-like continua and
so, in particular, a graph-like space has a cycle space. We begin by summarizing the
relevant results, as applied to graph-like continua.

Let E be a collection of sets of edges of G. Then E is thin if every edge of G is in at
most finitely many of the sets in E . The point is that if E is thin, then the symmetric
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difference of the sets in E is well defined: it consists of those edges that are in an odd
number of elements of E . This is the thin sum of the elements of E .

The cycle space ZG of G is the smallest subset of the power set 2E of E that contains
all edge sets of cycles and is closed under thin sums. From this definition and the earlier
remarks, it is easy to see that ZG is the direct sum of the ZB, over all the blocks B of G.

A bond of G is a minimal set of edges B such that G−B is not connected. All of the
bonds of a graph-like continuum are finite [13].

A natural way to state Whitney’s Theorem is that the circuit matroid of a graph has
a graphic dual if and only if the graph is planar. We will prove this form of Whitney’s
Theorem for graph-like continua. To do so, we must introduce B-matroids [6].

A B-matroid is a pair (X, I) consisting of a set X and a set I of subsets of X so that:

1. I 6= ∅;

2. if I ∈ I and J ⊆ I, then J ∈ I;

3. for each Y ⊆ X, there is a maximal element of I contained in Y ; and

4. for each Y ⊆ X, if I and J are two maximal elements of I contained in Y and
x ∈ I \ J , then there is a y ∈ J \ I so that (I ∪ {y}) \ {x} ∈ I.

Essentially, B-matroids are one way of generalizing matroids to infinite sets. The last
axiom corresponds to the basis exchange axiom for finite matroids. Every B-matroid M
has a dual B-matroid M∗ whose bases are the complements of the bases of M .

If G is a graph-like continuum or if G is a graph, there are two natural B-matroids to
associate with G. The circuit matroid has as its independent sets the sets of edges that
do not contain the edge set of a circuit, while the bond matroid has as its independent sets
the sets of edges that do not contain a bond. For both graphs and graph-like continua
it is easy to check that the circuit matroid is dual to the bond matroid — the bonds
are the minimal sets of edges that meet every basis of the circuit matroid. In the case of
graphs, it is easy to see that the circuit matroid is a B-matroid: since all of the circuits are
finite, Zorn’s Lemma easily implies the existence of maximal independent sets. The bond
matroid is also a B-matroid, because it is the dual of the circuit matroid. For graph-like
continua the situation is reversed: since all of the bonds are finite it is easy to see that
the bond matroid is a B-matroid, and the circuit matroid is its dual.

For a finite matroid M it is well-known (although not trivial) that the relation ∼ on
the elements of M , defined by e ∼ f if and only if e and f are in a circuit together, is
an equivalence relation. The matroid M is connected when ∼ has just one equivalence
class. This is also true for B-matroids (Bruhn and Wollan, personal communication);
fortunately we do not need it, as it holds true in an obvious way for graph-like continua.

The B-matroid M associated with a graph-like continuum G is the direct sum of the
B-matroids associated to each of the blocks of G. This implies that the dual M∗ is also
a direct sum of the B-matroids of the duals of the blocks of G.
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3 MacLane’s Theorem

A 2-basis for the cycle space ZG is a set B of elements of ZG so that each element of E
is in at most 2 elements of B and every element of ZG is a symmetric difference of some
(possibly infinite) subset of B. Notice that every 2-basis is thin. (The term 2-basis is
fairly standard in this context; the reader should have no trouble distinguishing it from a
basis of a B-matroid.)

The following is MacLane’s Theorem for graph-like continua. This result implies the
version of MacLane’s Theorem in [2], but seems to neither easily imply nor easily be
implied by Thomassen’s version in [10].

Theorem 3.1 Let G be a graph-like continuum. Then G has a 2-basis if and only if G
does not contain a homeomorph of either K5 or K3,3.

Proof. It suffices to prove the theorem in the case G is 2-connected. Suppose first that G
has no homeomorph of either K3,3 or K5. By Theorem 1.1, G is planar. By [8], we know
that the face boundaries of any embedding of G in the sphere are circles. We take these
circles to be the elements of B and note that every edge of G is in at most 2 elements of
B.

Let B be the smallest subset of 2E containing the elements of B and closed under thin
sums. As ZG is such a set, B ⊆ ZG. On the other hand, if C is a cycle in G, then C is a
circle in the sphere and so C is the symmetric difference of the elements of B on one side
of C. Therefore, C ∈ B, so every cycle of G is in B. We conclude that ZG ⊆ B, whence
ZG = B.

It remains to show that every element of ZG is a thin sum of the elements of B. To do
this, we shall require the following lemma (which is also required for Whitney’s Theorem),
whose proof is given below. Note that this lemma implies the planar dual is connected.

Lemma 3.2 Let G be a 2-connected graph-like continuum, with vertex set V , embedded
in the sphere S2 and let C be any circle in G. If F and F ′ are distinct faces of G, then
there is an arc α in S2 \ V having one end in F , one end in F ′ and such that α ∩ G is
finite. Moreover, if F and F ′ are in the same component of S2 \C, then α may be chosen
so that α ∩ C = ∅.

Let z ∈ ZG and partition z into edge-disjoint cycles [13, Thm. 14]; let {Cπ} be the
corresponding circles, that is, the edge sets of the Cπ partition z. Pick any points u, v of
S2 \ G; by Lemma 3.2, there is an arc in S2 \ V joining u and v intersecting G finitely
often.

We claim that, for any two such uv-arcs α and α′, |α ∩ z| ≡ |α′ ∩ z| (mod 2). To see
this, note that, for each π, if u and v are on the same side of Cπ, then |α∩Cπ| and |α′∩Cπ|
are both even, while if u and v are on different sides of Cπ, then |α ∩ Cπ| and |α′ ∩ Cπ|
are both odd. Clearly, |α ∩ z| =

∑
π |α ∩ Cπ|, and the latter sum has only finitely many

non-zero terms (α has only finitely many intersections with G). Of course the same holds
for α′ ∩ z.
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It follows that we can partition the faces of G into those that have odd (with respect
to intersection with z) parity paths from u and those that have even parity paths from
u. Adjacent faces have different parities if and only if they are separated by an edge of z,
so it is easy to see that z is the sum of the boundaries of all the faces in one of these two
sets, as required.

Conversely, suppose G has a 2-basis B. We use (without significant change) the proof
of [2] to show that G has no subdivision of either K3,3 or K5. We show that every finite
2-connected graph that has a homeomorph H in G also has a 2-basis. Since neither K3,3

nor K5 has a 2-basis, G does not contain a homeomorph of either of these, as claimed.
Since H is 2-connected, its cycle space ZH has non-empty elements and each of these is

a symmetric difference of the elements of a subset of B. For each element z of ZH , let Bz

denote such a subset of B. Now, among the finitely many elements of ZH , let z1, z2, . . . , zk

be those so that the Bzi
are all the inclusion-wise minimal elements of {Bz | z ∈ ZH}.

Let z ∈ ZH be such that, for some i, Bz ∩Bzi
6= ∅. We claim that Bzi

⊆ Bz.
To see this, let z′ be

∑
b∈Bz∩Bzi

b. If e is an edge of G not in H, then e is in an even

number of the elements of each of Bz and Bzi
. Since e is in at most two elements of B,

it follows that e is in either no element of Bz ∩Bzi
or two elements of Bz ∩Bzi

. In either
case, e is not in z′. Therefore, z′ ⊆ E(H) and we deduce z′ ∈ ZH . But Bz ∩ Bzi

⊆ Bzi

and Bzi
is minimal. Thus, Bzi

⊆ Bz, as required.
Notice that this claim proves that Bz1 , Bz2 , . . . , Bzk

are pairwise disjoint. Thus, every
edge of H appears in at most two of the zi. We claim that z1, . . . , zk spans ZH ; this will
complete the proof.

Let z ∈ ZH and let I be the set of indices i for which Bz ∩Bzi
6= ∅. By the preceding

remarks, the Bzi
, for i ∈ I, are pairwise disjoint and each is contained in Bz.

Let B′ = Bz \
(⋃

i∈I Bzi

)
and consider z′ =

∑
b∈B′ b. Then z′ = z +

∑
i∈I zi ∈ ZH . If

z′ 6= ∅, then there is a j ∈ {1, 2, . . . , k} so that Bzj
⊆ Bz′ . But then j ∈ I, a contradiction.

So B′ = ∅ and z =
∑

i∈I zi.

Proof of Lemma 3.2. We prove the moreover version, since the other is an easy conse-
quence. Let R be the component of S2 \ C containing both F and F ′. Note that R and
R \ V are both open sets; the former is connected by definition. We claim that R \ V is
also connected.

If we identify all the points of C to a single point c, then the space R∪C quotients to
the sphere. Now {c} ∪ (R ∩ V ) is a closed, totally disconnected subset V ′ of the sphere;
therefore, S2 \V ′ is connected. (This is not at all trivial; one way to prove it is to use the
classification of non-compact surfaces [7].)

Now each point of S2 \ V ′ has a disc neighbourhood so that any two points in the
neighbourhood are joined by an arc in S2 \V ′ that meets G∩R only finitely often (in fact
at most twice and twice only if both points are in G). It follows that the set of points of
S2 \V ′ joined to a specific point u by an arc that meets G only finitely often is open, as is
its complement. If both were non-empty, then S2 \ V ′ would not be connected. Since the
points joined by u by such arcs include u, it must be that each point of S2 \ V ′ is joined
to u by an arc in S2 \ V ′ meeting G only finitely often. �
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4 Whitney’s Theorem

In this section we prove Whitney’s Theorem for graph-like continua. Recall that the bonds
of a graph-like continuum are finite, so any dual of a graph-like continuum will have only
finite circuits. On the other hand, a graph-like continuum can have infinite circuits and
so its dual can have infinite cocircuits.

Thinking next about planar duality, if we embed a connected graph-like continuum
into the sphere, then the faces are open discs, the planar dual has these as vertices, and
each edge of the graph-like continuum has a dual edge joining the two dual vertices on
either side of the primal edge. Thus, the planar dual is simply a (possibly infinite) graph.

We can also define abstract duality for graph-like continua. The graph H is an abstract
dual of the graph-like continuum G if there is a bijection between the edge sets of G and
H so that a set of edges is the edge set of a circuit of G if and only if (its image) is a bond
of H. In other words, H is an abstract dual of G if the circuit matroid of G is the bond
matroid of H.

We are now ready for Whitney’s Theorem for graph-like continua.

Theorem 4.1 Let G be a graph-like continuum. Then G has an abstract dual graph if
and only if G contains no homeomorph of either K3,3 or K5.

Proof. We first assume G is 2-connected. If G contains no homeomorph of either K3,3

or K5, then Theorem 1.1 implies G has an embedding in the sphere S2. In this case, it
suffices to prove that the planar dual has the right B-matroid.

Let H be the planar dual of G and let C be a cycle of G. Lemma 3.2 implies that the
subgraphs of H on either side of C are connected and, therefore, the edges of H dual to
the edges of C form a bond of H.

To complete the proof that H has the right B-matroid, we must also show that every
bond of H is dual to a cycle of G. Let U be a subset of V (H) so that the set δ(U) of
edges of H with precisely one end in U is a bond. For each u ∈ U , let bu denote the edge
set of the cycle of G bounding the face of G containing u. Then

∑
u∈U bu is in the cycle

space of G and is equal to the set (δ(U))∗ of edges in G dual to the edges of δ(U). Since
it is in the cycle space of G, it partitions into the edge sets of cycles of G. If C is one of
these edge sets, then the preceding paragraph proves that the set C∗ of edges of H dual
to the edges of C is a bond. Since C∗ ⊆ δ(U), we deduce that C∗ = δ(U) and, therefore
(δ(U))∗ is the edge set of a cycle of G, as required.

Conversely, suppose that H is an abstract dual of G. It is easy to see that every finite
minor of the circuit matroid of H is graphic, so in particular is not the bond matroid of
either K3,3 or K5. Since the circuit matroid of G is dual to that of H, it contains no minor
isomorphic to the circuit matroids of K3,3 or K5.

Now, suppose K is a subspace of G that is homeomorphic to a finite graph F . Let
D be the set of edges of G not in K, and let C contain all but one edge from each of
the arcs of K that correspond to edges of F . It is easy to check that if we delete D and
contract C from the circuit matroid of G we will obtain the circuit matroid of F as a
minor. Therefore, F cannot be K3,3 or K5.
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We conclude by treating the case G is not 2-connected. In this case, the circuit matroid
M of G is the direct sum of the circuit matroids of the blocks of G. Each of these is the
circuit matroid of a graph-like continuum. If G contains no K3,3 or K5, then neither does
any block of G. From the 2-connected case, each block of G has a circuit matroid whose
dual is the circuit matroid of a graph. The dual is the direct sum of the circuit matroids
of the graphs and so is the circuit matroid of a graph.

On the other hand, suppose the dual M∗ of M is the circuit matroid of a graph H.
Since M is the direct sum of the circuit matroids of the blocks of G, the dual is the direct
sum of the circuit matroids dual to those of the blocks of G. The circuit matroid for the
block K of G is obtained by deleting all the edges of G not in K; its dual is obtained from
M∗ by contracting all the elements of G not in K. Since contractions done in H result
in a graph, the circuit matroid of K has the circuit matroid of a graph as its dual. From
the 2-connected case, K has no K3,3 or K5 and, therefore, neither does G.

5 Concluding Remarks

Two of the current authors, together with Thomassen, have proven the following extension
of Kuratowski’s Theorem [9].

Theorem 5.1 A compact, locally connected metric space X is not planar if and only if
X contains either K5 or K3,3, or a generalized thumbtack, or the disjoint union of the
sphere and a point.

This theorem gives the precise forbidden structure for graph-like continua (and more
general spaces) to be planar. (A generalized thumbtack is a graph-like continuum that ap-
proximates a thumbtack. As shown in [9], there are five canonical generalized thumbtacks,
so Theorem 5.1 gives a finite number of obstructions to planar embedding.) In particular,
this theorem explains why our versions of the theorems of MacLane and Whitney do not
reference planarity.

It is also interesting to contemplate another variation of Whitney’s Theorem. Suppose
G is an infinite graph with corresponding B-matroid M . Then M∗ is the B-matroid of
a graph-like continuum if and only if G contains no homeomorph of either K3,3 or K5

(which is equivalent to G being planar).
The difficulty with this is that G is not compact and, therefore, it is not so obvious

how to make use of a planar embedding to obtain a graph-like continuum planar dual.
However, using quite different techniques, the first author has proved this result; this will
appear in his doctoral thesis.
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