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Abstract

Generalizing the case of λ = 1 given by Buratti and Zuanni [Bull Belg. Math.

Soc. (1998)], we characterize the 1-rotational difference families generating a 1-
rotational (v, k, λ)-RBIBD, that is a (v, k, λ) resolvable balanced incomplete block

design admitting an automorphism group G acting sharply transitively on all but
one point ∞ and leaving invariant a resolution R of it. When G is transitive on R
we prove that removing ∞ from a parallel class of R one gets a partitioned difference

family, a concept recently introduced by Ding and Yin [IEEE Trans. Inform. Theory,
2005] and used to construct optimal constant composition codes. In this way, by
exploiting old and new results about the existence of 1-rotational RBIBDs we are
able to derive a great bulk of previously unnoticed partitioned difference families.
Among our RBIBDs we construct, in particular, a (45, 5, 2)-RBIBD whose existence
was previously in doubt.

Keywords. 1-rotational RBIBD; 1-rotational difference family; partitioned differ-
ence family; constant composition code.

1 Introduction

Throughout the paper, every union will be understood as multiset union. The union of
µ copies of a multiset A will be denoted by µA. Of course µA has a different meaning
from µ{A}; as an example, if A = {a, b, c}, then 2A = {a, a, b, b, c, c} while 2{A} =
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{{a, b, c}, {a, b, c}}. Given some integers k1, ..., kt, sometimes we will write [µ1k1, ...,
µtkt]

instead of µ1{k1} ∪ ... ∪ µt{kt}. As usual, the list of differences of a subset B of an
additive group G will be denoted by ∆B.

A difference family in a group G that is relative to a subgroup N of G is a collection
F of subsets of G (base blocks) whose lists of differences are disjoint with N and cover,
altogether, every element of G−N a constant number λ of times:

⋃

B∈F ∆B = λ(G−N). If
K is the multiset of block sizes of F one briefly says that F is a (G, N, K, λ)-DF. We write
(G, K, λ)-DF instead of (G, {0}, K, λ)-DF, and (G, N, k, λ)-DF instead of (G, N, [µk], λ)-
DF whatever is µ. Thus, a (G, k, λ)-DF is a collection of k-subsets of G whose differences
cover every non-zero element of G exactly λ times.

Speaking of a (v, n, K, λ)-DF we mean a (G, N, K, λ)-DF where G = Zv and N is the
subgroup of Zv of order n, namely N = v

n
Zv. We recall, in particular, that a (v, n, k, 1)-

DF can be viewed as a special kind of optical orthogonal code that is called n-regular in
[37] and that is optimal in the case that n 6 k(k − 1).

A (v, N, K, λ)-DF is said to be disjoint (DDF for short) when its base blocks are
mutually disjoint. If, in addition, none of them meets N we will speak of a strictly disjoint
difference family and we will write SDDF instead of DDF. There is a number of papers
concerning DDFs with constant block size; in particular, it was proved the existence of a
(v, 3, 1)-DDF for any v ≡ 1 (mod 6) [24], the existence of a (v, 3, 3, 1)-SDDF for any v ≡ 3
(mod 6) [25, 14] and the existence of a (Fq, 4, λ)-DDF for any admissible pair (q, λ) with
λ 6 2 [36] where Fq denotes the elementary abelian group of order q. We also observe
that any radical (Fq, k, 1)-DF (see [9]) with k odd is a DDF.

A (G, K, λ)-DF whose base blocks partition the whole group G is defined to be parti-
tioned (PDF). This concept was recently introduced by Ding and Yin and used to construct
optimal constant composition codes [22, 38]. It is clear that every PDF is disjoint but not
strictly disjoint since it is relative to N = {0} and, by definition, there is a base block of
the family containing 0.

It is very elementary to see that every DDF gives rise to a PDF if we allow to have
some base blocks of size one. It is also trivial to see that a PDF having all blocks of the
same size cannot exist. What about PDFs having exactly two block sizes? As an easy
example we have all pairs {D, D} with D a difference set (see [8]) and D its complement;
if D has parameters (v, k, λ), the resultant PDF has parameters (v, [k, v−k], v−2k+2λ).
Thus, for instance, the so called (2k − 1, k − 1, k

2
− 1) Paley difference set gives rise to a

(2k − 1, [k − 1, k], k − 1)-PDF.
In this paper we focus our attention to PDFs having, as in the above example, exactly

two block sizes k − 1 and k. We first show that such PDFs necessarily have exactly one
block of size k − 1.

Proposition 1.1 If there exists a (v, [x(k−1), yk], λ)-PDF with x 6= 0 6= y, we necessarily
have v ≡ −1 (mod k), x = 1, y = (v − k + 1)/k and λ = k − 1.

Proof. By definition of a PDF we must have

(k − 1)(k − 2)x + k(k − 1)y = λ[(k − 1)x + ky − 1].
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Solving this identity with respect to x we obtain

x =
ky(k − 1) − λ(ky − 1)

(k − 1)(λ − k + 2)
=

ky + λ

(k − 1)(λ − k + 2)
− ky

k − 1
.

Thus λ−k+2 is positive, that is λ > k−2, otherwise x would be negative. If λ = k−1, we
see that x = 1. Now assume that x > 1 so that, consequently, λ > k. In this case we have
ky(k−1)−λ(ky−1) > (k−1)(λ−k+2) which implies ky(k−1)−λy(k−1) > (k−1)(λ−k+2)
since it is obvious that λ(ky−1) > λy(k−1). Dividing by k−1 we get (k−λ)y > λ−k+2,
namely (k − λ)(y + 1) > 2, that is absurd since k − λ 6 0. The assertion easily follows.2

In view of the above proposition there is no ambiguity in speaking of a (v, {k−1, k}, k−
1)-PDF without specifying the multiplicity of k − 1 and k in the multiset of block-sizes.
Besides starters (see [23]), that can be equivalently viewed as (2n + 1, {1, 2}, 1)-PDFs,
there are other combinatorial designs such as Z-cyclic whist tournaments and Z-cyclic
generalized whist tournaments [7] that are strictly related with PDFs. For instance, any
Z-cyclic whist tournament of order 4t (briefly Wh(4t)) can be seen as a partition of
Z4t−1 ∪ {∞} into t ordered quadruples such that every non-zero element of Z4t−1 can be
expressed as a partner (resp. opponent) difference of some quadruples in exactly one (resp.
two) ways, where the partner differences of a quadruple (x1, x2, x3, x4) are ±(x1 −x3) and
±(x2 − x4), while the opponent differences are all the remaining ones. It is then clear
that a Z-cyclic Wh(4t) determines a (4t − 1, {3, 4}, 3)-PDF though the converse is not
generally true.

In general, for a deep study of (v, {k, k−1}, k−1)-PDFs we have to focus our attention
on 1-rotational resolvable balanced incomplete block designs that we are going to define
below. First recall that a (v, k, λ)-BIBD is a pair (V,B) where V is a set of v points and
B is a collection of k-subsets of V (blocks) such that each pair of distinct points of V
occurs in exactly λ blocks. Such a BIBD is resolvable if there exists a partition R of B
(resolution) into classes (parallel classes) each of which is a partition of V . In this paper,
speaking of a (v, k, λ)-RBIBD we mean a resolved (v, k, λ)-BIBD, i.e., a triple (V,B,R)
such that (V,B) is a resolvable (v, k, λ)-BIBD admitting R as a specific resolution of it.

An automorphism group of a BIBD or RBIBD as above is a group of permutations
on V leaving invariant B or R, respectively. In particular, a BIBD or RBIBD is said to
be 1-rotational under G if it admits G as an automorphism group fixing one point and
acting sharply transitively on the others.

In this paper we characterize 1-rotational (v, k, λ)-RBIBDs with an arbitrary λ in
terms of 1-rotational difference families, generalizing the important case of λ = 1 that
was treated in [17]. We will prove that a 1-rotational (v, k, λ)-RBIBD under a group G
acting transitively on its resolution is completely equivalent to a (v, {k−1, k}, k−1)-PDF.
In this way, exploiting old and new results on 1-rotational RBIBDs we are able to give
constructions of many infinite classes of (v, {k − 1, k}, k − 1)-PDFs. In particular, we
establish that for any k > 1 there are infinitely many values of v for which there exists a
1-rotational (v, k, 1)-RBIBD and, consequently, a (v, {k − 1, k}, k − 1)-PDF.

We finally point out that in Example 2.9 we give a (45, 5, 2)-RBIBD. We emphasize
this fact since, up to now, no RBIBD with this parameters was known.
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2 Resolvable 1-rotational difference families

From now on, G is an additive (but not necessarily abelian) group and ∞ is a symbol
not in G. It will be understood that the action of G on G ∪ {∞} is the addition on the
right under the rule that ∞ + g = ∞ for every g ∈ G.

For a given collection P of subsets of G ∪ {∞}, the G-stabilizer of P is the subgroup
GP of G of all elements g such that B + g = B. The G-orbit of P is the set PG of all
distinct translates of P. In the case that P = {B} is a singleton we will write GB and
BG rather than G{B} and {B}G. We say that B is full when its G-orbit has full length
|G|, i.e., when GB = {0}. Observe that B is union of left cosets of GB and possibly {∞}.
It follows, in particular, that if the size of B − {∞} is coprime with the order of G, then
B is full.

Given B ⊂ G, it is easy to see that we have ∆B = |GB|∂B for a suitable multiset
∂B that is defined to be the list of partial differences of B. The definition is extended to
subsets of G ∪ {∞} by setting ∂(B ∪ {∞}) = ∂B ∪ |B|/|GB|{∞}. Up to isomorphism,
(V,B) is a 1-rotational (v, k, λ)-BIBD under G if V = G ∪ {∞} and B =

⋃

B∈F BG for
a suitable collection F ⊂ B that is called a 1-rotational (G, k, λ) difference family. As
pointed out in [2], a collection F of k-subsets of G ∪ {∞} is a 1-rotational (G, k, λ)
difference family if and only if

⋃

B∈F ∂B covers exactly λ times all non-zero elements of
G ∪ {∞}.

Definition 2.1 We say that a 1-rotational (G, k, λ) difference family F is resolvable if
it is partitionable into subfamilies F1, ..., Ft each of which is of the form:

Fi = |GAi
:Ni|{Ai} ∪ {Bij | 1 6 j 6 ℓi}

with

GFi
= {0}, ∞ ∈ Ai, Ni 6 GAi

, ℓi = |G|−k+1
k|Ni|

, GBij
= {0} for 1 6 j 6

ℓi,
⋃ℓi

j=1 Bij is a complete system of representatives for the left cosets of Ni in G that are
not contained in Ai.

Every partition F = F1 ∪ ... ∪ Ft with the Fi’s as above will be said a resolution of
F .

The following theorem generalizes Theorem 2.1 in [17]

Theorem 2.2 There exists a 1-rotational (v, k, λ)-RBIBD under G if and only if there
exists a resolvable 1-rotational (G, k, λ)-DF.

Proof. (=⇒) Let D = (V,B,R) be a 1-rotational (v, k, λ)-RBIBD under G. Of course v
is a multiple of k so that the order of G, that is v − 1, is necessarily coprime with k. It
follows that any block B of D not passing through ∞ is full, i.e., with trivial G-stabilizer.

Let {P1, ...,Pt} be a complete system of representatives for the G-orbits of the parallel
classes of R. Set GPi

= Ni and let Ai be the block of Pi through ∞. Observe that Ni is
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necessarily a subgroup of GAi
so that Ai − {∞} is a union of left cosets of Ni in G. Of

course the Ni-orbit of any block of Pi must be contained in Pi. Thus, considering that
the Ni-orbit of Ai is the singleton {Ai} and that any B ∈ Pi − {Ai} is full, we can write

Pi = {Ai} ∪ {Bij + n | 1 6 j 6 ℓi; n ∈ Ni}

for suitable full blocks Bi1, ..., Bi,ℓi
with ℓi = v−k

k|Ni|
.

Considering that the blocks of Pi form a partition of G ∪ {∞} we also have that for
any fixed i the union of the Bij’s is a complete system of representatives for the left cosets
of Ni that are not contained in Ai. Now note that PG

i = {Pi + s | s ∈ Si} where Si is a
complete system of representatives for the right cosets of Ni in G. Thus we can write

⋃

P∈PG
i

P = Ai ∪ Bi1 ∪ ... ∪ Bi,ℓi

where
Ai = {Ai + s | s ∈ Si}

and
Bij = {Bij + n + s | n ∈ Ni; s ∈ Si} for 1 6 j 6 ℓi.

Observe that Ai = |GAi
:Ni|(AG

i ) and that Bij = BG
ij . Thus, setting

Fi = |GAi
:Ni|{Ai} ∪ {Bi1, ..., Bi,ℓi

},

we can write
⋃

P∈PG
i

P =
⋃

B∈Fi

BG.

We conclude that we have:

B =
⋃

P∈R

P =
⋃

16i6t; P∈PG
i

P =
⋃

16i6t; B∈Fi

BG =
⋃

B∈F

BG

where
F = F1 ∪ ... ∪ Ft.

This means that F is a 1-rotational difference family generating the underlying BIBD of
D. Also, it is clear that the subfamilies F1, ..., Ft satisfy the properties of Definition 2.1
so that F is resolvable.

(⇐=) Let F be a resolvable 1-rotational (G, k, λ) difference family. Thus there exists
a partition of F

F = F1 ∪ ... ∪ Ft

with each Fi as in Definition 2.1. Set, for i = 1, ..., t,

Pi = {Ai} ∪ {Bij + n | 1 6 j 6 ℓi; n ∈ Ni}.

It is immediate to see that each Pi is a parallel class of the BIBD generated by F and
that PG

1 ∪ ... ∪ PG
t is a G-invariant resolution of it. 2
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Example 2.3 Consider the following 5-subsets of Z24 ∪ {∞}:

B1 = {1, 2, 3, 4, 11}; B2 = {1, 5, 10, 14, 21};

B3 = {1, 11, 14, 16, 21}; B4 = {1, 14, 15, 17, 22}.
We have:

∆B1 = ±{ 31, 22, 3, 7, 8, 9, 10}; ∆B2 = ±{ 34, 5, 7, 8, 29, 211};

∆B3 = ±{2, 3, 4, 25, 7, 9, 210, 11}; ∆B4 = ±{1, 2, 23, 5, 7, 28, 10, 11}.
Thus, it is readily seen that

⋃4
i=1 ∆Bi = 4(Z24 − N) where N = {0, 6, 12, 18} is the sub-

group of order 4 of Z24. This means that {B1, B2, B3, B4} is a (24, 4, 5, 4)-DF. Set A =
{∞, 0, 6, 12, 18}, observe that GA = N and hence that ∂A = {6, 12, 18,∞}. Thus, consid-
ering that each Bi is full (so that ∂Bi = ∆Bi) we can say that F = {4A, B1, B2, B3, B4}
is a 1-rotational (Z24, 5, 4)-DF. Of course we can write F = F1 ∪ F2 ∪ F3 ∪ F4

with Fi = {A, Bi} for 1 6 i 6 4. Now note that the reduction (mod 6) of each Bi is
{1, 2, 3, 4, 5} that is equivalent to say that each Bi is a complete system of representa-
tives for the cosets of N that are not contained in A. We conclude that Fi satisfies the
conditions given in Definition 2.1 with Ni = N for each i and hence F is resolvable.
Following the proof of Theorem 2.2 we can finally say that the above resolution of F gives
rise to a 1-rotational (25, 5, 4)-RBIBD whose starter parallel classes are P1, ..., P4 where
Pi = {A, Bi, Bi + 6, Bi + 12, Bi + 18} for i = 1, ..., 4.

Definition 2.4 A 1-rotational DF will be said elementarily resolvable if it admits a res-
olution of size 1.

Looking at the proof of Theorem 2.2 it is obvious that the following holds.

Proposition 2.5 An elementarily resolvable 1-rotational (G, k, λ)-DF is completely
equivalent to a (|G| + 1, k, λ)-RBIBD that is 1-rotational under G with G acting tran-
sitively on the resolution.

The following example is taken from [2].

Example 2.6 Consider the collection F = {A, B1, B2, B3, B4} of 7-subsets of Z62 ∪ {∞}
whose blocks are:

A = {∞, 11, 24, 27, 42, 55, 58};
B1 = {6, 14, 32, 44, 49, 51, 52} B2 = {7, 8, 12, 30, 34, 36, 59};

B3 = {26, 35, 40, 46, 47, 56, 60}; B4 = {0, 2, 10, 17, 23, 50, 53}.
We have GA = {0, 31} and ∂A = ±{3, 13, 15, 16, 18, 28} ∪ { 331}. We also have:

∂B1 = ∆B1 = {1, 2, 3, 5, 7, 28, 12, 16, 217, 18, 219, 20, 224, 25, 26, 27, 30};

∂B2 = ∆B2 = {1, 2, 24, 5, 6, 10, 11, 15, 18, 222, 223, 24, 25, 26, 27, 28, 229};
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∂B3 = ∆B3 = {1, 4, 5, 6, 7, 29, 10, 11, 12, 13, 214, 16, 220, 221, 25, 28, 30};
∂B4 = ∆B4 = {2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 27, 29, 30}.

Also here it is readily seen that F is a 1-rotational (Z62, 7, 3) difference family. Now check
that the reduction (mod 31) of

⋃4
i=1 Bi gives Z31 − {11, 24, 27}. Then, considering that

the cosets of {0, 31} contained in A are exactly those represented by 11, 24 and 27, we can
say that the union of the Bi’s is a complete system of representatives for the left cosets of
N = {0, 31} in G that are not contained in A. Hence we conclude that F is elementarily
resolvable and that a resolution of the corresponding (63, 7, 3)-RBIBD is the orbit under
Z62 of the single parallel class P = {A, B1, B2, B3, B4, B1 +31, B2 +31, B3 +31, B4 + 31}.

Definition 2.7 We say that a (G, N, k, λ)-DF with |N | = k − 1 is resolvable (and we
write (G, N, k, λ)-RDF) if there is a suitable N ′ 6 N such that |N : N ′| = λ and the
union of the base blocks of F is a complete system of representatives for the left cosets of
N ′ in G that are not contained in N .

The above terminology is justified by the following proposition.

Proposition 2.8 If there exists a (G, N, k, λ)-RDF, then there exists an elementarily
resolvable 1-rotational (G, k, λ′)-DF for a suitable divisor λ′ of λ. Moreover, if N is
abelian, there exists a (G, N, k, µ)-RDF for every µ such that λ | µ | k − 1.

Proof. Let F be a (G, N, k, λ)-RDF so that there is N ′ 6 N satisfying the conditions
prescribed by Definition 2.1. The blocks of P := {N} ∪ {B+n′ | B ∈ F ; n′ ∈ N ′} partition
G by assumption. Considering that N is the unique subset of P of size k−1, it is obvious
that GP fixes N and hence GP 6 GN = N . It is also obvious that N ′ 6 GP so that we have
N ′ 6 GP 6 N and the index λ′ of GP in N is a divisor of λ. Now note that gcd(|G|, k) = 1.

In fact we have |G| = (k−1)t for a suitable t and hence |F| = λ|G−N |
k(k−1)

= λ(t−1)
k

. On the other

hand gcd(λ, k) = 1 since λ is a divisor of |N | = k−1. Hence we have |G| = (k−1)(ku+1)
for a suitable u. It follows that the G-stabilizer of every block of P − {N} is trivial and
hence we can write P = {N} ∪ {B + g | B ∈ F ′; g ∈ GP} where F ′ is a complete system
of representatives for the GP-orbits on the blocks of P −{N}. The fact that the blocks of
P partition G is equivalent to say that the union of the blocks of F ′ is a complete system
of representatives for the left cosets of GP in G that are not contained in N . It is now
easy to recognize that setting A = N ∪ {∞} we have that λ′{A} ∪ F ′ is an elementarily
resolvable 1-rotational (G, k, λ′)-DF.

Finally, observe that {B + n | B ∈ F ; n ∈ N ′ − N ′′} is a (G, N, k, |N : N ′′|)-RDF for
every subgroup N ′′ of N ′. The second part of the statement immediately follows. 2

Example 2.9 Check that

F =
{

{12, 36, 40, 8, 9}, {24, 1, 26, 38, 7}, {28, 37, 42, 19, 43}, {13, 5, 10, 3, 39}
}

is a (44, 4, 5, 2)-DF, namely a (G, N, 5, 2)-DF with G = Z44 and N = {0, 22, 11, 33}.
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Looking at the reduction (mod 22) of the blocks of F

{12, 14, 18, 8, 9}, {2, 1, 4, 16, 7}, {6, 15, 20, 19, 21}, {13, 5, 10, 3, 17}

we immediately see that their union is a complete system of representatives for the cosets
of N ′ = {0, 22} not contained in N . Thus, having |N : N ′| = 2, we can say that F is
resolvable and that the orbit of

P :=

{

{∞, 0, 22, 11, 33}, {12, 36, 40, 8, 9}, {34, 14, 18, 30, 31}{24, 1, 26, 38, 7}, {2, 23, 4, 16, 29},

{28, 37, 42, 19, 43}, {6, 15, 20, 41, 21}, {13, 5, 10, 3, 39}, {35, 27, 32, 25, 17}
}

is a 1-rotational (45, 5, 2)-RBIBD.

The above example deserves particular attention since according to the last tables of small
BIBDs [32] no resolvable (45, 5, 2)-RBIBD was known before. See also Table 7.38 in [1].

In [12] there are many classes of 1-rotational RBIBDs coming from suitable
(G, N, k, λ)-DFs which, however, are not resolvable in the sense of Definition 2.1. In
fact, in those DFs we have |N | = k − 1 but λ is not a divisor of k − 1. No RBIBD given
in that paper is 1-rotational under a group acting transitively on the parallel classes.

In the next sections we will always consider DF’s under the cyclic group.

3 Resolvable ((k − 1)p, k − 1, k, 2)-DFs with p a prime

and k = 3, 5 or 7

Given k odd, for the existence of a ((k − 1)p, k − 1, k, λ)-RDF with p a prime and λ = 1
or 2 it is trivially necessary that p ≡ 1 (mod 2k). When λ = 1 this is not always suffi-
cient since, for instance, an exhaustive computer search allows us to see that there is no
(44, 4, 5, 1)-RDF. On the other hand, as far as the authors are aware, for the time being
there is no example of a pair (p, k) with k odd and p ≡ 1 (mod 2k) a prime for which it
is known that a ((k − 1)p, k − 1, k, 2)-RDF does not exist. Indeed in this section we will
prove that such an RDF always exists for k = 3 and 5. We point out, however, that the
difficulty of constructing such RDF’s increases a lot with k. In fact, for k = 7, we will be
able to obtain only partial results.

(2p, 2, 3, 2)-RDF’s with p prime and p ≡ 1 (mod 6)

The existence of a (2p, 2, 3, 1)-RDF, and hence that of a 1-rotational Kirkman triple
system of order 2p + 1, has been determined in [17] for any prime p ≡ 1 (mod 12). For
p ≡ 1 (mod 6) but p 6≡ 1 (mod 12), namely for p ≡ 7 (mod 12), such a DF does not exist
since in this case a 1-rotational Steiner triple system of order 2p + 1 not even exists (see
[34], Theorem 2.2). On the other hand now we show that a (2p, 2, 3, 2)-DF exists for any
prime p ≡ 1 (mod 6).

Theorem 3.1 There exists a (2p, 2, 3, 2)-RDF for any prime p ≡ 1 (mod 6)
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Proof. Using the Chinese Remainder Theorem we identify Z2p and its subgroup pZ2p

of order 2 with G = Z2 ⊕ Zp and N = Z2 ⊕ {0}, respectively.
Let ǫ be a primitive cubic root of unity of Zp and take the following 3-subsets of G:

B1 = {(0, 1), (0, ǫ), (0, ǫ2)}, B2 = {(1, ǫ), (1,−ǫ), (0,−1)},
B3 = {(1, ǫ2), (1,−ǫ2), (0,−ǫ)}, B4 = {(1, 1), (1,−1), (0,−ǫ2)}

where < −ǫ > is the multiplicative group generated by −ǫ, namely the group of 6th roots
of unity of Zp. We have:

4
⋃

h=1

∆Bh = {0} × (< −ǫ > ·{ǫ − 1, 2}) ∪ {1} × (< −ǫ > ·{ǫ − 1, ǫ + 1}).

Thus, if S is a complete system of representatives for the cosets of < −ǫ > in Z∗
p, we see

that
F = {Bh · (1, s) | 1 6 h 6 4; s ∈ S}

is a (G, N, 5, 2)-DF. Now note that we have:

4
⋃

h=1

Bh = Z2× < −ǫ >

so that the union of all the base blocks of F gives Z2 × Z∗
p that trivially is a complete

system of representatives for the cosets of N ′ = {(0, 0)} that are not contained in N .
Thus F is resolvable and the assertion follows. 2

(4p, 4, 5, 2)-RDF’s with p prime and p ≡ 1 (mod 10)

There are some papers of the 90’s [6, 11, 30] dealing with the construction of a 1-
rotational (G, N, 5, 1)-DF with G = Z2

2 ⊕ Zp and N = Z2
2 ⊕ {0} where p = 10n + 1

is a prime. In particular, the existence has been proved for 41 6 p 6 1151 in [6] and
for p sufficiently large in [30]. Constructions for 1-rotational (4p, 4, 5, 1)-DF’s with p as
above, namely for 1-rotational (G, N, 5, 1)-DF with G = Z4p and N = pZ4p, have been
considered in [11]. In this case the existence has been proved for p ≡ 31 (mod 60) if
certain cyclotomic conditions are satisfied but, still now, to solve the existence problem
for every prime p does not seem to be easy. On the other hand here we are able to prove
the existence of a (4p, 4, 5, 2)-DF for any prime p ≡ 1 (mod 10). This will be achieved by
using the following application of the Theorem of Weil on multiplicative character sums
(see [31], Theorem 5.41) obtained in [15] (see also [20]).

Theorem 3.2 Given a prime p ≡ 1 (mod e), a t-subset B = {b1, ..., bt} of Zp, and a
t-tuple (β1, ..., βt) of Zt

e, the existence of an element x ∈ Zp satisfying the t cyclotomic
conditions x − bi ∈ Ce

βi
(i = 1, ..., t) is guaranteed for p > Q(e, t) where

Q(e, t) =
1

4

(

U +
√

U2 + 4tet−1
)2

with U =

t
∑

h=1

(

t

h

)

(e − 1)h(h − 1).
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In the above statement we have used the standard notation according to which Ce is
the subgroup of index e of the multiplicative group Z∗

p of Zp, and Ce
i is the coset of Ce

represented by ri where r is a fixed generator of Z∗
p.

Theorem 3.3 There exists a (4p, 4, 5, 2)-RDF for any prime p ≡ 1 (mod 10).

Proof. Using the Chinese Remainder Theorem we identify Z4p and its subgroup pZ4p

of order 4 with G = Z4 ⊕ Zp and N = Z4 ⊕ {0}, respectively.
Take four 5-subsets B1, ..., B4 of G of the following form:

B1 = {(0, 1), (0,−1), (1, a), (1,−a), (2, b)}; B2 = {(0, c), (0,−c), (0, d), (1,−d), (2,−b)};

B3 = {(3, 1), (3,−1), (2, a), (2,−a), (1, b)}; B4 = {(3, c), (3,−c), (3, d), (2,−d), (1,−b)}.
Note that B3 = φ(B1) and B4 = φ(B2) where φ : (x, y) ∈ G −→ (3x + 3, y) ∈ G. We

have:F
4

⋃

h=1

∆Bh =

3
⋃

i=0

{i} × ({1,−1} · ∆i) (1)

where

∆0 = 2{2, 2a, 2c, c− d, c + d};
∆1 = ∆3 = {a − 1, a − 1, a + 1, a + 1, a − b, a + b, c + d, c − d, 2d, b − d};

∆2 = 2{b − 1, b + 1, b + c, b − c, b + d}.
Assume that the quadruple (a, b, c, d) satisfies the following conditions:

each ∆i has exactly two elements in each coset of C5; (2)

{1, a, b, c, d} has exactly one element in each coset of C5. (3)

Denoted by S a complete system of representatives for the cosets of {1,−1} in C5, con-
dition (2) implies that {1,−1} · ∆i · S = 2Z∗

p for each i and hence, by (1), we have
that

F = {Bh · (1, s) | 1 6 h 6 4; s ∈ S}
is a (G, N, 5, 2)-DF. Now note that

⋃

B∈F

B = {0, 3} × ({±1,±c, d} · S) ∪ {1, 2} × ({±a,±b,−d} · S).

Thus, since (3) implies that {±1,±a,±b,±c,±d} · S = Z∗
p, we see that the union of the

blocks of F is a complete system of representatives for the cosets of N ′ := {(0, 0), (2, 0)}
that are not contained in N (namely of the cosets of N ′ distinct from N ′ itself and from
{(1, 0), (3, 0)}). This means that F is resolvable.

In view of the above discussion, the theorem will be proved if we are able to find
at least one good quadruple of Zp, namely a quadruple (a, b, c, d) of elements of Zp for
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Table 1: Good quadruples (a, b, c, d) for 71 6 p < 1, 000

p a b c d p a b c d
71 10 27 31 4 521 17 30 33 93
101 7 9 33 73 541 13 21 37 91
131 10 34 50 95 571 5 15 83 50
151 44 48 67 72 601 42 60 63 95
181 3 33 42 66 631 47 51 70 71
191 7 9 27 62 641 11 68 13 81
211 4 27 86 92 661 4 69 93 15
241 14 39 46 93 691 6 7 8 64
251 19 42 66 96 701 11 12 57 90
271 27 34 64 71 751 2 8 16 44
281 3 31 56 75 761 10 95 42 35
311 2 29 34 39 811 24 33 37 59
331 8 58 64 82 821 2 7 54 62
401 4 38 47 73 881 3 14 19 59
421 3 49 66 82 911 5 36 84 67
431 28 45 44 75 941 10 27 51 85
461 2 6 15 58 971 9 94 43 88
491 6 19 20 63 991 8 26 29 53

which (2) and (3) hold. By applying repeatedly Theorem 3.2 as done, for instance,
in Application 2 of [15], we deduce that a such a good quadruple certainly exists for
p > Q(5, 5) = 87, 915, 625.

If C5
i is the coset of C5 containing 2, it is easy to see that (a, b, c, d) is good if (but

not “only if”!) we have:

a ∈ C5
1 ; a − 1 ∈ C5

i ; a + 1 ∈ C5
i+1;

b ∈ C5
4 ; a − b ∈ C5

i+2; a + b ∈ C5
i+2; b − 1 ∈ C5

0 ; b + 1 ∈ C5
1 ;

c ∈ C5
2 ; b + c ∈ C5

2 ; b − c ∈ C5
3 ;

d ∈ C5
3 ; c − d ∈ C5

i+3; c + d ∈ C5
i+4; b − d ∈ C5

i+4; b + d ∈ C5
4 .

Using a computer we have found a good quadruple (a, b, c, d) also for p < Q(5, 5) with
the only exceptions of p ∈ {11, 31, 41, 61}. In Table 1 we report the computer results for
p < 1, 000.
Since a (4 · 11, 4, 5, 2)-DF has been already determined in Example 2.9, it remains only
to exhibit a (4p, 4, 5, 2)-DF for p = 31, 41 and 61. Such DF’s can be also realized of the
form {(1, s) · Bi, (1, s) · φ(Bi) | s ∈ S; i = 1, 2} where, again, S is a complete system of
representatives for the cosets of {1,−1} in C5 and φ is the permutation on G defined by
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the rule φ(x, y) = (3x + 3, y). It suffices to take B1 and B2 as follows:

p B1 B2

31 {(0, 5), (0, 14), (0, 17), (1, 26), (2, 27)} {(0, 3), (0, 4), (1, 10), (1, 21), (2, 28)}
41 {(0, 2), (2, 8), (3, 14), (3, 15), (3, 39)} {(0, 19), (1, 22), (1, 26), (3, 27), (3, 33)}
61 {(0, 2), (0, 5), (0, 12), (1, 41), (2, 56)} {(0, 11), (0, 20), (1, 49), (1, 50), (2, 59)}

2

(6p, 6, 7, 2)-RDF’s with p prime and p ≡ 1 (mod 28)

In the following, given a prime p ≡ 1 (mod 28) we will say that p is good if, denoted by
ǫ a primitive 7th root of unity of Zp, then ǫ− 1, ǫ2 − 1 and ǫ3 − 1 are in pairwise distinct
cosets of C4. As an application of a general construction, in [17] it is proved the existence
of a (6p, 6, 7, 1)-RDF for any good prime p = 56t+1 not exceeding 10,000. Here we prove
the existence of a (6p, 6, 7, 2)-RDF for any good prime p = 28t+1 < 100, 000 and for any
good prime p sufficiently large.

Theorem 3.4 There exists a (6p, 6, 7, 2)-RDF for any good prime p ≡ 1 (mod 28) with
p > Q(4, 7) or p < 100, 000.

Proof. Apply, again, the Chinese Remainder Theorem and identify Z6p and its subgroup
of order 6 with G = Z6 ⊕ Zp and N = Z6 ⊕ {0}, respectively. Let ǫ be a primitive 7th
root of unity in Zp and consider eight 7-subsets B0, B1, ..., B7 of G of the following form:

Bi = {(0, ǫia), (1, ǫib), (2, ǫic), (3, ǫid), (4, ǫie), (5, ǫif), (5, ǫig)} for 0 6 i 6 6;

B7 = {(0, 1), (0, ǫ), (0, ǫ2), (0, ǫ3), (0, ǫ4), (0, ǫ5), (0, ǫ6)}.
An easy counting shows that

7
⋃

h=0

∆Bh =
5

⋃

i=0

{i} × (< ǫ > ·∆i) (4)

where
∆0 = ±{f − g, ǫ − 1, ǫ2 − 1, ǫ3 − 1};

∆1 = ∆5 = {b − a, c − b, d − c, e − d, f − e, g − e, a − f, a − g};
∆2 = ∆4 = {c − a, d − b, e − c, f − d, g − d, a − e, b − f, b − g};

∆3 = ±{a − d, b − e, c − f, c − g}.
We also have

7
⋃

h=0

Bh =
5

⋃

i=0

{i} × (< ǫ > ·Li)
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where: L0 = {1, a}; L1 = {b}; L2 = {c}; L3 = {d}; L4 = {e}; L5 = {f, g}. Thus, denoted
by N ′ the subgroup of N of index λ = 2, namely N ′ = {(0, 0), (2, 0), (4, 0)}, we can write

7
⋃

h=0

Bh = {0, 2, 4}× (< ǫ > ·{1, a, c, e}) ∪ {1, 3, 5}× (< ǫ > ·{b, d, f, g}) (mod N ′). (5)

Assume that (a, b, c, d, e, f, g) is a 7-tuple of elements of Zp such that the following con-
ditions hold:

each ∆i has exactly two elements in each coset of C4; (6)

both {1, a, c, e} and {b, d, f, g} have exactly one element in each coset of C4. (7)

Let S be complete system of representatives for the cosets of < ǫ > in C4. Condition (6)
implies that < ǫ > ·∆i · S = 2Z∗

p for 0 6 i 6 5 and hence, by (4), we deduce that

F = {Bh · (1, s) | 0 6 h 6 7; s ∈ S}

is a (G, N, 7, 2)-DF.
Condition (7) implies that < ǫ > ·{1, a, c, e} · S = Z∗

p and < ǫ > ·{b, d, f, g} · S = Z∗
p

so that, by (5), we see that the union of all the base blocks of F is a complete system of
representatives for the cosets of N ′ that are not contained in N , namely F is resolvable.

Thus the theorem is proved if one finds a good 7-tuple (a, b, c, d, e, f, g) of elements
of Zp satisfying (6) and (7). It is obvious that a necessary condition for the existence
of such a good 7-tuple is that the three elements ǫ − 1, ǫ2 − 1 and ǫ3 − 1 lie in pairwise
distinct cosets of C4 since otherwise ∆0 would not satisfy (6). This is the reason for
which it is fundamental to assume the goodness of p. For p good one can see, also here,
that an iterated application of Theorem 3.2 guarantees the existence of a good 7-tuple
for p > Q(4, 7) = 4, 848, 810, 000. This is a quite huge number so that to test all primes
p ≡ 1 (mod 28) that are smaller than it does not seem to be feasible. We have easily
checked, however, that there is at least one good 7-tuple for every good p < 100, 000. We
report our computer results for p < 5, 000 in Table 2. 2

4 Asymptotic existence of ((k − 1)p, k − 1, k, 1)-RDF’s

with p a prime

We recall that a (n, k, µ) strong difference family (SDF) is a collection of multisets (blocks)
of size k with elements in Zn whose lists of differences cover all of Zn (zero included!)
exactly µ times. It is trivial that every (n, k, µ)-SDF has µ necessarily even and that the
number of its blocks is µn

k(k−1)
. Hence, in particular, a (k − 1, k, µ)-SDF has µ = kt even

and the number of its blocks is t.
The concept of an SDF, introduced in [12] and revisited in [33], is very useful for

the construction of relative difference families. Indeed most direct constructions for
(np, n, k, λ)-DFs with p a prime that one can find in the literature have been obtained
via the more or less explicit use of a suitable (n, k, µ)-SDF. For instance, the reader may
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Table 2: Good 7-tuples (a, b, c, d, e, f, g) for good primes p ≡ 1 (mod 28), p < 5, 000

p a b c d e f g
29 2 3 4 10 12 5 23
113 3 17 25 35 40 51 64
281 5 17 27 35 48 52 65
953 8 10 20 35 46 53 66
1009 3 15 43 48 61 86 92
1877 4 11 27 39 45 56 65
1933 2 14 29 34 40 51 63
2129 7 16 21 36 48 57 69
2297 3 11 21 36 52 57 78
2381 2 1 11 50 21 9 18
2969 3 2 37 30 52 9 26
3137 3 4 34 20 51 30 71
3697 5 1 31 41 47 25 46
4649 3 17 28 19 15 9 6
4733 5 7 13 18 2 40 14
4957 2 1 7 35 26 21 8

recognize that in the construction of the (4p, 4, 5, 2)-RDF’s given in the previous section
we implicitly used the (4, 5, 10)-SDF whose blocks are the multisets {0, 0, 1, 1, 2} and
{0, 0, 0, 1, 2}.

In [15] it was proved that every (n, k, µ)-SDF implies the existence of a (np, n, k, 1)-DF
for every prime p ≡ µ + 1 (mod 2µ) sufficiently large. The aim of this section is to prove,
with a quite similar reasoning, that given any integer k there exists a ((k−1)p, k−1, k, 1)-
RDF for any prime p ≡ k2 + k + 1 (mod 2k2 + 2k) sufficiently large.

Theorem 4.1 If there exists a (k−1, k, kt)-SDF, then there exists a ((k−1)p, k−1, k, 1)-
RDF for any prime p ≡ kt + 1 (mod 2kt) with p > Q(kt, k).

Proof. Let {X1, ..., Xt} be a (k−1, k, kt)-SDF and set Xi = {xi1, ..., xik} for i = 1, ..., t.
Let p be a prime as in the statement so that we have p = ktn+1 with n odd. Once again
we identify Z(k−1)p and pZ(k−1)p with G = Zk−1 ⊕ Zp and N = Zk−1 ⊕ {0}, respectively.
For each i = 1, ..., t, take a k-subset Yi = {yi1, ..., yik} of Z∗

p and consider the k-subsets
B1, ..., Bt of G defined by Bi = {(xi1, yi1), ..., (xik, yik)} for i = 1, ..., t. It is immediate to
see that

t
⋃

h=1

∆Bh =
k−2
⋃

i=0

{i} × ∆i

where each ∆i is a list of kt elements of Z∗
p. It is also obvious that Y :=

⋃t
i=1 Yi is, again,

a list of kt elements of Z∗
p that is the projection of the union of the Bi’s on Z∗

p.

the electronic journal of combinatorics 17 (2010), #R139 14



The hypothesis that p > Q(kt, k) and an iterated use of Theorem 3.2 allow us to see
that it is possible to choose the yij’s in such a way that the following condition holds:

each of the lists ∆0, ∆1, ..., ∆k−2, Y has exactly one element in each coset of Ckt.

The above condition immediately implies that

F = {Bh · (1, s) | 1 6 h 6 t; s ∈ Ckt}

is a (G, N, k, 1)-RDF and hence the assertion follows. 2

It is the case to observe that in the proof of the above theorem the hypothesis that n
is odd is fundamental. In fact, the crucial condition on the yij’s cannot be satisfied for n
even since in this case −1 ∈ Ckt and hence, considering that −δ ∈ ∆0 for every δ ∈ ∆0,
we would have pairs of elements of ∆0 lying in the same coset of Ckt.

Corollary 4.2 For any integer k and any prime p ≡ k(k + 1) + 1 (mod 2k(k + 1))
sufficiently large there exists a ((k − 1)p, k − 1, k, 1)-RDF.

Proof. It is enough to apply Theorem 4.1 using the (k − 1, k, k(k + 1))-SDF whose k + 1
blocks are k{0} and Zk−1 ∪ {0} repeated k times. 2

5 Characterizing PDFs by 1-rotational RBIBDs

Now we establish a very strong link between partitioned difference families and
1-rotational RBIBDs.

Theorem 5.1 There exists a (G, {k − 1, k}, k − 1)-PDF in G if and only if there exists
an elementarily resolvable 1-rotational (G, k, λ)-DF for a suitable λ.

Proof. Assume that P∗ is a (G, {k − 1, k}, λ)-PDF, let A∗ be its unique base block of
size k − 1, and set N = GP∗. The order of G, that is k(|P∗| − 1) + (k − 1) = k|P∗| − 1, is
coprime with k so that each block of P∗ distinct from A∗ has trivial G-stabilizer. Also,
it is obvious that N fixes A∗ so that A∗ is union of left cosets of N in G. This implies, in
particular, that |N | is a divisor of k − 1, say k − 1 = λ|N |. It is clear that we can write

P∗ = {A∗} ∪ {B1 + n, ..., Bℓ + n | n ∈ N}

where {B1, ..., Bℓ} is a complete system of representatives for the N -orbits on the blocks

of P∗ − {A∗} and hence ℓ = |P∗|−1
|N |

= |G|−k+1
k|N |

.

Set A = A∗ ∪ {∞}. We have:

|N |( |GA:N |∂A) = |GA|∂A = |GA|∂A∗ ∪ |GA|( (k−1)/|GA|{∞}) = ∆A∗ ∪ λ|N |{∞}. (8)

It is trivial that

∆(Bi + n) = ∆Bi = ∂Bi for every pair (i, n) ∈ {1, ..., ℓ} × N
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so that we have

⋃

n∈N

[∆(B1 + n) ∪ ... ∪ ∆(Bℓ + n)] = |N |(∂B1 ∪ ... ∪ ∂Bℓ). (9)

By assumption the ordinary differences of all the blocks of P∗ cover all non-zero elements
of G exactly k − 1 = λ|N | times and hence we can write

⋃

n∈N

[∆(B1 + n) ∪ ... ∪ ∆(Bℓ + n)] ∪ (∆A∗ ∪ λ|N |{∞}) = λ|N |[(G ∪ {∞}) − {0}]

which compared with (8) and (9) gives

|N |( |GA:N |∂A ∪ ∂B1 ∪ ... ∪ ∂Bℓ) = λ|N |[(G ∪ {∞}) − {0}].

This means that the partial differences of F := |GA:N |{A} ∪ {B1, ..., Bℓ} cover all non-zero
elements of G ∪ {∞} exactly λ times, i.e., F is a 1-rotational (G, k, λ) difference family.

Now note that the hypothesis that P∗ is partitioned implies that B1 ∪ ... ∪ Bℓ is a
complete system of representatives for the left cosets of N in G that are not contained in
A. It is finally obvious that F has trivial G-stabilizer. We conclude that F is elementarily
resolvable.

Conversely, assume that F is an elementarily resolvable 1-rotational (G, k, λ)-DF. Thus
we have F = |GA:N |{A} ∪ {B1, ..., Bℓ} where A is the block of F through ∞, N 6 GA,

ℓ = |G|−k+1
k|N |

, GF = GB1
= ... = GBℓ

= {0} and B1 ∪ ... ∪ Bℓ is a complete system of
representatives for the left cosets of N in G that are not contained in A. Then, setting
A∗ = A − {∞} and reasoning as in the “if part” one can see that

P∗ = {A∗} ∪ {B1 + n, ..., Bℓ + n | n ∈ N}

is a (G, {k − 1, k}, k − 1)-PDF. 2

Looking at the proof of the above theorem we see, in particular, that the following
corollary holds.

Corollary 5.2 Every ((k−1)v, k−1, k, λ)-RDF determines a ((k−1)v, {k−1, k}, k−1)-
PDF whose block of size k − 1 is vZ(k−1)v.

Theorem 5.1 together with Propositions 1.1 and 2.5 allow us to state the following char-
acterization of partitioned difference families with exactly two block sizes k − 1 and k.

Theorem 5.3 The partitioned difference families having exactly two block sizes k−1 and
k are precisely those obtainable by deleting ∞ by a parallel class of a RBIBD with block
size k that is 1-rotational under a group acting transitively on its resolution.
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6 Recursive constructions for partitioned difference

families

We recall that a (w, k, 1) difference matrix (DM for short) in an additive group H of order
w is a k×w matrix M with entries in H such that the difference of any two distinct rows
of M is a permutation of the elements of H . It is good or homogeneous if every row is also
a permutation of the elements of H . If the group H is not specified, it is understood that
H = Zw. For general background on difference matrices we refer to [21]. Here, we only
recall that if gcd(w, k!) = 1, namely if the least prime factor of w is greater than k, then
the k × w matrix M = (mij) with mij = ij trivially is a homogeneous (w, k, 1)-DM.

Difference matrices are very often useful for the recursive constructions of difference
families [11]. In this section we use them for getting composition constructions for parti-
tioned difference families.

Theorem 6.1 If there exist a (nv, n, K, λ)-SDDF and a homogeneous (w, kmax, 1)-DM
with kmax the maximum integer in K, then there exists a (nvw, nw, wK, λ)-SDDF.

Proof. Let F = {A1, ..., At} be a (nv, n, K, λ)-DF with Ai = {ai1, ai2, ..., aiki
}, and let

M = (mij) be a (w, kmax, 1)-DM. Then the following subsets of Znvw

A′
ij = {ai1 + nvm1j , ai2 + nvm2j , ..., aiki

+ nvmkij} 1 6 i 6 t; 1 6 j 6 w

form a (nvw, nw, wK, λ)-DF. It is straightforward to check that this difference family is
strictly disjoint in the hypothesis that F is also strictly disjoint and M is homogeneous.
2

Theorem 6.2 Assume that there exist:

(i) a (nv, n, K, λ)-SDDF whose base blocks partition Znv − vZnv;

(ii) a homogeneous (w, kmax, 1)-DM with kmax = max{k | k ∈ K};

(iii) a (nw, K ′, λ)-PDF.

Then there exists a (nvw, wK ∪ K ′, λ)-PDF.

Proof. Let F be a PDF as in (i) so that we have
∑

k∈K k = |Znv−vZnv| = n(v−1). Let
F ′ be a (nvw, nw, wK, n)-SDDF obtainable using Theorem 6.1. The number of elements
covered by its blocks is given by

∑

k∈wK k = w
∑

k∈K k = nw(v − 1) that is just the size
of Znvw − vZnvw. Recalling that the blocks of F ′ do not meet vZnvw by definition of a
SDDF, we deduce that these blocks partition Znvw − vZnvw. Now, let F ′′ be a PDF as
in (iii) and set F̂ ′′ = {vB | B ∈ F ′′}. Interpreting the blocks of F̂ ′′ as subsets of Znvw,
we see that F̂ ′′ is a (nw, K ′, λ)-PDF in vZnvw. It is then immediate that F ′ ∪ F̂ ′′ is a
(nvw, wK ∪ K ′, λ)-PDF. 2
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Corollary 6.3 Let k, v be positive integers with p ≡ 1 (mod k) for any prime p dividing v.
Also assume that there exist a (w, {k−1, k}, k−1)-PDF and a homogeneous (w, k, 1)-DM.
Then there exists a (vw, {k − 1, k}, k − 1)-PDF.

Proof. There is a very well known result by Wilson [35] according to which if p is a
prime and k is a divisor of p− 1, then the set of all cosets of the k-th roots of unity in Zp

is a (p, k, k − 1)-SDDF. This fact and an iterated use of Theorem 6.1 easily allow us to
deduce the existence of a (v, k, k − 1)-SDDF, namely a (1 · v, 1, k, k − 1)-DF whose base
blocks partition Zv − {0} = Zv − vZv. The assertion then follows by applying Theorem
6.2 with n = 1 and λ = k − 1. 2

Corollary 6.4 If there exist a ((k−1)v, k−1, k, λ)-RDF, a ((k−1)w, {k−1, k}, k−1)-PDF
and a homogeneous (w, k, 1)-DM, then there exists a ((k − 1)vw, {k − 1, k}, k − 1)-PDF.

Proof. By Corollary 5.2, the existence of a ((k − 1)v, k− 1, k, λ)-RDF implies that of a
((k−1)v, {k−1, k}, k−1)-PDF whose block of size k−1 is vZ(k−1)v. It is then obvious that
the remaining blocks partition Z(k−1)v−vZ(k−1)v and form a ((k−1)v, k−1, k, k−1)-DDF.
Hence we get the assertion by applying Theorem 6.2 with n = λ = k − 1. 2

It is also worth noting the following result generalizing a construction for 1-rotational
resolvable Steiner 2-designs given by Jimbo and Vanstone [28] and revisited in [17].

Theorem 6.5 If there exist a ((k − 1)v, k − 1, k, λ)-RDF, a ((k − 1)w, k − 1, k, λ)-RDF
and a homogeneous (w, k, 1)-DM, then there exists a ((k − 1)vw, k − 1, k, λ)-RDF.

Proof. First, starting from a ((k − 1)v, k − 1, k, λ)-RDF, apply the construction given
by Theorem 6.1 obtaining in this way a ((k − 1)vw, (k − 1)w, k, λ)-SDDF, say F . Now
take a ((k − 1)w, k − 1, k, λ)-RDF, say F ′, and consider the collection F ′′ of k-subsets of
Z(k−1)vw defined by F ′′ = {vB | B ∈ F ′}. It is not difficult to see that F ∪ F ′′ is the
required ((k − 1)vw, k − 1, k, k − 1)-RDF. 2

Taking into account the main results obtained in the third section, we have the fol-
lowing immediate corollaries.

Corollary 6.6 (i) There exists a (2u, 2, 3, 2)-RDF for any integer u whose prime factors
are all congruent to 1 (mod 6).
(ii) There exists a (4u, 4, 5, 2)-RDF for any integer u whose prime factors are all congruent
to 1 (mod 10).
(iii) There exists a (6u, 6, 7, 2)-RDF if for every prime factor p of u we have: p ≡ 1 (mod
28) is good and either p < 105 or p > Q(4, 7).

7 Infinite classes of partitioned difference families

We conclude by giving a great bulk of previously unnoticed partitioned difference families
that we obtain combining direct and recursive constructions.
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Theorem 7.1 There exists a (u, {k−1, k}, k−1)-PDF for each pair (u, k) of the following
forms:

(i) u = (2k − 1)v with k even, 2k − 1 a prime and p ≡ 1 (mod k) for all prime factors
p of v;

(ii) u = vw and k = 3 with w ∈ {2, 8, 11, 17, 23, 29, 32, 35, 41}, and p ≡ 1 (mod 6) for
all prime factors p of v;

(iii) u = 4n − 1 and k = 4 for every n for which a Z-cyclic Wh(4n) is known;

(iv) u = vw and k = 5 with w ∈ {4, 19, 29, 39} and p ≡ 1 (mod 10) for all prime factors
p of v;

(v) u = vw and k = 6 with w ∈ {11, 23, 29, 41} and p ≡ 1 (mod 6) for all prime factors
p of v;

(vi) u = 5v and k = 6 with p ≡ 1 (mod 12) but p 6∈ {13, 37} for all prime factors p of v;

(vii) u = 41v and k = 7 with p ≡ 1 (mod 14) for all prime factors p of v;

(viii) u = 6v and k = 7 with p ≡ 1 (mod 28) good, p < 105 or p > Q(4, 7) for all prime
factors p of v;

(ix) u = 7v and k = 8 with p ≡ 1 (mod 8) but p 6∈ {17, 89} for all prime factors p of v;

(x) u = vw and k = 8 with w ∈ {31, 47, 71, 79, 103} and p ≡ 1 (mod 8) for all prime
factors p of v;

(xi) u = qn − 1 and k = q with q a prime power and n a positive integer.

Proof. (i). As observed in the introduction, for k even and 2k−1 prime, there exists a
(2k− 1, {k− 1, k}, k− 1}-PDF (this is also a special case of Theorem 3.6 in [38]). Also, it
is trivial that there exists a (2k − 1, k, 1)-DM. Hence the assertion follows from Corollary
6.3.

(ii). The case of w = 2 follows combining Corollary 6.6(i) and Corollary 5.2.
Among Examples 16.81 of [2] one can find an elementarily resolvable 1-rotational

(Zw, 3, 2)-DF for w ∈ W := {11, 17, 23, 29, 35, 41} and hence there exists a (w, {2, 3}, 2)-
PDF for every w ∈ W . Thus the assertion follows from Corollary 6.3 considering that a
homogeneous (w, 3, 1)-DM trivially exists for each w ∈ W .

The main result in [19] gives us a 1-rotational (8v + 1, 3, 1)-RBIBD for every v as in
the statement, which is equivalent to a (8v, 2, 3, 1)-RDF. The case of w = 8 then follows
from Corollary 5.2.

It is known that there exists a 1-rotational (33, 3, 1)-RBIBD. The number of such
RBIBDs up to isomorphism was determined in [18] but the very first example was given
in [29]. Thus there exists a (2 · 16, 2, 3, 1)-RDF and hence a (2 · 16, 2, 3, 2)-RDF too. By
Corollary 6.6(i) we also have a (2v, 2, 3, 2)-RDF for every v as in the statement. Thus,
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considering that a homogeneous (v, 3, 1)-DM trivially exists, we get a (2 ·16v, 2, 3, 2)-RDF
by applying Theorem 6.5.

(iii). As observed in the introduction, any Wh(4n) determines a (4n−1, {3, 4}, 3)-PDF.

(iv) The case of w = 4 follows combining Corollary 6.6(ii) and Corollary 5.2.
Among Examples 16.85 of [2] one can find an elementarily resolvable 1-rotational

(Zw, 5, 4)-DF for w ∈ W := {19, 29, 39} and hence there exists a (w, {4, 5}, 4)-PDF for
every w ∈ W . Thus the assertion follows from Corollary 6.3 considering that there also
exists a homogeneous (w, 5, 1)-DM for each w ∈ W . This is trivial for w = 19, 29 and a
homogeneous (39, 5, 1)-DM can be found in [5].

(v) The case of w = 11 follows from (i). Among Examples 16.86 of [2] one can find
an elementarily resolvable 1-rotational (Zw, 6, 5)-DF for w ∈ W := {11, 23, 29, 41} and
hence there exists a (w, {5, 6}, 5)-PDF for every w ∈ W . Thus the assertion follows
from Corollary 6.3 considering that a homogeneous (w, 5, 1)-DM trivially exists for each
w ∈ W .

(vi) It is known that there exists a (5v, 5, 6, 1)-RDF for any v as in the statement
[13, 27]. Then the assertion follows from Corollary 5.2.

(vii) Among Examples 16.87 in [2] there is an elementarily resolvable 1-rotational
(42, 7, 6)-RBIBD and, consequently, a (41, {6, 7}, 6)-PDF. Thus the assertion follows from
Corollary 6.3 considering that a homogeneous (41, 5, 1)-DM trivially exists.

(viii) It is enough to combine Corollary 6.6(iii), giving a (6v, 7, 6, 2)-RDF, and Corol-
lary 5.2.

(ix) It is known that there exists a (7v, 7, 8, 1)-RDF for any v as in the statement
[13, 27]. Then the assertion follows from Corollary 5.2.

(x) Partly from Examples 16.87 of [2] and partly from Appendix II in [4], one can
deduce the existence of an elementarily resolvable 1-rotational (Zw, 8, 7)-DF, and hence the
existence of a (w, {7, 8}, 7)-PDF, for w ∈ W := {31, 47, 71, 79, 103}. Thus the assertion
follows from Corollary 6.3 considering that a homogeneous (w, 8, 1)-DM trivially exists
for every w ∈ W .

(xi) Let L be the set of lines of the affine space of order n over the field Fq of order
q, and let R be the partition of L into parallel classes. It is clear that D = (Fqn ,L,R)
is a (qn, q, 1)-RBIBD admitting the multiplication by a primitive element of Fqn as an
automorphism of order qn − 1 fixing 0. Thus D is 1-rotational under Zqn−1 so that it is
generated by a (qn − 1, q − 1, q, 1)-RDF. The assertion follows from Corollary 5.2. 2

Regarding Theorem 7.1(iii), as far as the authors are aware the last up date about the
known values of n for which a Z-cyclic Wh(4n) exists is given in [7]. Concerning the set of
values of n for which a Z-cyclic Wh(4n+1) is known (and hence a (4n+1, [1, n4], 3)-PDF
is known too) we also refer to [7] but some recent new results can be found in [3, 15, 26].

Finally, as a consequence of the results obtained in the fourth section we can state the
following theorem.
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Theorem 7.2 For any fixed k > 1 there are infinitely many values of v for which there
exists a (v, {k − 1, k}, k − 1)-PDF.
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