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Abstract

Characteristic points have been a primary tool in the study of a generating
function defined by a single recursive equation. We investigate the proper way to
adapt this tool when working with multi-equation recursive systems.

Given an irreducible non-negative power series system with m equations, let ρ

be the radius of convergence of the solution power series and let τττ be the values of
the solution series evaluated at ρ. The main results of the paper include:

(a) the set of characteristic points form an antichain in Rm+1,

(b) given a characteristic point (a,b), (i) the spectral radius of the Jacobian of G

at (a,b) is ≥ 1, and (ii) it is = 1 iff (a,b) = (ρ,τττ ),

(c) if (ρ,τττ ) is a characteristic point, then (i) ρ is the largest a for (a,b) a charac-
teristic point, and (ii) a characteristic point (a,b) with a = ρ is the extreme
point (ρ,τττ ).

1 Introduction and Preliminaries

Recursively defined generating functions play a major role in combinatorial enumeration;
see the recently published book [9] for numerous examples. The important technique of
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expressing a generating function as a product of geometric series (as well as other kinds
of products) was introduced by Euler in the mid 1700s, in his study of various problems
connected with the number of partitions of integers. This investigation of partition prob-
lems was continued by Sylvester and Cayley (see, for example, [5], [19]), starting in the
mid 1850s. The expressions they used for partition generating functions were explicit,
whereas the fundamental equation

∑

n≥1

tnxn = x ·
∏

n≥1

(1− xn)−tn , (1)

introduced in 1857 by Cayley [6], for rooted unlabeled trees, defined the coefficients tn
implicitly, yielding a recursive procedure to compute the tn. Cayley used this to recursively
calculate (with some errors) the first dozen values of tn, and later applied his method to
recursively enumerate certain kinds of chemical compounds.

Let T (x) =
∑

n≥1 tnxn. In 1937 Pólya (see [18]) converted (1) into

T (x) = x · exp
( ∑

m≥1

T (xm)/m
)
, (2)

a form to which he was able to apply analytic techniques to find asymptotics for the tn,
namely he proved

tn ∼ Cρ−nn−3/2 (3)

where ρ is the radius of convergence of T (x), and C a positive constant.1 A similar
result held for the various classes of chemical compounds studied by Cayley. Although
the function T (x) was not expressible in terms of well-known functions, nonetheless Pólya
showed how to determine C and ρ directly from (2). Pólya’s methods were applied to
nearly regular classes of trees in 1948 by Otter [17].

In 1974 Bender [1], following Pólya’s ideas, formulated a general result for how to
determine the radius of convergence ρ of a power series T (x) defined by a functional
equation F (x, y) = 0. Bender’s hypotheses guaranteed that ρ was positive and finite, and
that τ := T (ρ) was also finite. His method was simply to find (ρ, τ) among the solutions
(a, b) (called characteristic points) of the characteristic system

F (x, y) = 0

∂F

∂y
(x, y) = 0.

A decade later Canfield [4] found a gap in the hypotheses of Bender’s formulation when
there were several characteristic points. In the case of a polynomial functional equation,
Canfield sketched a method to determine which of the characteristic points gives the
radius of convergence of the solution y = T (x).

1In [2] we found this law so ubiquitous among naturally defined classes of trees defined by a single
equation that we referred to it as the universal law for rooted trees.
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In the late 1980s Meir and Moon [15] focused on a special case of Canfield’s work,
namely when F (x, y) = 0 is of the form y = G(x, y), where G(x, y) is a power series with
nonnegative coefficients. The interesting cases were such that setting T (x) = G(x, T (x)),
with T (x) an indeterminate power series, gave a recursive determination of the coefficients
of T (x). One advantage of their restricted form of recursive equation was that there
could be at most one characteristic point. This formulation was adopted by Odlyzko in
his 1995 survey paper [16] as well as in the recent book [9] of Flajolet and Sedgewick.
These publications have focused on characteristic points in the interior of the domain of
convergence of G(x, y), in the context of proving that ρ is a square root singularity of the
solution y = T (x). If (ρ, τ) is on the boundary of the domain of G(x, y) then ρ may not
be a square-root singularity of T (x).

Most areas of application actually require a recursive system of equations





y1 = G1(x, y1, . . . , ym)
...

ym = Gm(x, y1, . . . , ym),

(4)

written more briefly as y = G(x,y). (A precise definition of the systems considered in
this paper is given in §2.) This rich area of enumeration has been rather slow in it devel-
opment. In the 1970s Berstel and Soittola (see [9] V.3) carried out a thorough analysis
of enumerating the words in a regular language using recursive systems of equations that
were linear in y1, . . . , ym. However it was not until the 1990s that publications started
appearing that used multi-equation non-linear systems. Following the trend with single
recursion equations y = G(x, y), the focus has been on systems y = G(x,y) where the
Gi(x,y) are power series with non-negative coefficients.

In 1993 Lalley [12] considered polynomial systems in his study of random walks on
free groups. In 1997 Woods [20] used one particular system to analyze the asymptotic
densities of monadic second-order definable classes of trees in the class of all trees. In
the same year Drmota [7] extended Lalley’s results to power series systems. Lalley’s and
Drmota’s results were for a wide range of irreducible systems, that is, systems in which
each variable yi (eventually) depends on any variable yj. An irreducible system of the
kind they studied behaves in some ways like a single equation system, for example, the
standard solution yi = Ti(x) is such that all the Ti(x) have the same finite positive radius
ρ, the τi := Ti(ρ) are all finite, and the asymptotics for the coefficients of Ti(x) is of the
Pólya form Ciρ

−nn−3/2.
Thus, as has been the case with single equation systems, it is desirable to find the

radius of convergence ρ even though the solutions Ti(x) may be fairly intractable. The
natural method was to extend the definition of the characteristic system from a single
equation to a system of equations, by adding the determinant of the Jacobian of the
system, set equal to zero to, to the original system. The solutions of such a characteristic
system will again be called characteristic points.

Under suitable conditions one can find (ρ,τττ) among the characteristic points. To-
date, however, the necessary study of characteristic points (a,b) for systems, so that one
can locate (ρ,τττ ), has been essentially non-existent. Filling this void is the goal of this
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paper. In December, 2007, we discovered, in the polynomial systems studied by Flajolet
and Sedgewick, and thus in the more general systems studied by Drmota, that it was
possible for there to be more than one characteristic point — this was communicated to
Flajolet and appears as an example in [9] (p. 484). The main objective of this paper is
to give conditions to locate (ρ,τττ) among the characteristic points, if indeed (ρ,τττ) is a
characteristic point. A review of, and improvements to, the theory of the single equation
case (see Proposition 15 and Corollary 17) are also given.

It turns out that, even if there is a characteristic point of a system y = G(x,y) in
the interior of the domain of G(x,y), one cannot claim that the asymptotics for the
coefficients of the solutions Ti(x) will be of the above Pólya form (see Examples 30, 31).2

We do not investigate the case when (ρ,τττ ) is not a characteristic point, concluding
only that it must be on the boundary of the domain of G(x,y) and that the spectral
radius of the Jacobian of G(x,y) at (ρ,τττ) is < 1. Note that for polynomial systems, (ρ,τττ)
is always a characteristic point, and in general the spectral radius condition (see Lemma
12) makes it possible to recognize when (ρ,τττ ) is among the characteristic points.

1.1 Outline

Appendix B discusses standard background and notation for power series, including a
statement, Proposition 37, of the key results of Perron-Frobenius theory.

Section 2 sets up the equational systems of interest. Section 3 begins by reducing to
the case where the Jacobian matrix JG(x,y) has nonzero entries and then proceeds to
the more interesting discussion of properties of characteristic points, including notably
Proposition 11. This leads to the main result of the section, Theorem 14, followed by the
single equation result, Proposition 15. Section 4 introduces an eigenvalue criterion for
critical points leading to the main result of the paper, Theorem 21. Section 5 then uses
the preceding results to correct an inaccuracy in the literature. The main body of the
paper concludes with some open problems.

Appendix A contains a large number of examples illustrating the various possibilities
and results. It is best read along side the main body of the paper.

2 Well-conditioned systems

The next definition gives a version of essentially well-known conditions which ensure that a
system y = G(x,y) as in (4) has power series solutions yi = Ti(x) of the type encountered
in generating functions for classes of trees. (See Drmota [7], [8].)

2In 1997 Drmota [7] appears to claim that having a characteristic point in the interior of the domain
would lead to Pólya asymptotics—however these examples show this not to be the case. In his 2009 book
[8] this hypothesis is replaced with one regarding minimal characteristic points, which seems somewhat at
odds with our Proposition 11, which says that the characteristic points form an antichain with the char-
acteristic point (a,b) of interest having the largest value of a among the characteristic points. Theorem
22 of §5.1 is a restatement of Drmota’s result, to make it clear which characteristic point is of interest,
namely the one (if it exists) such that the Jacobian of G(x,y) has 1 as its largest real eigenvalue.
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Definition 1. A system y = G(x,y) is well-conditioned if it satisfies

(a) each Gi(x,y) is a power series with nonnegative coefficients

(b) G(x,y) is holomorphic in a neighborhood of the origin

(c) G(0,y) = 0

(d) for all i, Gi(x, 0) 6= 0

(e) det
(
I − JG(0, 0)

)
6= 0 where JG is the Jacobian matrix

(
∂Gi

∂yj

)

(f) the system is irreducible3

(g) for some i, j, k,
∂2Gi(x,y)

∂yj∂yk
6= 0 (so the system is nonlinear in y).

Remark 2. Since G(x,y) has non-negative coefficients, condition (b) is equivalent to
(b′): G(x,y) converges at some positive (a,b).

2.1 Solutions of Well-Conditioned Systems

The following proposition is standard.

Proposition 3. If y = G(x,y) is a well-conditioned system then the following hold:

(i) There is a unique vector T(x) of formal power series Ti(x) with nonnegative coeffi-
cients such that one has the formal identity

T(x) = G
(
x,T(x)

)
. (5)

(ii) Equation (5) gives a recursive procedure to find the coefficients of the Ti(x).

(iii) Equation (5) holds for x ∈ [0,∞].

(iv) All Ti(x) have the same radius of convergence ρ ∈ (0,∞) and all Ti(x) converge at
ρ, that is, τi := Ti(ρ) <∞.

(v) Each Ti(x) has a singularity at x = ρ.

(vi) If (ρ,τττ ) is in the interior of the domain of G(x,y) then

det
(
I − JG(ρ,τττ )

)
= 0.

Proof. Apply Proposition 36, Pringsheim’s Theorem, and the Implicit Function Theorem.

3This means the non-negative matrix JG is irreducible.

the electronic journal of combinatorics 17 (2010), #R121 5



The sequence T(x) of power series described in Proposition 3 is the standard solution
of the system, and the point (ρ,τττ) is the extreme point (of the standard solution, or of the
system). From (5) one has T(0) = 0, so the standard solution goes through the origin.
The set

Dom+(G) :=
{
(a,b) : a, b1, . . . , bm > 0 and Gi(a,b) <∞, 1 ≤ i ≤ m

}

is the positive domain of G. For (a,b) ∈ Dom+(G) let

Λ(a,b) := Λ
(
JG(a,b)

)
,

the largest real eigenvalue of the Jacobian matrix JG(a,b). Since JG(a,b) is a matrix
with non-negative entries, Λ(a,b) is the spectral radius of JG(a,b).

2.2 Characteristic Systems, Characteristic Points

Flajolet and Sedgewick [9] VII.6 define the characteristic system of (4) to be






y1 = G1(x, y1, . . . , ym)
...

ym = Gm(x, y1, . . . , ym)
0 = det

(
I − JG(x,y)

)
.

Let the positive solutions (a,b) ∈ Rm+1 to this system be called the characteristic points
of the system.4 Requiring that (ρ,τττ) be a characteristic point in the interior of the domain
of G(x,y) has been crucial to proofs that x = ρ is a square-root singularity of the Ti(x),
leading to the asymptotics ti(n) ∼ Ciρ

−nn−3/2 for the non-zero coefficients. There is,
thus, considerable interest in finding practical computational means of estimating ρ.

For the case that the Gi(x,y) are polynomials we know that (ρ,τττ ) will be among the
characteristic points and in the interior of the domain of G. However until now, even in
the polynomial case, no general attempt has been made to characterize (ρ,τττ ) among the
characteristic points of the system5—with one exception, namely the 1-equation systems.

3 Characteristic Points of Well-Conditioned Systems

From now on it is assumed, unless stated otherwise, that we are working with a well-
conditioned system Σ : y = G(x,y) of m equations.

4Flajolet and Sedgewick ([9] Chapter VII p. 468) only consider characteristic points in the interior of
Dom

+(G).
5When dealing with polynomial systems in Chapter VII of [9], Flajolet and Sedgewick do not use

characteristic systems—they prefer to work with the singularities, and their connections via branches, of
the algebraic curves yi(x) defined by the system.
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3.1 Making substitutions in an irreducible system

A careful analysis of the characteristic points of Σ is easier if JG(a,b) is a positive ma-
trix for positive points (a,b); this is the case precisely when no entry of JG(x,y) is 0.
Fortunately there is a substitution procedure to transform the original system Σ into a
well-conditioned system Σ⋆ with

(i) exactly the same positive solutions (a,b), and

(ii) exactly the same set CP of characteristic points,

and such that for the new system y = G⋆(x,y), the Jacobian JG⋆(x,y) has no zero
entries. Indeed, given any positive integer n, one can carry out the substitutions so that
all nth partial derivatives of G(x, y) with respect to the yi are non-zero. The goal of this
section is to prove these claims.

The simplest substitutions are n-fold iterations G(n) of the transformation G. These
are used in [9] (see p. 492) as they suffice for aperiodic6 polynomial systems Σ. In general,
however, iteration of G does not suffice to obtain a system Σ⋆ as described above—see
Example 33.

Given a system Σ : y = G(x,y), a minimal self-substitution transformation creates
the system Σ(α) : y = G(α)(x,y) by selecting α ∈ [0, 1] and a pair of indices i, j (possibly
the same) with ∂Gi(x,y)/∂yj 6= 0 and then substituting αGj(x,y)+(1−α)yj for a single
occurrence of yj in the power series Gi. Suppose H(x, y0;y) is the result of replacing the
single occurrence of yj in Gi by a new variable αy0. Then the system Σ(α) is

Σ(α) :






y1 = G
(α)
1 (x,y) := G1(x,y)

...

yi = G
(α)
i (x,y) := H

(
x, αGj(x,y) + (1− α)yj);y

)

...

ym = G
(α)
m (x,y) := Gm(x,y)

More generally, a system Σ⋆ : y = G⋆(x,y) is a self-substitution transform of Σ : y =
G(x,y) if there is a sequence Σ0, Σ1, . . . , Σr of systems such that Σ = Σ0, Σ⋆ = Σr, and
for 0 ≤ i < r the system Σi+1 is a minimal self-substitution transform of Σi.

Lemma 4. For Σ(α) and Σ⋆ as described above:

(a) Σ = Σ0.

(b) If Σ is irreducible and α ∈ [0, 1) then Σ(α) is irreducible.

(c) Suppose Σ is irreducible. Then Σ⋆ is irreducible iff each step Σi is irreducible.

6A well-conditioned system y = G(x,y) is aperiodic if the coefficients of each Ti(x) are eventually
positive, T(x) being the standard solution—see [9], p. 489.

the electronic journal of combinatorics 17 (2010), #R121 7



(d) Suppose Σ is well-conditioned and α ∈ [0, 1]. Then Σ(α) is well-conditioned iff it is
irreducible. In particular Σ(α) is well-conditioned if α ∈ [0, 1).

(e) Suppose Σ is well-conditioned. Then Σ⋆ is well-conditioned iff it is irreducible.

Proof. Straightforward.

Lemma 5. Suppose
Σ⋆ : y = G⋆(x,y)

is a self-substitution transform of a well-conditioned Σ : y = G(x,y). Then the following
hold:

(a) G(x,y) and G⋆(x,y) have the same positive domain of convergence.

(b) Σ⋆ and Σ have the same positive solutions and the same characteristic points.

(c) If Σ⋆ is well-conditioned then Σ and Σ⋆ have the same standard solution T(x) and
extreme point (ρ,τττ).

(d) If Σ⋆ is well-conditioned then the Jacobians JG(x,y) and JG⋆(x,y) have all entries
finite at the same positive points (a,b) in the domain of G.

Proof. It suffices to prove this for the case that Σ⋆ = Σ(α), a minimal self-substitution
transform of Σ as described above, namely substituting αGj(x,y) + (1−α)yj for a single
occurrence of yj in the power series Gi(x,y). Let

H(x, y0;y) = A(x,y)y0 + B(x,y),

where A(x,y) and B(x,y) are power series with non-negative coefficients, and neither is
0, be such that

Gi(x,y) = A(x,y)yj + B(x,y)

G
(α)
i (x,y) = A(x,y)

(
αGj(x,y) + (1− α)yj

)
+ B(x,y).

For item (a), first suppose that (a,b) ∈ Dom+(G). Then A(a,b) and B(a,b) are finite, so

G
(α)
i (a,b) is finite. This suffices to show (a,b) ∈ Dom+(G(α)) since the other G

(α)
j (x,y)

are the same as those in Σ. Conversely, suppose (a,b) ∈ Dom+(G(α)). Again A(a,b) and
B(a,b) are finite, so Gi(a,b) is finite; and as before, the other Gj(a,b) are finite. Thus
(a,b) ∈ Dom+(G).

For item (b), if i 6= j then clearly the two systems have the same positive solutions
since yj = Gj(x,y) is in both systems.

If i = j first note that every positive solution of Σ is also a solution of Σ(α). For the
converse we have

G
(α)
i (x,y) = A(x,y)

(
α
(
A(x,y)yi + B(x,y)

)
+ (1− α)yi

)
+ B(x,y)

= αA(x,y)2yi + αA(x,y)B(x,y) + (1− α)A(x,y)yi + B(x,y).
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Let (a,b) be a positive solution of Σ(α). Then (a,b) solves all equations yj = Gj(x,y)
of Σ where j 6= i since these equations are also in Σ(α). Now

bi = G
(α)
i (x,y)

= αA(a,b)2bi + αA(a,b)B(a,b) + (1− α)A(a,b)bi + B(a,b),

so (
1− αA(a,b)2 − (1− α)A(a,b)

)
bi =

(
1 + αA(a,b)

)
B(a,b).

Since 1 + αA(a,b) is positive, one can cancel to obtain

bi = A(a,b)bi + B(a,b),

which says that (a,b) satisfies the ith equation of Σ, and thus all the equations of Σ.
Consequently Σ and Σ(α) have the same positive solutions (a,b).

To show both systems have the same characteristic points, compute

∂G
(α)
i (x,y)

∂yk
=

∂Gi(x,y)

∂yk
+ α

∂A(x,y)

∂yk
·
(
Gj(x,y)− yj

)

+ αA(x,y) ·
(∂Gj(x,y)

∂yk
− δjk

)
.

At a positive solution (a,b) to Σ (hence to Σ⋆), this gives

∂G
(α)
i (a,b)

∂yk
=

∂Gi(a,b)

∂yk
+ αA(a,b) ·

(∂Gj(a,b)

∂yk
− δjk

)
. (6)

Thus, since (a,b) is positive, one obtains Jα(a,b) := I − JG(α)(a,b) from J(a,b) :=
I − JG(a,b) by an elementary row operation. It follows that det(J(a,b)) = 0 if and only
if det(Jα(a,b)) = 0. Combining this with the fact that Σ and Σ(α) have the same positive
solutions shows that they also have the same characteristic points.

For the next claim, item (c), note that the composition of minimal self-transforms
using α ∈ [0, 1) at each step preserves the well-conditioned property by Lemma 4.

For a well-conditioned system Σ, the standard solution is the unique sequence T(x)
of non-negative power series with T(0) = 0 that solve the system. The standard solution
of Σ is clearly a solution of Σ(α). Thus if Σ(α) is well-conditioned then it has the same
standard solution, and hence the same extreme point, as Σ, so (d) holds.

For the final item, let (a,b) be a point in Dom+(G), hence a point in Dom+(G(α)).

A(a,b) is finite by looking at the expression above for Gi(x,y). Then, since G
(α)
j (x,y) =

Gj(x,y) for j 6= i, (6) shows that
∂G

(α)
i (a,b)

∂yk
is finite iff

∂Gi(a,b)

∂yk
is finite, so one has

item (e).
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Lemma 6. A well-conditioned system Σ : y = G(x,y) can be transformed by a self-
substitution into a well-conditioned system Σ⋆ : y = G⋆(x,y) such that the Jacobian
matrix JG⋆(x,y) has all entries non-zero. Indeed, given any n > 0, one can find a Σ⋆

such that all nth partials of the G⋆
i with respect to the yj are non-zero.

Proof. The goal is to show that there is a sequence Σ0, . . . , Σr of minimal self-substitution
transforms that go from Σ to the desired Σ⋆, and such that each system Σi is well-
conditioned. The following four cases give the key steps in the proof.

CASE I: Suppose some Gi is such that all nth partials are non-zero. If Gj is dependent on
yi (there is at least one such j) then substituting (1/2)Gi +(1/2)yi for some occurrence of
yi in Gj gives a well-conditioned system Σ′ such that for G′

i = Gi and G′
j, all nth partials

are non-zero. Continuing in this fashion one eventually has the desired system Σ⋆.

CASE II: Suppose
∂mnGi

∂yi
mn
6= 0 for some i. This means yi

mn divides some monomial of Gi.

Use the fact that for any j 6= i there is a dependency path from yi to yj to convert, via
self-substitutions that preserve the well-conditioned property, a product of n of the yi in
this monomial into a power series which has yj

n dividing one of its monomials. By doing
this for each j 6= i one obtains a well-conditioned G′

i with

∂mnG′
i

∂y1
n · · ·∂ym

n
6= 0.

Σ′ is now in Case I.

CASE III: Suppose
∂2Gi

∂yi
2
6= 0 for some i. Substituting Gi for a suitable occurrence of yi

in Gi gives a well-conditioned Σ′ where
∂3G′

i

∂yi
3
6= 0. Continuing in this fashion leads to

Case II.

CASE IV: Suppose
∂2Gi

∂yj∂yk
6= 0 for some i, j, k. If j 6= i there is a dependency path from

yj to yi which shows how to make self-substitutions (that preserve the well-conditioned

property) leading to
∂2Gi

∂yi∂yk
6= 0. Likewise, if k 6= i there is a dependency path from

yk to yi which shows how to make self-substitutions (with each minimal step being well-

conditioned) leading to
∂2Gi

∂yi
2
6= 0, which is Case III.

Since Σ is non-linear in y, for some i, j, k we have

∂2Gi

∂yi∂yk

6= 0.

Thus starting with Case IV and working back to Case I we arrive at the desired Σ⋆.
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Lemma 7. Let Σ : y = G(x,y) be a well-conditioned system and let Σ⋆ : y = G⋆(x,y)
be a self-substitution transform of Σ. If (a,b) is a characteristic point of Σ, hence of Σ⋆,
then Λ(a,b) = 1 iff Λ⋆(a,b) = 1.

Proof. Let (a,b) be a characteristic point of Σ. It suffices to consider the case where Σ⋆

is obtained from Σ by a minimal self-substitution. Let Gi(x,y) depend on yj, and let
H(x, y0;y) be the result of replacing a single occurrence of yj in Gi(x,y) by y0. Then let
Σ(α) : y = G(α)(x,y), α ∈ [0, 1], be the minimal self-substitution transform of Σ obtained
by applying the substitution y0 ← αGj(x,y) + (1− α)yj to H(x, y0;y) to obtain

G
(α)
i (x,y) = H

(
x, αGj(x,y) + (1− α)yj);y

)
.

Let Λα := Λα(a,b), the largest real eigenvalue of JG(α)(a,b).

The only information that we need from the above construction of the G
(α)
i is that

the function α 7→ JG(α)(a,b) is continuous on [0, 1], and each JG(α)(a,b) has 1 being an
eigenvalue. Since Λ is continuous on non-negative matrices by Corollary 38, it follows
that α 7→ Λα is continuous on [0, 1]. The goal is to show that one has Λ0 = 1 iff Λα = 1.

Since (a,b) is a characteristic point of Σ0 it is also a characteristic point of Σ(α), by
Lemma 5, for α ∈ [0, 1]. Thus 1 is an eigenvalue of JG(α)(a,b) for α ∈ [0, 1]. Suppose
Λ0 = 1. Suppose there is a β ∈ (0, 1] with Λβ > 1. From the continuity of Λα there is a
γ ∈ [0, β) such that: Λγ = 1, and Λα > 1 for α ∈ (γ, β].

Let pα(x) be the characteristic polynomial of JG(α)(a,b). From

pα(1) = pα(Λα) = 0

one has, for each α ∈ (γ, β), a cα ∈ (1, Λα) such that

dpα

dx
(cα) = 0.

Since Λα is continuous on [0, 1], limα→γ+ Λα = Λγ = 1. This implies limα→γ+ cα = 1,
and thus

dpγ

dx
(1) = lim

α→γ+

dpα

dx
(cα) = 0.

But from the Perron-Frobenius theory (see Proposition 37) we know that Λγ = 1 implies
that 1 is a simple root of pγ(x), giving a contradiction. Thus Λ0 = 1 implies Λα = 1.

A similar proof gives the converse, that if Λα = 1 then Λ0 = 1, proving the lemma.

Remark 8. In view of the last two lemmas, given a well-conditioned system Σ : y =
G(x,y), when one wants to prove something about the positive solutions, the characteristic
points, or whether or not Λ(a,b) = 1 at a characteristic point (a,b), one can, given any
n > 0, assume without loss of generality that all nth partials of each Gi with respect to the
yj are non-zero. In the rather scant literature on nonlinear systems one finds a preference
for working with aperiodic systems (see, e.g., [9]), no doubt because of the simplicity of
using uniform substitutions to convert such a system into one where the Jacobian of G has
non-zero entries. With Lemmas 6 and 7, the need for the aperiodic hypothesis is avoided.
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3.2 Basic Properties of (ρ, τττ) and CP
Now we turn to the question of how to find information about the extreme point (ρ,τττ ) of
a well-conditioned system Σ without solving the system for the standard solution T(x).

Lemma 9. Let y = G(x,y) be a well-conditioned system with all entries of JG non-zero.

(a) One has the formal equality

T′(x) = Gx

(
x,T(x)

)
+ JG

(
x,T(x)

)
·T′(x), (7)

which also holds for x ∈ [0,∞].

(b) All T ′
i (ρ) are finite or all T ′

i (ρ) =∞.

(c) For all i, j the following hold:

0 <
∂Gi

∂yj
(ρ,τττ ) · ∂Gj

∂yi
(ρ,τττ) ≤ 1

0 <
∂Gi

∂yj
(ρ,τττ ) < ∞

0 <
∂Gi

∂yi
(ρ,τττ ) ≤ 1.

Proof. Differentiating (5) gives (7), so T′(x) is a solution to the irreducible system u =
Gx

(
x,T(x)

)
+ JG

(
x,T(x)

)
· u, implying (b). For x ∈ (0, ρ), for each i, j, (7) implies

T ′
i (x) >

∂Gi

∂yj

(
x,T(x)

)
· T ′

j(x),

and thus

1 >
∂Gi

∂yj

(
x,T(x)

)
· ∂Gj

∂yi

(
x,T(x)

)
> 0,

giving the inequalities in (c) since the value of
∂Gi

∂yj

(
ρ,τττ

)
is the limit of

∂Gi

∂yj

(
x,T(x)

)
as

x approaches ρ from below.

Lemma 10. Let y = G(x,y) be a well-conditioned system.

(a) If (a,b) ∈ CP then Λ(a,b) ≥ 1.

(b) 0 < Λ
(
a,T(a)

)
< 1, for 0 < a < ρ.
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Proof. For (a) note that (a,b) ∈ CP implies that 1 is an eigenvalue of JG(a,b), so
Λ(a,b) ≥ 1.

(b) Given 0 < a < ρ, by the Perron-Frobenius theory of nonnegative matrices we know
that there is a positive left eigenvector (a row vector) v belonging to Λ

(
a,T(a)

)
. By (7)

v ·T′(a) = v ·Gx

(
a,T(a)

)
+ v · JG

(
a,T(a)

)
·T′(a),

so
v ·T′(a) = v ·Gx

(
a,T(a)

)
+ Λ

(
a,T(a)

)
v ·T′(a).

Since v ·T′(a) > 0 and v ·Gx

(
a,T(a)

)
> 0 it follows that Λ

(
a,T(a)

)
< 1.

Proposition 11. Let y = G(x,y) be a well-conditioned system. Suppose (a,b) and
(c,d) are characteristic points and (a,b) ≤ (c,d). Then (a,b) = (c,d). Thus the set of
characteristic points of the system forms an antichain under the partial ordering ≤.

Proof. For the proof assume, in view of Remark 8, that all second partials of the Gi with
respect to the yj do not vanish. If b = d then G(a,b) = b = d = G(c,d), which forces
a = c by the monotonicity of each Gi.

Now assume b 6= d. Since b ≤ d, all entries of d− b are non-negative. Using part of
a Taylor series expansion,

G(c,d) ≥ G(a,b) + JG(a,b)(d− b) +
1

2





∂2G1(a,b)
∂y1

2 (d1 − b1)
2

...
∂2Gm(a,b)

∂ym
2 (dm − bm)2



 .

Since G(a,b) = b and G(c,d) = d,

d− b ≥ JG(a,b)(d− b) +
1

2





∂2G1(a,b)
∂y1

2 (d1 − b1)
2

...
∂2Gm(a,b)

∂ym
2 (dm − bm)2



 .

Let λ be the largest real eigenvalue of the positive matrix JG(a,b), and let v be a positive
left eigenvector belonging to λ. Then

v(d− b) ≥ vJG(a,b)(d− b) +
1

2
v





∂2G1(a,b)
∂y1

2 (d1 − b1)
2

...
∂2Gm(a,b)

∂ym
2 (dm − bm)2





= λv(d− b) +
1

2
v





∂2G1(a,b)
∂y1

2 (d1 − b1)
2

...
∂2Gm(a,b)

∂ym
2 (dm − bm)2





the electronic journal of combinatorics 17 (2010), #R121 13



so

(1− λ)v(d− b) ≥ 1

2
v





∂2G1(a,b)
∂y1

2 (d1 − b1)
2

...
∂2Gm(a,b)

∂ym
2 (dm − bm)2



 > 0,

and this forces λ < 1, contradicting Lemma 10 (a).

Lemma 12. Let y = G(x,y) be a well-conditioned system.

(a) (ρ,τττ) is in the domain of JG(x,y), that is, all entries of the matrix JG(ρ,τττ) are
finite.

(b) If (ρ,τττ ) is in the interior of the domain of G(x,y) then it is a characteristic point.

(c) 0 < Λ(ρ,τττ) ≤ 1.

(d) Λ(ρ,τττ) = 1 iff 1 is an eigenvalue of JG(ρ,τττ ) iff (ρ,τττ ) ∈ CP.

Proof. For item (a), first let Σ⋆ be a well-conditioned self-substitution transform of Σ with
all entries in JG⋆(x,y) non-zero (see Remark 8). By Lemma 9, all entries of JG⋆(ρ,τττ) are
finite. Then Lemma 5 (e) shows that all entries of JG(ρ,τττ ) are finite.

For the remainder of the proof we can assume that all entries in JG are non-zero. For
part (b) one argues just as in the case of a single equation—if (ρ,τττ) is an interior point
but not a characteristic point then by the implicit function theorem there would be an
analytic continuation of T(x) at ρ, which is impossible.

For (c), since Λ is a continuous nondecreasing function by Corollary 38, and since the
limit of JG

(
x,T(x)

)
as x approaches ρ from below is JG(ρ,τττ), it follows from Lemma 10

(b) that Λ(ρ,τττ) ≤ 1.
For (d), clearly Λ(ρ,τττ) = 1 implies 1 is an eigenvalue of JG(ρ,τττ), and this in turn

implies that (ρ,τττ) ∈ CP . Now suppose that (ρ,τττ ) ∈ CP . Then 1 is an eigenvalue of
JG(ρ,τττ), so Λ(ρ,τττ) ≥ 1. Thus (c) gives Λ(ρ,τττ) = 1.

Lemma 13. Let y = G(x,y) be a well-conditioned system. If (a,b) is a characteristic
point and (a,b) 6= (ρ,τττ ) then either

(a) bi > τi for all i, or

(b) a < ρ and bi > Ti(a) for all i, and some bj > τj.

Proof. Condition (e) in the definition of well-conditioned ensures that each Gi(x,y) de-
pends on x. In view of Remark 8 assume that all second partials of each Gi(x,y) with
respect to the yj are non-zero. Suppose that (a) does not hold.

Claim 1: If some bi > τi and some bj ≤ τj then a < ρ and Ti(a) < bi for 1 ≤ i ≤ m.
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WLOG assume that
b1 ≤ τ1, . . . , bk ≤ τk

and
bk+1 > τk+1, . . . , bm > τm.

From the monotonicity and continuity of the Ti on [0, ρ] it follows that for 1 ≤ i ≤ k
there exist unique ξi ∈ (0, ρ] such that

bi = Ti(ξi).

WLOG assume that
0 < ξ1 ≤ · · · ≤ ξk ≤ ρ.

For i ∈ {1, . . . , k}
Ti(ξ1) ≤ Ti(ξi) = bi

and for k + 1 ≤ i ≤ m
Ti(ξ1) ≤ Ti(ρ) < bi.

Now suppose ξ1 < a. Then

b1 = G1

(
ξ1, T1(ξ1), . . . , Tm(ξ1)

)

< G1(a, b1, . . . , bm) = b1,

a contradiction. Thus
0 < a ≤ ξ1 ≤ · · · ≤ ξk ≤ ρ.

Using this one has, for 1 ≤ i ≤ k:

Ti(ξi) = Gi

(
a, T1(ξ1), . . . , Tk(ξk), bk+1, . . . , bm

)

> Gi

(
a, T1(a), . . . , Tk(a), Tk+1(a), . . . , Tm(a)

)
= Ti(a).

Thus for 1 ≤ i ≤ k,
0 < a < ξi ≤ ρ
Ti(a) < Ti(ξi) = bi.

Furthermore, for k + 1 ≤ i ≤ m,

Ti(a) < Ti(ρ) < bi.

Thus, in this case, for 1 ≤ i ≤ m one has Ti(a) < bi.

Claim 2: If bi ≤ Ti(ρ) for all i then a < ρ and bi = Ti(a) for all i.

Choose ξi ∈ (0, ρ] such that bi = Ti(ξi). WLOG one can assume 0 < ξ1 ≤ · · · ≤ ξm ≤ ρ.
If ξ1 < a then

b1 = G1

(
a, T1(ξ1), . . . , Tm(ξm)

)

> G1

(
ξ1, T1(ξ1), . . . , Tm(ξ1)

)

= T1(ξ1) = b1,
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a contradiction. Thus a ≤ ξ1 ≤ · · · ≤ ξm ≤ ρ.
Next one has

bm = Gm

(
ξm, T1(ξm), . . . , Tm(ξm)

)

≥ Gm

(
a, T1(ξ1), . . . , Tm(ξm)

)

= bm,

so the ≥ step must be an equality, and this implies ξm = a. Thus all ξi = a, and then for
all i one has bi = Ti(a). Since (a,b) = (a,T(a)) is assumed to be a different characteristic
point from (ρ,τττ), it follows that a < ρ.

Claim 3: It is not the case that bi ≤ τi for all i.

Otherwise by Claim 2 we would have (a,b) = (a,T(a)) with 0 < a < ρ, and then by
Lemma 10 it would follow that (a,b) /∈ CP . But by assumption, (a,b) ∈ CP.

Theorem 14. Suppose (ρ,τττ) is a characteristic point of a well-conditioned system y =
G(x,y). Then:

(a) ρ is the largest first coordinate of any characteristic point, that is

ρ = max
{
a : (a,b) ∈ CP

}
,

(b) (ρ,τττ) is the only characteristic point whose first coordinate is ρ.

Proof. Use Proposition 11 and Lemma 13.

Turning to 1-equation systems, we have the following results.

Proposition 15. A well-conditioned 1-equation system y = G(x, y) has a most one char-
acteristic point; if there is such a point it must be the extreme point (ρ, τ) of the standard
solution T (x).

Proof. The characteristic system is

y = G(x, y)

1 = Gy(x, y).

Suppose (a, b) ∈ CP is different from (ρ, τ). Then b > τ by Lemma 13.
CASE 1: Suppose a > ρ. Then (ρ, τ) is in the interior of Dom+(G), so (ρ, τ) ∈ CP by

Lemma 12(b). But this violates the antichain condition of Proposition 11 for CP.
CASE 2: Suppose a ≤ ρ. Then b = G(a, b) and T (a) = G(a, T (a)) leads to 1 =

Gy(a, ξ) for some T (a) < ξ < b. But Gy(a, b) = 1 since (a, b) ∈ CP , so again we have a
contradiction by the strict monotonicity of Gy(x, y) in Dom+(G).

Thus the only possible (a, b) ∈ CP is (ρ, τ).
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Remark 16. Meir and Moon [15] prove that well-conditioned 1-equation systems have at
most one characteristic point in the interior of Dom+(G); and if such a point exists then
it must be (ρ, τ). See also Flajolet and Sedgewick [9], Chapter VII §4.

The simple 1-equation systems y = xA(y) studied by Meir and Moon appear frequently
in the book [9] of Flajolet and Sedgewick. Letting ρA be the radius of convergence of A(y),
they use the hypothesis

lim
y→ρA

−

yA′(y)

A(y)
> 1 (8)

to guarantee that (ρ, τ) is in the interior of the domain of convergence of xA(y). The
following corollary improves on their results by giving a precise condition for there to
be a characteristic point (which must be (ρ, τ) by Proposition 15), and giving a precise
condition for when (ρ, τ) is a characteristic point on the boundary [in the interior] of
Dom+(G).

Corollary 17. Suppose y = G(x, y) is a well-conditioned 1-equation system with

G(x, y) = xA(y),

that is, A(y) is a power series
∑

n≥0 anyn with non-negative coefficients, and both A(0)
and A′′(y) are non-zero. Let B(y) = yA′(y)−A(y)+A(0). Then the characteristic system
is equivalent to

B(y) = A(0)

x =
y

A(y)
,

and, one has

(a) CP = Ø iff B(ρA) < A(0)

(b) B(ρA) ≥ A(0) implies CP = {(ρ, τ)}

(c) B(ρA) = A(0) implies (ρ, τ) is on the boundary of Dom+(G)

(d) B(ρA) > A(0) implies (ρ, τ) is in the interior of Dom+(G).

Proof. It is easy to verify the alternative form of the characteristic equations given in the
corollary, and then note that

B(y) =
∑

n≥2

(n− 1)anyn

is strictly increasing on [0, ρA].

Remark 18. In Proposition VI.5 of [9] on simple 1-equation systems, the full well-
conditioned hypothesis is not used, but instead the non-linearity condition A′′(y) 6= 0
is replaced by the stronger condition (8). This implies B(ρA) > A(0), and thus one has
(ρ, τ) in the interior of Dom+(G).

In the sentence following this proposition it is claimed that replacing (8) by ρA = ∞
gives hypotheses which imply (8). This is not correct unless one adds in the condition
A′′(y) 6= 0, that is, the correct formulation is: well-conditioned plus ρA =∞ implies (8).
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4 Eigenpoints

The results developed so far do not give a practical way of locating (ρ,τττ) for well-
conditioned systems with more than one equation. Even if one is successful in finding
all the characteristic points, no means has yet been formulated to determine if (ρ,τττ ) is
among them. In this section special characteristic points called eigenpoints are shown to
provide the correct analog of characteristic points when moving from 1-equation systems
to multi-equation systems.

Proposition 19. Suppose (a,b) is a characteristic point of the well-conditioned system
y = G(x,y). Then Λ

(
a,b

)
= 1 iff (a,b) = (ρ,τττ ).

Proof. We can assume that no partial ∂Gi/∂yj is zero. The direction (⇐) follows from
Lemma 12 (d). To prove the direction (⇒) assume (a,b) 6= (ρ,τττ ). By Lemma 13 one has
two cases to consider:

(I) a ≥ ρ and for all i, bi > τi

(II) a < ρ and for all i, bi > Ti(a).

For (I), (ρ,τττ ) is in the interior of the domain of G, so by Lemma 12 (b) it is a
characteristic point. However this contradicts Proposition 11 which says the characteristic
points form an antichain.

For (II), from the equations

G(a,b)− b = 0

G
(
a,T(a)

)
−T(a) = 0

one can apply a multivariate version of the mean value theorem to derive:
(

∂Gi

∂yj
(a,vij)

) (
b−T(a)

)
= b−T(a) (9)

with vij =
(
vij(1), . . . , vij(m)

)
satisfying






vij(r) = Tj(a) if r > j

Ti(a) < vij(r) < bi if r = j

vij(r) = bj if r < j.

Clearly (9) shows that λ = 1 is an eigenvalue of

(
∂Gi

∂yj
(a,vij)

)
, and from the properties

of the vij we see that for all i, j

∂Gi

∂yj
(a,vij) <

∂Gi

∂yj
(a,b)

since each ∂Gi/∂yj depends on all the variables x, y1, . . . , ym.
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From these remarks and the monotonicity of Λ one has

1 ≤ Λ

(
∂Gi

∂yj

(a,vij)

)
< Λ(a,b),

showing that (a,b) 6= (ρ,τττ ) implies Λ(a,b) > 1.

Definition 20. A characteristic point (a,b) is an eigenpoint if Λ
(
a,b

)
= 1.

The following theorem summarizes the key results for well-conditioned systems.

Theorem 21. Let Σ : y = G(x,y) be a well-conditioned system. Then the following hold:

(a) (ρ,τττ) ∈ Dom+(G)

(b) If (ρ,τττ ) is in the interior of Dom+(G) then it is an eigenpoint.

(c) The system Σ has at most one eigenpoint.

(d) If there is an eigenpoint of Σ then it must be (ρ,τττ ).

(e) If there is no eigenpoint of Σ then (ρ,τττ ) lies on the boundary of Dom+(G) and one
has Λ(ρ,τττ) < 1.

This result can be superior to Proposition 14 for computing purposes since the latter
requires that one know all characteristic points of Σ before being able to isolate the one
candidate for (ρ,τττ). Theorem 21 says that if one can find a characteristic point (a,b)
with JG(a,b) having largest positive eigenvalue 1, it is (ρ,τττ). As with the 1-equation
case, if there are no eigenpoints of Σ, then new methods are needed.

Flajolet and Sedgewick do not make use of the theory of characteristic points in their
work on multi-equation systems in [9] beyond citing the work of Drmota. Instead, they
consider the polynomial case in the general setting of arbitrary non-degenerate m-equation
systems P(x,y) = 0 in Chap. VII.

Let C be the set of solution points (a,b) ∈ Cm+1 of such a system. The non-degeneracy
condition implies that each Ci := {(a, bi) : (a,b) ∈ C} is an algebraic curve. For such
curves there is a simple procedure to find a finite set Xi of points (a, bi) such that all
singularities of Ci are in Xi.

When applying the general method of [9] to the special case of well-conditioned systems
y = G(x,y), to find the extreme point (ρ,τττ), one can bypass the considerable work of
(1) determining the branch points (a, bi) of the algebraic curves Ci among the points in
Xi, and then (2) studying the Puiseux expansions of branches of Ci about these branch
points. Instead one only needs to test the finitely many points in {(a,b) : (a, bi) ∈ Xi}
to see which is the eigenpoint of the system — this will be (ρ,τττ).
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5 Drmota’s Theorem Revisited

In 1993 Lalley [12] proved that the solutions yi = Ti(x) to a well-conditioned polynomial
system y = G(x,y) would have a square-root singularity at ρ, and thus one had the
familiar Pólya asymptotics for the coefficients.7 In 1997 [7], and again in 2009 [8], Drmota
presented the first sweepingly general theorem concerning the asymptotic behavior of the
coefficients of solutions of a well-conditioned system, namely the coefficients will again
satisfy the same law that Pólya found to be true for several classes of trees (see [18]).
However, as explained in Footnote 2, the hypotheses that Drmota has for the characteristic
points of the system seem to be incorrect in the first publication, and vague in the second.8

To prove the theorem one needs to be able to show that (ρ,τττ) is in the interior of the
domain of G(x,y). The following subsection gives a clear statement of the hypotheses
needed, along with a slightly different proof of the key induction step for the proof.

5.1 Drmota’s Theorem

The following version is somewhat simpler than that presented by Drmota since there are
no parameters.

Theorem 22. Let Σ : y = G(x,y) be a well-conditioned system with standard solution
T(x). Suppose Σ has an eigenpoint (ρ,τττ ) in the interior of Dom+(G). Then each Ti(x)

is the standard solution to a well-conditioned 1-equation system yi = Ĝi(x, yi) with (ρ, τi)

in the interior of Dom+(Ĝi). Thus each Ti(x) has a square-root singularity at ρ, and the
familiar Pólya asymptotics (see, e.g., [2]) hold for the non-zero coefficients.

Proof. One only needs to consider the case that the system has at least two equations,
and one can assume all second partials of the Gi with respect to the yj are non-zero.
The following shows that eliminating the first equation (and y1) yields a well-conditioned
system with one less equation which has the standard solution

(
T2(x), . . . , Tm(x)

)
and an

eigenpoint in the interior of the domain of the system.
By the Implicit Function Theorem one can solve the first equation

y1 = G1(x,y)

for y1, say
y1 = H1(x, y2, . . . , ym),

where H1 is holomorphic in a neighborhood of the origin, that is, H1(0, 0) = 0 and

H1(x, y2, . . . , ym) = G1

(
x, H1(x, y2, . . . , ym), y2, . . . , ym

)

7Having a polynomial system is a very strong condition since it immediately tells you that ρ is a
branch point, which leads to a Puiseux expansion; it is only a matter of determining the order of the
branch point (which is nonetheless a nontrivial task).

8The book [9] gives a detailed study of well-conditioned polynomial systems, but only states the result
for general well-conditioned systems. This statement is the 1997 version of Drmota’s theorem, including
the error in the hypotheses. The simplest patch is to replace the condition that ‘some characteristic point
(a,b) is in the interior of the domain’ with the requirement that ‘(ρ,τττ ) is in the interior of the domain’.
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in a neighborhood of the origin.
Since the Ti(x) take small values near the origin (as they are continuous functions that

vanish at x = 0), it follows that

H1

(
x, T2(x), . . . , Tm(x)

)
= G1

(
x, H1

(
x, T2(x), . . . , Tm(x)

)
, T2(x), . . . , Tm(x)

)

holds in a neighborhood of the origin. Also one has

T1(x) = G1

(
x, T1(x), T2(x), . . . , Tm(x)

)

holding in a neighborhood of the origin, so by the uniqueness of solutions in such a
neighborhood, we must have

T1(x) = H1

(
x, T2(x), . . . , Tm(x)

)

in a neighborhood of the origin. By Proposition 36, this equation actually holds globally
for |x| ≤ ρ; in particular H1 converges at (ρ, τ2, . . . , τm). By Corollary 38(a) the Jacobian

1− ∂G1

∂y1

of the equation y1 = G1(x,y) does not vanish at (ρ,τττ). Thus, by the Implicit

Function Theorem, H1 is holomorphic at
(
ρ, τ2, . . . , τm

)
.

Now discarding the first equation and substituting H1(x, y2, . . . , ym) for y1 in the re-
maining equations gives a well-conditioned system of m− 1 equations

yi = G⋆
i (x, y2, . . . , ym),

2 ≤ i ≤ m, with standard solution
(
T2(x), . . . , Tm(x)

)
whose extreme point

(
ρ, τ2, . . . , τm

)

is an eigenpoint, since it is a characteristic point of the system that is in the interior of
Dom+(G⋆). Thus the elimination procedure can continue if G⋆ consists of more than one
equation.

The extreme point of a well-conditioned polynomial system, such as Example 32, is
always a characteristic point, and, as Lalley [12] proved, the coefficients of the solutions
Ti(x) have the classical Pólya form Ciρ

−nn−3/2. Drmota [7] extended Lalley’s result to
well-conditioned power series systems with the extreme point in the interior of the domain
of the system. A natural (and desirable) direction to consider for further research would
be to drop the irreducible requirement. However, even in the polynomial case, this leads
to substantial challenges, see Example 34.

5.2 A Wealth of Examples

In [2] we showed that single equation systems formed from a wide array of standard
operators like Multiset, Cycle and Sequence led to square-root singularities and Pólya
asymptotics for the coefficients. The arguments used there easily carry over to the setting
of systems of equations since the conditions in that paper force the positive domain to
be an open set, and this guarantees that (ρ,τττ ) is an interior point of the domain of the
system, leading to a wealth of examples.
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6 Some Open Problems about Characteristic Points

of Well-Conditioned Systems

Question 1. How can one locate (ρ,τττ) if it is not a characteristic point?

Question 2. Is the set of characteristic points always finite?

As one can see in the examples, Appendix A, a system can have multiple characteristic
points; the two equation polynomial system in Example 32 has four characteristic points.
Example 35 shows that the set of real solutions to the characteristic system need not be
finite. However Question 2 asks if the set of positive solutions is finite.

A A Collection of Basic Examples

The following examples explore the behavior of characteristic points of well-conditioned
systems—the computational steps have been omitted. However the reader can find com-
plete details online in the original preprint [3].

A.1 Examples for 1-equation systems

For 1-equation systems the following two examples show the three kinds of possible be-
havior, namely: (i) there is a characteristic point which is an interior point and thus equal
to (ρ, τ), (ii) there is a characteristic point which is a boundary point and thus equal to
(ρ, τ), and (iii) there is no characteristic point. If (ρ, τ) is in the interior of the domain of
G then x = ρ is a square-root singularity of T (x).9

Each example starts with an equation y = G(x, y) where the characteristic point
(ρ, τ) is in the interior of the domain of G(x, y). Then the example is modified to give a
system y = G⋆(x, y) with (ρ⋆, τ ⋆) on the boundary of the domain of G⋆(x, y). (ρ⋆, τ ⋆) is
a characteristic point in Example 23 but not in Example 24.

Example 23. Let G(x, y) = x(1 + y2). For the characteristic system

{
y = x(1 + y2)
1 = 2xy

of y = G(x, y) one has the characteristic point (1/2, 1), an interior point of the domain
of G(x, y), so for the standard solution y = S(x) of y = G(x, y) one has (ρ, τ) = (1/2, 1)
. The established theory for such a system (see [9], Chapter VII) shows that S(x) has a
square-root singularity at x = ρ.

9The possibilities for the nature of this singularity when (ρ, τ) is on the boundary of the domain of
G have not been classified. Examples constructed along the lines of Proposition 27 show that one can
have 2k-root singularities. Comments VI.18 and VI.19 on p. 407 of [9] state that one can have α-root
singularities, for 1 < α ≤ 2.
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Next let G⋆(x, y) = S(x)(1 + y2)/2. For the characteristic system
{

y = S(x)(1 + y2)/2
1 = S(x)y

once again the characteristic point is (1/2, 1), but now it is a boundary point of the domain
of G∗(x, y). An examination of the standard solution (see Proposition 27) of y = G∗(x, y),
namely y = T (x) = S

(
S(x)/2

)
, shows that it has a fourth-root singularity at x = 1/2.

Example 24. Let G(x, y) = x
(
1 + 2y + 2y2

)
. The characteristic system

{
y = x

(
1 + 2y + 2y2

)

1 = 2x(1 + 2y)

of y = G(x, y) has the characteristic point
(√

2− 1

2
,

√
2

2

)
,

an interior point of the domain of G(x, y), so for the standard solution y = S(x) of
y = G(x, y) one has ρ =

(√
2 − 1

)
/2 and τ =

√
2/2. S(x) has a square-root singularity

at x = ρ.
Next let G⋆(x, y) = x

(
1 + S(x) + y + 2y2

)
. The standard solution of y = G⋆(x, y) is

again y = S(x), so (ρ∗, τ ∗) = (ρ, τ). The characteristic system
{

y = x
(
1 + S(x) + y + 2y2

)

1 = x(1 + 4y)

of y = G⋆(x, y) has no characteristic point since the only candidate is (ρ, τ) and

ρ(1 + 4τ) = (1/2)
(√

2− 1
)(

1 + 2
√

2
)
6= 1.

(ρ, τ) is a boundary point of the domain of G∗(x, y) whose location is not detected by the
method of characteristic points.

Remark 25. On p. 83 of their 1989 paper [15] Meir and Moon offer an interesting
example of a 1-equation system without a characteristic point, namely y = A(x)ey where
A(x) = (1/6)

∑
n xn/n2. The characteristic system is

y = A(x)ey, 1 = A(x)ey,

so a characteristic point (a, b) must have b = 1, A(a) = 1/e. But 1/e is not in the range
of A(x), so there is no characteristic point. One can nonetheless easily find (ρ, τ) in this
case since (ρ, τ) must lie on the boundary of the domain of A(x)ey. Thus ρ = 1, and then
τ = A(1)eτ = (π2/36)eτ , so τ ≈ 0.41529.

The paper goes on to claim that by differential equation methods one can show that the
standard solution y = S(x) has coefficient asymptotics s(n) ∼ C/n. However this cannot
be true since such a solution would diverge at its radius of convergence ρ = 1 (see [2]),
whereas the given equation y = A(x)ey is nonlinear in y, so the solution must converge at
ρ.
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A.2 1-equation framework

This subsection gives a framework for 1-equation examples which will be useful for building
the 2-equation examples in §A.3.

Proposition 26. Let A(x) be the standard solution of

y = x(1 + ay + by2) (10)

where a ≥ 0 and b > 0. Then the following hold:

(a)

A(x) =
1

2bx

(
(1− ax)−

√
(1− ax)2 − 4bx2

)
.

(b) A(x) has non-negative coefficients.

(c) A sufficient condition for A(x) to have integer coefficients is that a and b are inte-
gers.

(d) A(x) has a positive radius of convergence ρA given by

ρA =
1

a + 2
√

b
.

(e) τA := A(ρA) is finite and is given by

τA =
1√
b
.

(f) ρA is a square-root branch point of the algebraic curve defined by (10).

(g) (ρA, τA) is the unique characteristic point of (10), that is, it is the unique positive
solution (x, y) to

y = x(1 + ay + by2)

1 = x(a + 2by).

Proof. (Exercise.)

Proposition 27. Given a, c ≥ 0 and b, d > 0 let A(x) be the standard solution of

y = x(1 + ay + by2)

and let S(x) be the standard solution of

y = x(1 + cy + dy2).

Let T (x) be the standard solution of

y = A(x)(1 + cy + dy2).

Then the following hold:
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(a) T (x) = S(A(x)).

(b) T (x) =
1

2dA(x)

(
(1− cA(x))−

√
(1− cA(x))2 − 4dA(x)2

)
.

(c) T (x) has non-negative coefficients.

(d) A sufficient condition for T (x) to have integer coefficients is that a, b, c, d are inte-
gers.

(e) If
√

b = c + 2
√

d then

(ρT , τT ) = (ρA, τS) =
( 1

a + 2
√

b
,

1√
d

)
,

and T (x) has a fourth-root singularity at ρT .

Proof. (Exercise.)

The restriction
√

b = c+2
√

d is called the critical composition condition (CCC);
this is the condition needed for T (x) = S(A(x)) to be a critical composition (as defined
by Flajolet and Sedgewick [9], p. 411).

A.3 Multi-equation systems

Proposition 28. Suppose

a, c1 ≥ 0, b, c2, d > 0,
√

b = c + 2
√

d, c = c1 + c2.

Let A(x), S(x), and T (x) be as in Proposition 27 Then the following hold:

(a) The quadratic system

(SY S) :

{
y1 = A(x)

(
1 + c1T (x) + c2y2 + dy1

2
)

y2 = A(x)
(
1 + c1T (x) + c2y1 + dy2

2
)

is well-conditioned, and the standard solution is y1 = y2 = T (x).

(b) The extreme point (ρ, τ, τ) of (SY S) is given by

(ρ, τ, τ) =

(
1

a + 2
√

b
,

1√
d
,

1√
d

)
.

It is on the boundary of the domain of (SY S).

(c) T (x) = S(A(x)) has a fourth-root singularity at x = ρ.
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(d) A positive point (x, y, y) is a characteristic point of (SY S) iff either

(⋆)






1 = A(x)

(
c2 + 2

√
d
(
1 + c1T (x)

) )

y =
1− c2A(x)

2dA(x)

or

(⋆⋆)






1 = A(x)

(
c2 + 2

√
c2

2 + d
(
1 + c1T (x)

) )

y =
1 + c2A(x)

2dA(x)
.

(e) If c1 = 0 then there are exactly two characteristic points of the form (x, y, y): the
first is (ρ, τ, τ), a boundary characteristic point obtained from (⋆), and the second
is the unique positive solution to (⋆⋆), an interior characteristic point. This is the
only case where (⋆) contributes a characteristic point, namely (ρ, τ, τ), and this is
the only case where (ρ, τ, τ) is a characteristic point.

(f) If 0 < c1 = 2c2 then there is a unique characteristic point of the form (x, y, y): it is
the unique positive solution to (⋆⋆) and it is a boundary point different from (ρ, τ, τ).

(g) If 0 < c1 < 2c2 then there is a unique characteristic point of the form (x, y, y): it is
the unique positive solution to (⋆⋆) and it is an interior point that is different from
(ρ, τ, τ).

(h) If 2c2 < c1 then there are no characteristic points of the form (x, y, y), so again
(ρ, τ, τ) is not a characteristic point.

(i) The second characteristic point in (e) and the unique characteristic points in (f)
and (g) are given explicitly by

x =
c +
√

c2 + f

ac + 2c2 + f + b + (a + 2c)
√

c2 + f

y =
c + c2 +

√
c2 + f

2d

where
f = −6c1c2 + 3c2

2 + 4d.

Proof. (Exercise.)

Now we look at three well-conditioned examples that show some of the varied behavior
of characteristic points when one has more than one equation in the system. In the first
example there are two characteristic points, both in the interior of the domain of G(x,y)
and one of them is (ρ,τττ ). In the second example one has a characteristic point in the
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interior of the domain of G(x,y) and (ρ,τττ ) is a characteristic point on the boundary of the
domain. In the third example one has a characteristic point in the interior of the domain
of G(x,y) but (ρ,τττ) is not a characteristic point. In the second and third examples, ρ is
not a square-root singularity of the solutions. Such examples show the need for a more
subtle use of characteristic points in the pursuit of information on (ρ,τττ ) for multi-equation
systems.

Example 29. For the system of two equations

y1 = x ·
(
1 + y2 + 2y2

1

)

y2 = x ·
(
1 + y1 + 2y2

2

)

add
(1− 4xy1)(1− 4xy2)− x2 = 0

to obtain the characteristic system. This is a polynomial system, so all characteristic
points will be in the interior of the domain; and since (ρ, τ1, τ2) is also in the interior it
must be a characteristic point. Let (a, b, c) be a characteristic point. By a computation we
see that b 6= c is impossible. Thus the characteristic points are the positive triples (a, b, b)
satisfying

b = a
(
1 + b + 2b2

)

a2 = (1− 4ab)2.

From this the system has two characteristic points:
(

2
√

2− 1

7
,

1√
2
,

1√
2

)
≈ (0.2612, 0.7071, 0.7071)

(
2
√

3− 1

11
,
1 +
√

3

2
,
1 +
√

3

2

)
≈ (0.2240, 1.3660, 1.3660).

Now we are left with determining which of the two characteristic points gives (ρ, τ1, τ2).
By applying either Proposition 14 or Proposition 19, it is the first of these.

Example 30. Let a = 0, b = 9, c1 = 0, c2 = 1, and d = 1. These numbers satisfy
(CCC). Following the hypotheses of Proposition 28, let A(x) be the standard solution to
y = x(1 + 9y2) and consider the system

y1 = A(x) ·
(
1 + y2 + y2

1

)

y2 = A(x) ·
(
1 + y1 + y2

2

)
.

Since c1 = 0 there are two characteristic points of the form (a, b, b). The first is the
extreme point

(ρ, τ1, τ2) = (1/6, 1, 1)

which lies on the boundary of the domain, and the second is the interior point obtained
from the formulas in Proposition 28 (i):

(
1 + 16

√
2

146
, 1 +

√
2, 1 +

√
2

)
.
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Example 31. Let a = 0, b = 16, c1 = 1, c2 = 1, and d = 1. These numbers satisfy
(CCC). Following the hypotheses of Proposition 28, let A(x) be the standard solution to
y = x(1+16y2), and let T (x) be the standard solution to y = A(x)(1+2y +y2). Consider
the system

y1 = A(x) ·
(
1 + T (x) + y2 + y2

1

)

y2 = A(x) ·
(
1 + T (x) + y1 + y2

2

)
.

Since 0 < c1 < 2c2, the extreme point

(ρ, τ1, τ2) = (1/8, 1, 1)

is not a characteristic point, but there is a characteristic point of the form (a, b, b) in the
interior of the domain of G given by the formulas of Proposition 28:

(a, b, b) =

(
30 + 17

√
5

545
,
3 +
√

5

2
,
3 +
√

5

2

)
.

A.4 Other examples

The next example shows some characteristic points which are not of the form (x, y, y)

Example 32. The well-conditioned polynomial system

y1 = G1(x, y1, y2) := x(1 + 2y3
1 + 2x3y3

1y2)

y2 = G2(x, y1, y2) := x(1 + x3y2 + 2y3
1y

2
2)

has four characteristic points which, to 6 places of accuracy are:

(0.1818598, 1.556545, 0.3647603)
(0.2640956, 1.210710, 0.5353688)
(0.3867644, 0.6661246, 3.834789)
(0.4153198, 0.6217456, 0.4743552)

One sees that these four points form an antichain, as required by Proposition 11. The
extreme point (ρ, τ1, τ2) of a polynomial system is a characteristic point. By Proposition
14 it must be the last one since it has the largest x-value, assuming one has found all
characteristic roots of this system. If one is not sure that there are only four characteristic
points then, by Theorem 21, it suffices to verify that the indicated characteristic point is
an eigenpoint.

This example demonstrates that iteration is not sufficient to obtain a new systems Σ⋆

such that the Jacobian matrix JG⋆(x,y) has non-zero entries.
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Example 33. Consider the irreducible system y = G(x,y) of 4 equations:

Σ =






y1 = G1(x, y1, . . . , y4) := x
(
1 + y2

2 + y4
2
)

y2 = G2(x, y1, . . . , y4) := x
(
1 + y1

2 + y3
2
)

y3 = G3(x, y1, . . . , y4) := x
(
1 + y4

2
)

y4 = G4(x, y1, . . . , y4) := x
(
1 + y1

2
)
.

Let M = JG(n). Then it is easy to check that M11 6= 0 iff n is odd, and M12 6= 0 iff n is
even. Thus for n ≥ 1, JG(n)(x,y) has entries which are 0.

One can transform Σ into a system Σ⋆ where the Jacobian of G⋆ has all entries non-
zero by doing selective substitutions. For example, in the first equation of Σ replace one
of the two y2’s by G2(x,y), giving the system






y1 = x(1 + y2G2(x,y) + y4
2)

y2 = x(1 + y1
2 + y3

2)
y3 = x(1 + y4

2)
y4 = x(1 + y1

2)

The first equation in this system is such that the right hand side depends on all 4 of the
yi. Continuing in this manner one obtains a system in which every Gi(x,y) depends on
each of y1, . . . , y4.

This example shows complications which can arise with reducible systems.

Example 34. Consider the reducible polynomial system

y1 = y3 ·
(
1 + y2 + y2

1

)

y2 = y3 ·
(
1 + y1 + y2

2

)

y3 = x · (1 + 9y3
2).

Let the third equation have the standard solution y3 = A(x). One then sees that this
example is really just an alternate presentation of Example 30 where the solutions for y1

and y2 have a fourth-root singularity at their radius of convergence.

This final example shows that there can be infinitely many real solutions to a charac-
teristic system, in contrast to what has been observed so far for characteristic points, see
Question 2.

Example 35. For the characteristic system (belonging to a 2-equation system)





y1 − x ·
(
1 + y1 + y1y2

)
= 0

y2 − x ·
(
1 + y2 + y1y2

)
= 0

(x− 1) ·
(
x + xy1 + xy2 − 1

)
= 0

the real solutions include the infinite curve

{
(x, y1, y2) : x = 1, y1y2 = −1

}
.
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B Background Material

B.1 The extended nonnegative real numbers

Extend the usual operations on [0,∞) to [0,∞] in the obvious way as follows:

c +∞ = ∞ for c ∈ [0,∞]

c · ∞ = ∞ for c ∈ (0,∞]

∑

n

cn =

{
the usual infinite sum if all cn ∈ [0,∞)

∞ if some cn =∞.

Here the usual infinite sum is ∞ if the series diverges. Note that 0 · ∞ is left undefined
since it is indeterminate.

B.2 Formal power series in several variables

This section gives the essential definitions that lay the foundations for working with formal
power series in several variables. The standard number systems are:

the set N = {0, 1, . . .} of nonnegative integers, the set Q of rational numbers,
the set R of real numbers, and the set C of complex numbers.

For the linearly ordered set R of real numbers one has the posets of real-valued functions
on X, where the partial ordering is given by f ≤ g if f(x) ≤ g(x) for all x ∈ X. Familiar
examples are:

(a) n-vectors v = (v1, . . . , vn), by setting X = {1, . . . , n}

(b) m× n-matrices M , by setting X = {1, . . . , m} × {1, . . . , n}

(c) formal power series in k-variables A(x1, . . . , xk) by setting X = Nk. In this case a
function a from Nk to R provides the coefficients, and one writes

A(x) :=
∑

i∈Nk

a(i)xi

A matrix (or vector) M of real numbers is non-negative (written M ≥ 0) if each entry is
non-negative, and positive (written M > 0) if each entry is positive. A power series A(x)
is non-negative (written A(x) ≥ 0) if each coefficient is non-negative.
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B.2.1 Composition of formal power series

For power series A(w1, . . . , wm) and Bℓ(x), 1 ≤ ℓ ≤ m, where the constant term of each
Bℓ is zero, that is, bℓ(0) = 0, define the formal composition

C(x) := A
(
B1(x), . . . , Bm(x)

)

by defining the coefficient function as follows:

c(i) :=
∑

j≥0

[
x i

]
a(j) · B1(x)j1 · · ·Bm(x)jm

Requiring that the constant term of the Bℓ(x) be 0 guarantees that for each i only finitely
many terms in this sum are nonzero. Consequently C(x) is indeed a formal power series.

B.2.2 The function defined by a formal power series

A power series A(x) in k variables defines a partial function, also denoted A(x), on Rk

(or Ck) by setting

A(c) :=
∑

n≥0

∑

i1+···+ik = n

a(i)ci (c ∈ Rk) (11)

whenever the sum converges.
For A(x) a nonnegative power series in k variables, and for c ∈ [0,∞]k, A(c) = ∞ if

the series (11) diverges, that is, if

lim
n→∞

∑

j≤n

∑

i1+···+ik = j

a(i)ci = ∞.

A nonnegative power series A(x) in k variables defines a left-continuous function from
[0,∞]k to [0,∞] and is monotone nondecreasing in each variable on [0,∞]k.

B.2.3 The derivatives of a formal power series

Derivatives of [nonnegative] formal power series give [nonnegative] formal power series:

∂A(x)

∂xj
:=

∑

i≥0

ija(i)xi1
1 · · ·x

ij−1
j · · ·xik

k .

The notation Axj
is also used for the partial derivative ∂A/∂xj .

B.2.4 Holomorphic functions and a law of permanence

A complex-valued function f(x) of several complex variables is holomorphic at c if it is
continuous and differentiable in a neighborhood of c. The notation [a,b] is short for

[a1, b1]× · · · × [ak, bk].
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Proposition 36 (A Law of Permanence for Functional Equations). Suppose

A(x), B(x, y) ≥ 0.

If there is an ε > 0 such that

A(x) = B
(
x, A(x)

)
< ∞ for x ∈ [0, εεε]

then
A(x) = B

(
x, A(x)

)
for x ∈ [0,∞∞∞].

If furthermore a > 0 and A(a) < ∞ then

A(x) = B
(
x, A(x)

)
for |xi| ≤ ai, 1 ≤ i ≤ k

and A(x) is holomorphic for |xi| < ai, 1 ≤ i ≤ k.

Proof. This is a special case of Hille’s law of permanence for functional equations given
in §10.7 of Vol. 2, [11].

B.3 The Perron-Frobenius theory of nonnegative matrices

The key to the main results of this paper are some simple observations based on the well-
known Perron-Frobenius theory of nonnegative matrices that was developed ca. 1910.

Proposition 37. Let M be a nonnegative nonzero k × k matrix with real entries.

(a) M has a real eigenvalue.

(b) The largest real eigenvalue Λ(M) is positive and is given by

Λ(M) = max
x>0

min
1≤i≤k

(Mx)i

xi

.

(c) Λ(M) is a simple root of the characteristic polynomial pM(λ) = det(λI −M).

(d) The eigenspace belonging to Λ(M) is 1-dimensional, generated by a unique positive
normalized eigenvector vM . (Normalized means the sum of the entries is 1).

Proof. (See §2 of Gantmacher [10].)

Note that Proposition 37(b) implies that for some x > 0 one has Λ(M) equal to

min1≤i≤k
(Mx)i

xi
.

Corollary 38.

(a) A positive k × k matrix M , k ≥ 2, has all diagonal entries < Λ(M).
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(b) Λ(X) is a nondecreasing function on the set of nonnegative matrices, that is, M1 ≤
M2 implies Λ(M1) ≤ Λ(M2). Furthermore if every row [column] sum of M1 is less
than the corresponding row [column] sum of M2 then Λ(M1) < Λ(M2).

(c) Λ(X) is a continuous function on the set of nonnegative matrices, where the matrices
are thought of as points in k2-space.

Proof. (Exercise.)
(Note: A special case of item (c) is stated on p. 2103 of Lalley [12], for certain Jacobian

matrices denoted Jz, evaluated along certain curves.)
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Corrigendum – submitted May 13, 2011

• page 11, Lemma 7 requires the extra hypothesis “Σ∗ is well-conditioned”.

• page 7, line before the display giving Σ(α): change “a new variable αy0” to “a new
variable y0”.

• page 9, change (x,y) to (a,b).

• All references to Lemma 5(e) should be to Lemma 5 (c) and (d). Specifically: on
page 9 drop the third paragraph from the bottom, change (d) to (c) in the next
paragraph and change (e) to (d) in the last paragraph; on page 14 in the proof of
Lemma 12 replace (e) by (d), and in the proof of Lemma 13 replace (e) by “(c) and
(d)”.

• page 18, in the proof of Proposition 18 a = ρ should be moved to case (II).

• page 32, Proposition 37: “Let M be an irreducible nonnegative. . . ”.
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